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Preface

The Sound and Music Computing Conference reaches its 16th edition!

This 16th Sound & Music Computing Conference (SMC 2019) takes place in Málaga, Spain, May 28-31, 2019
and it is organized by the Application of Information and Communication Technologies Research group (ATIC) of
Universidad de Málaga (UMA).

SMC 2019 Topics of Interest include a wide selection of topics related to acoustics, psychoacoustics, music,
technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games,
immersive audio, sound synthesis, etc.

Each year a specific topic of interest is highlighted. The theme of this year is Music and Interaction. This topic
is as broad as the different ways in which a certain person (musician or not, engineer or not, artist or not...) may
want to interact with music, depending on their personal interests and their specific relationship with music.

The interaction can be focused on music composition and creation, music performance, data mining, the in-
fluence of music on human beings, music learning, musical instruments, new sound development, reading music,
etc.

SMC 2019 conference fosters the presentation of new methods for any kind of musical conversation or conver-
sation through music, human-computer interaction through the lens of sound, interaction models from objects to
bio and AI systems, new interfaces for playing music, interactive content discovery and recommendation, optical
music recognition, music education, music games, sonification and any other music information retrieval related
technology.

SMC 2019 is an interdisciplinary forum to share research, music, thoughts, needs and discoveries between musi-
cians in a broad sense, computer science experts, music information retrieval researchers, etc. This interdisciplinary
atmosphere will be the perfect place to come up with new ideas, applications and challenges to keep on working in
this fantastic research topic that brings together art, technology and human perception.

SMC 2019 welcomed different types of contributions:

• Papers examining all the core topics of the Sound and Music Computing field; these contributions, that have
been fully peer-reviewed, will be presented as oral presentation or poster.

• Musical contributions that make use of the possibilities technology offers nowadays to create music in a
broad sense. Selected contributions will be performed at the scheduled music sessions.

• Demos, that are a novelty this year. Demo contributions, which have been very well accepted by the commu-
nity, are intended to the presentation of preliminary results, ideas, applications or system prototypes that are
not yet fully formed nor systematically evaluated, but of interest to the SMC community.

SMC 2019 received 166 submission: 97 papers, 43 musical contributions and 26 demos. Out of them, SMC
2019 features 41 oral presentations, 33 posters, 24 musical pieces and 25 demos.
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SMC 2019 had the help of 117 scientific reviewers and 37 music reviewers to examine all the submissions in
order to compile the final Scientific and Music Program. The Program Chairs and the Music Chairs, together with
the General Chairs, have made a great job making the final decisions and organizing the presentation of the different
contributions in the Oral, Poster, Music and Demo Sessions.

A meet report with the conference abstracts and a cooperated special issue focused on ‘Sound and Music Com-
puting – Music and Interaction’ that will include extended versions of selected contributions to the 2019 Sound and
Music Computing Conference will be published by Applied Sciences, an Open Access Journal by MDPI.

In this book, you can find the Proceedings of SMC 2019 with all the scientific contributions presented during
the conference.

SMC 2019 General Chairs
Isabel Barbancho Málaga
Lorenzo J. Tardón May 2019

SMC 2019 Program Chairs
Stefania Serafin
Federico Avanzini
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ABSTRACT

Rhythm analysis is a well researched area in music infor-
mation retrieval that has many useful applications in music 
production. In particular, it can be used to synchronize the 
tempo of audio recordings with a digital audio workstation 
(DAW). Conventionally this is done by stretching record-
ings over time, however, this can introduce artifacts and 
alter the rhythmic characteristics of the audio. Instead, this 
research explores how rhythm analysis can be used to do 
the reverse by synchronizing a DAW’s tempo to a source 
recording. Drawing on research by Percival and Tzane-
takis, a simple beat extraction algorithm was developed 
and integrated with the Renoise DAW. The results of this 
experiment show that, using user input from a DAW, even 
a simple algorithm can perform on par with popular pack-
ages for rhythm analysis such as BeatRoot, IBT, and aubio.

1. INTRODUCTION

Tempo is a feature of audio which is commonly analyzed 
in Music Information Retrieval (MIR) due to its fundamen-
tal role in music. Tempo is described by a pulse, a set of 
steady intervals of time which govern the way that music 
is perceived and expressed. In a written piece of music, 
notes and rhythmic events are aligned in relation to this 
pulse, which is grouped and subdivided in various ways, 
ultimately forming the piece’s structure. This underlying 
structure is necessary for musicians to synchronize with 
each other while performing, and it allows listeners to un-
derstand what they hear. The importance of tempo in mu-
sic makes for a broad range of practical applications for 
its analysis, ranging from genre classification to DJ soft-
ware, [1], [2], [3].

In digital music production, tempo is most often described 
by a piece’s global beat rate, commonly measured in Beats 
Per Minute (BPM). Generally this is understood as a con-
stant value which does not vary over the duration of the 
piece. This is different from how music is traditionally 
performed by live musicians, where the tempo will natu-
rally drift without mechanically perfect synchronization to 
some clock.

This presents three possibilities for digital music produc-
ers trying to work with live source material: One, to syn-
chronize the recording with a constant BPM by using time-

Copyright: c© 2019 Brett Dalton et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 
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the original author and source are credited.

stretching; two, to extract the structure from the original
piece and synchronize their software to the recording; or,
three, to work with the musical structure by ear, without
digital assistance.

In order to explore the second option, this paper uses
the work of Percival and Tzanetakis [4] with some modi-
fications and additions, to demonstrate the effectiveness of
beat tracking in a modern music production setting. This
has been accomplished by developing a piece of software
which integrates a simple beat extraction algorithm in a
Digital Audio Workstation (DAW) to accomplish tasks which
would otherwise be cumbersome when working with live
recorded material.

The DAW that has been chosen for this research is Renoise,
as it has a native scripting API that can be used to modu-
late tempo over time. The core algorithm was written and
tested in Python, and Lua was used to integrate the code
with Renoise’s scripting interface. Later, the algorithm was
ported to C for real-time use. The results of this work have
been evaluated using mir-eval 1 [5], a python library de-
signed for gathering statistics for common MIR tasks. The
results are compared to the established beat tracking meth-
ods aubio [6], IBT [7], and BeatRoot, [8].

2. BACKGROUND

Beat tracking is a well researched area in MIR that has
been analyzed in different contexts using a variety of meth-
ods. Early approaches to beat tracking involved process-
ing the symbolic representations of music such as musical
scores and MIDI data. However, as computing technology
and theory developed, it became possible to analyze raw
audio recordings for the purpose of beat extraction and the
extraction of more complex metric information, [9], [10].

As noted by Gkiokas et al., most tempo and beat extrac-
tion algorithms share some common structural elements,
[11]. The most common approach for processing an au-
dio signal involves retrieving what is known as an onset
strength signal (OSS), novelty curve, or salience function,
[2], [12], [13]. This is a transformation of the original au-
dio that attempts to capture a continuous function of rhyth-
mic importance over time. A number of different met-
rics can be used to derive the OSS such as spectral flux,
phase deviation, and complex domain methods, [14] as
well as machine learning [15]. Peaks in this signal can
be thought of as discrete rhythmic events that can be used
in further analysis to extract information using a variety
of techniques. These techniques may involve multi-agent

1 https://github.com/craffel/mir_eval
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systems [16], autocorrelation [4], and it is also common
to use higher level musical features such as chord changes
and drum patterns to obtain more accurate results, [10].

As of today, few DAWs incorporate true beat tracking
for recorded material, but instead offer tools for manually
solving tempo related problems such as audio to MIDI con-
version, BPM detection, time stretching, and quantization.
This is perhaps due to beat tracking being less reliable and
less flexible than the alternatives.

There has been past work in creating an interactive sys-
tem for beat tracking. In 2001, Dixon developed graphical
software for beat extraction, data editing, sonification, and
a variety of other tasks, [17]. At the time, he noted some
deficiencies in similar tools; one being that they did not
allow for the user to correct mistakes in the beat tracking
process. The goal of creating this beat tracking software is
to continue on Dixon’s line of work and integrate a graphi-
cal user interface with a beat tracking system that is useful
for real world applications in a music production environ-
ment.

3. ALGORITHM DESCRIPTION

Our proposed beat extraction algorithm contains the fol-
lowing stages similar to other methods: extract an onset
strength signal from the desired audio file; extract individ-
ual onsets and their attributes such as loudness and timing
with peak picking; and iterate over these onsets to find po-
tential beats using a simple heuristic induction method.

The Streamlined tempo induction algorithm developed
by Percival and Tzanetakis is designed with the intention
of using the simplified forms of common techniques while
still attaining reliable performance [4]. The task of tempo
induction has different requirements from beat extraction,
but they are naturally related. Our algorithm employs the
same OSS and peak picking methods as the Streamlined
algorithm, with some modifications and additions.

Figure 1. The proposed block diagram of the beat track-
ing system. Note the ability to generate, modify, and re-
process beats.

3.1 OSS Calculation

OSS is normally calculated using the spectral flux of the
input signal. This involves taking a Short Time Fourier
Transform (STFT) and taking the sum of all frequencies
bins which increase in energy from frame to frame. We
ignore the decreasing bins because they are typically less
rhythmically relevant.
flux(t) is the raw spectral flux function. rect(x) is the

rectification function, such that rect(x) = 0 where x < 0,
elsewhere rect(x) = x. X denotes the Fourier transform
of a signal as a function of time and frequency.

flux(t) =

N∑

i=0

rect(|X(t, i)| − |X(t− 1, i)|) (1)

Our OSS calculations are a slight modification of the Stream-
lined algorithm. The original approach involved using a
low-passed copy of the result of the flux calculations to re-
move noise, but we use the unfiltered flux to preserve the
exact timing of fluctuations, something more valuable for
beat extraction than for global tempo analysis.

This approach gives a decent metric of where rhythmi-
cally salient events occur, however, it is flawed because
it gives much less weight to low frequency fluctuations.
By definition, low frequency signals fluctuate more slowly
than high frequencies, and, as such, their fluctuations will
have a much lower amplitude within a given STFT win-
dow. This means that this method is not able to clearly dis-
tinguish between a short click and bass drum, despite the
fact that the bass drum is much more important for rhyth-
mic perception.

In an attempt to remedy this, we make a copy of the flux
using a downsampled copy of the input, and then mix it
into the final output. We’ll call this fluxadj(t), as de-
scribed below, with a = 0.85 and b = 0.15.

fluxadj(t) = aflux(t) + bfluxdownsampled(t) (2)

Overall, this minor addition marginally improves results,
but a better solution is worth investigating. Going forward,
it may be worthwhile to use a multiband OSS calculation,
as described by Bock, [18], or develop a different spectral
flux calculation that compensates for bin fluctuation over
frequency.

3.2 Peak Picking

Our next step is to extract each onset event with peak pick-
ing. We high-pass the OSS, which produces a new signal
where sudden increases in flux are positive, and sudden
decreases are negative. We segment the signal based on
the positive zero crossings and find the maximal value for
each region. We add these local maxima times to the set
of peaks which gives us a set of discrete events that we can
use for our final prediction.

The following expression defines the set of all positive
high-passed OSS zero crossings:

{crossi = t | OSShp(t) > 0 and OSShp(t− 1) < 0}
(3)
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peaki refers to the position of each onset event in time.
The argmax function uses the last two parameters to spec-
ify a range.

peaki = argmax(OSShp, crossi, crossi+1) (4)

3.3 Beat Extraction

Next we must determine which beats to select. In the case
that we have an estimate of the time delta between beats,
we can use the error as a simple metric for determining if
the peak is a beat. We get this expected beat time through
induction by using a previous known beat’s time plus some
expected delta. Two initial beats are provided as input to
the algorithm to begin the induction process. In our sys-
tem, these are created by the user. Finding the peak with
the minimum error is a trivial procedure on an ordered list
of peaks; The error will increase monotonically, so once
we find a peak with a positive error, no subsequent peaks
will have a smaller error. This is the basic strategy for
building our set of beats.
ε(i, j) is the error for a given peak event, i, with the prior

beat, j. If no peak is found within a certain error threshold,
we skip a beat to find the next one.

ε(i, j) = (peaki − beatj−1)− δµ(j) (5)

In order to allow for varying tempos, we define a local
beat delta, δµ(i), which is expressed in terms of previously
found beat deltas. δµ(i) describes the expected beat delta
for beati as a function of previous beat deltas. Larger val-
ues of the averaging window, N , will result in more stable
BPM fluctuations.

δµ(i) =

∑N
j=1 δi−j
N

(6)

Finally we output this set of beats, which we will use to
generate a tempo curve of the entire audio recording. An
initial beat delta can either be supplied manually or pre-
dicted by an algorithm, such as the Streamlined algorithm.
We also define an error tolerance, such that if no beat is
found within that tolerance we double the length of the
beat time and continue to search. When we do find a valid
peak, we fill in the missing beats by subdividing the beat
and reset the expected beat delta. Some optional param-
eters include the OSS threshold level, error tolerance and
the averaging window, N , for the expected beat delta.

4. DAW INTEGRATION

Figure 2. An image of the beat extraction tool made with
the Renoise scripting API.

The Renoise DAW provides a scripting API that allows
users to develop their own tools using the Lua scripting
language. The API allows the developer to access some
of the DAW’s internal GUI elements and automate certain
production tasks.

The tool that has been created to integrate this algorithm
with Renoise takes advantage of Renoise’s sample editor,
which already has the ability to place slice markers that
partition an audio file into multiple segments. The algo-
rithm takes a sequence of beat times as inputs and gener-
ates a sequence as output.

To use the tool, the user can add two or more markers to
initialize the algorithm, and then they can press the ”Load
Beats as Slices” button, which will run the algorithm on
this input, generating a new set of slices. These generated
slices can then be editted further, or they can be used to
generate a tempo curve with the ”Slices to BPM Automa-
tion” button. Extra beats can be added at various places in
the audio file to correct errors, and ensure that the system
correctly tracks erratic variations in tempo. These features
constitute a user-in-the-loop interface, where the user can
see the results of the algorithm, tweak the inputs, and then
generate more refined output, as seen in figure 1.

Figure 3. Renoise’s sample editor. The orange lines are
slice markers which the user can use to supply initial beat
info.

There are a number of parameters that can be exposed to
the user to fine tune the behaviour of the algorithm, how-
ever, they have not yet been integrated into the tool. These
parameters include the confidence threshold, peak detec-
tion threshold, beat error tolerance and so on. This would
make it easier to work with different kinds of material, as
inputs that have more erratic rhythmic fluctuations will re-
quire more fine tuned parameters to produce accurate re-
sults.

The tool was tested with various recordings by the author,
and it was found to work very well with music featuring
strong percussion such as rock and jazz. However it was
not suitable for use with less percussive recordings such as
piano music. It may be useful in the future to study the
effectiveness of the tool by comparing the time differences
between manual and automatic beat annotation in a user
study. This would give some more objective grounds to
decide whether the algorithm is ready for practical use.

5. EVALUATION

The mir-eval 2 [5] evaluation suite was used to evaluate
the efficacy of the algorithm against the beat tracking algo-
rithms in the aubio [6], IBT [7], and BeatRoot [8] libraries.

2 https://github.com/craffel/mir_eval
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Algorithm Aubio [6] IBT [7] BeatRoot [8] Proposed (automatic) Proposed (user initialized)
F-Measure 0.57 0.27 0.70 0.50 0.95

Table 1. F-Measure results from mir-eval. In the automatic column, the proposed algorithm is seeded with a bpm from the
Streamlined tempo estimation algorithm, whereas in the user initialized column the algorithm is given two beats from the
ground truth.

There are some complications when comparing this algo-
rithm with other methods due to the fact that user input is
used for initial BPM estimations, whereas other methods
predict the BPM automatically. This puts the other algo-
rithms at a disadvantage, and so it is not a fair compari-
son. Of the three methods tested, it was unclear if the host
framework (Sonic Annotator) [19] provided the ability to
supply a BPM estimate or initial beat. In order to show
the difference in performance between the automatic and
human-in-the-loop approach, the experimental results pro-
vided show our algorithm using user-supplied initial beat
inputs (user initialized) as well as automatically generated
input using the Streamlined tempo estimation algorithm
(automatic). As seen in table 1, the algorithm performs
much better when supplied with initial beats, bringing it’s
F-Measure of 0.50 up to 0.95.

The user supplied beat method uses two beats from the
ground truth for each file in order to initialize the algorithm
with a valid initial beat and initial beat delta. One con-
cern with this approach is that mir-eval’s F-measure score
includes these shared beats, but their contribution to the
score is negligible because they only make about 40 of the
1300 beats in the entire dataset. Since the ground truth an-
notations were derived from listeners tapping along to the
audio, this should be a fair approximation of a real human-
in-the-loop use case.

The data used includes 19 files from Sound and Music
Computation for MIREX 2017, [20]. The set of files used
were ones labelled as being easy; the files named SMC 271
through SMC 289. Each audio clip in the dataset is 40 sec-
onds long and contains roughly 30 to 130 beats depending
on the tempo. These files have strong percussive elements,
while the remainder of the dataset is mostly classical mu-
sic with weak rhythmic features. As stated previously the
OSS calculation used is not adequate for detecting In the
future this test data will need to be expanded, and the al-
gorithm should be improved to work with less percussive
audio sources.

The takeaway from these results is that a small amount
of user provided information can be used to significantly
improve the performance of a simple beat tracking algo-
rithm. Other methods have been able to achieve 60%-80%
F-measure accuracy, [21], [22], [12], and some methods
that have been able to achieve up to 90% accuracy, [15].
This shows that the reframing of the beat induction prob-
lem allows a simplified algorithm to perform on par with,
and even surpass, some of the most sophisticated algo-
rithms within a limited practical context. These results are
encouraging for further research into how these methods
can be used to improve the functionality and usability of
DAW software.

6. APPLICATIONS & FURTHER WORK

In this paper we have explored one of the more immedi-
ately obvious uses of beat tracking, which is synchronizing
DAW software to an audio recording. There is, however,
a wealth of other potential applications for beat tracking
ranging from practical to experimental in nature.

Any given set of beats yields a tempo curve which is the
function of tempo over time. The tempo curve is a sig-
nal like any other, and can be manipulated using filters
and other conventional signal processing techniques. At
the macro scale, the filtering of tempo curves can be used
to remove tempo drift from recordings, as well as quan-
tizing and performing other rhythmic corrections. With a
high resolution tempo curve that captures rhythmic varia-
tion below the beat level, it would be possible to extract
and manipulate musical rhythms in even more novel ways.
One could imagine using a ”tempo equalizer” on the tempo
curve of a jazz recording to increase the amount of swing,
or remove it entirely. The extraction of tempo curve in-
formation combined with time stretching and other audio
manipulation techniques has many promising applications,
and yet few, if any, of these applications have been realized
in common audio software.

7. CONCLUSION

The results of this work show a promising potential for
beat tracking algorithms in Digital Audio Workstations.
We showed how simple beat tracking methods can be used
to reliably synchronize DAW tempo with an audio source
with user input and interactive corrections.

Currently the most significant concern with the method
used in this work is the limited data used for testing. For
future work we plan to conduct experiments with a larger
and more varied data set. The algorithm also needs to be
improved in order to deal with music that does not have
strong percussive elements. Therefore, to make this viable,
the most urgent issue to be addressed is the OSS calcula-
tion. The development of a new metric which is more able
to capture rhythmic salience will be required for further
work with material that does not contain strong transients.

Nevertheless, our method produces accurate results when
provided with a small amount of user input, even surpass-
ing the performance of conventional methods. This method
is convenient and easy to use for production purposes in a
DAW, and could easily be augmented with more sophisti-
cated beat tracking techniques. With further work, DAW
integrated beat tracking may become a powerful and inter-
active tool for music producers looking for creative ways
to manipulate rhythm in digital music.
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ABSTRACT

This paper proposes a computational method for the analy-
sis and visualization of structure in freely improvised mu-
sical pieces, based on source separation and interaction
patterns. A minimal set of descriptive axes is used for elic-
iting interaction modes, regions and transitions. To this
end, a suitable unsupervised segmentation model is se-
lected based on the author’s ground truth, and is used to
compute and compare event boundaries of the individual
audio sources. While still at a prototypal stage of devel-
opment, this method offers useful insights for evaluating a
musical expression that lacks formal rules and protocols,
including musical functions (e.g., accompaniment, solo,
etc.) and form (e.g., verse, chorus, etc.).

1. INTRODUCTION

When tackling musical structure, it is not uncommon to
employ language-based conceptual blends 1 . Some of
these focus on a formal and generative grammar approach,
while others foreground metapragmatics and conversa-
tional metaphors. While the former [2] are conditioned
upon a notion of musical surface 2 and focus on hierar-
chical structures of musical phenomena in the context of
Western tonal music, the latter have been employed for less
formal theories, when dealing with musical improvisation
practices, such as jazz.

A different perspective is needed when analyzing free
jazz [3,4] or free improvisation [5,6], which are musical ex-
pressions that lack an agreed upon representation scheme,
and which defy and challenge definitions and categoriza-
tions. While recent work has been done in this field to
understand how structure is perceived in these musical ex-
pressions [7], more research is needed in this regard.

This paper foregrounds the dialogical component of this
music, whereby structures are negotiated in real-time,
emerge ad-hoc, and cannot be inferred or deduced from a
score. A method for the structural segmentation and anal-
ysis of musical improvisations of this kind is proposed, in-

1 An integration procedure formalized by Fauconnier [1].
2 A discrete representation of the sounds in a piece, to include pitches,

durations and dynamics, intrinsically linked to the concept of music no-
tation.

Copyright: c© 2019 Stefano Kalonaris . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

spired by Pelz-Sherman’s [8] speculations on interactional
listening/music making.

Conditioned upon the analysis of the individual voices
(audio sources), this study considers a multi-track record-
ing and implements a distilled version of Pelz-Sherman’s
scheme, whereby interaction patterns and dynamics are de-
duced comparing individual boundaries and audio features
spaces. By doing so, the method offers itself as a tool
for investigation of how structure, in this context, might
emerge from the continuous negotiation of musical expec-
tations and demands, how these might be communicated to
others, acknowledged or ignored altogether.

2. CONTEXT

Free jazz and free improvisation are not the same musical
expression. While the latter is often viewed as the avant-
garde European offshoot of the former, they are distinct
expressions which can be easily discriminated. However,
they also share sufficiently many characteristics, from ide-
ological to musical. For example, they both share the de-
sire to rebel against the status quo, to assert freedom from
conventions and uniformity, not without political and soci-
etal implications.

Generally speaking, no predefined agreement or com-
mitment about the music is made and, according to this
paradigm, players negotiate the musical outcome in real-
time. In free improvisation it is customary not to abide by
musical referents (such as idiom, style, genre, or even tonal
keys), while free jazz has a stronger element of idiomatic
playing, linked to the broader development and narrative of
Afro-American musical expression. Of course, and despite
occasional claims of the contrary, there is no such thing
as an unbound, ex nihilo improvisation since all musicians
have an acquired protocol of interaction, based on histori-
cal, personal or shared aesthetic and musical preferences.
Despite this, free jazz and free improvisation are arguably
less formalized than other improvised expressions (e.g., a
cadenza in a solo concerto). Paramount to both is the fo-
cus on interaction, distributed decision making and lack of
predefined musical outcome. Furthermore, “improvisation
must be open - that is, open to input, open to contingency
- a real-time and (often enough) a real-world mode of pro-
duction” [9, p.38]. For the sake of simplicity free jazz and
free improvisation will be hereinafter referred to as freely
improvised music, without specific preference for one or
the other, unless explicitly stated.

To attempt a computational analysis of this musical ex-
pression it is crucial to work from the individual musical
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parts, to see how they relate to one another and how these
relations evolve over the course of the piece.

2.1 Source Separation

Attempts to source separate historic and representative
freely improvised recordings were made by the author,
using non-negative matrix factorization with the Flexi-
ble Audio Source Separation Toolbox (FASST) [10] and
harmonic-percussive separation [11]. However, results in
this respect where not deemed satisfactory and, given that
the state of the art in source separation was not the prin-
cipal focus of this study, improvements on this front were
not pursued further. Instead, a multi-track recording from
the MedleyDB [12] (see Section 4.2) was used, for lack of
a better alternative and despite stronger idiomatic assump-
tions. Source separation is an open problem and an active
topic of research, and it has never, to the author’s knowl-
edge, been applied to freely improvised music (although
it has been explored for early jazz recordings [13]). This
might be due to the low commercial and aesthetic appeal
and popularity of this musical expression. Source sepa-
ration thus far has been more concerned with application
to the music industry and to creative music technologies,
e.g. automatic mixing [14], automatic transcription [15],
orchestration [16] or voice separation [17]. In this context,
clearly defined musical functions and registers for the in-
struments are preferred: drums play rhythm, harmonic in-
struments play chords, melodic instruments play melody,
vocals float on top, and so forth.

A scenario of this type is undesirable in freely impro-
vised music. In fact, such compliance with predefined
roles and domains is the primary impetus out of which
free jazz and free improvisation were developed in the first
place. In these musical expressions it is common practice
to use extended techniques, whereby the spectral palette
of each stream is augmented beyond “normal”, shifting
the attention from melodic contour to gestural morpholo-
gies of sound, such as trajectories, density, functional rela-
tions and so forth. The spectral spill-over generated by this
mode of playing, along with non exclusive musical roles
(e.g., a guitar can be hit with mallets and objects and used
as a percussion, etc.) makes it challenging to clearly sepa-
rate the sources.

2.2 Structure in Freely Improvised Music

The issues linked to spectral spill-over and musical role
cross-over go beyond source separation tasks, and can
also make the use of standard music information retrieval
(MIR) techniques for structural segmentation arduous. No-
tions commonly used in MIR tasks and cognitive-based
approaches to musical surface parsing and segmentation
rely on culture-specific axioms. For example, the predi-
cate that major and minor triads form convex subsets [18]
(which had already been challenged by Forte’s music set
theory [19]). Assumptions made in this contexts are diffi-
cult to port to musical domains that do not share the same
tonal/functional axioms.

Adding to the the difficulties in deducing musical struc-
ture in freely improvised music is the issue of represen-

tation. Roads [20] posits that one can represent music at
three levels: iconic, symbolic and score level. The first
would include data relative to an audio waveform (e.g.,
sequences of values for amplitude and phase) or graphic
scores, the second would include the use of signs which
would convey syntactical meaning, and the third can be
assimilated to what is commonly called music notation.
No attempt to define a representation system or scheme
for free improvisation has been made up to date, although
graphic scores or snippets of musical notation [21] can
be used as platforms (sometimes distributed, collaborative
and editable on-the-fly [22,23]) for inspiration and sugges-
tive/aleatoric interpretation, especially in free jazz. Never-
theless, these tools cannot fully describe and contain the
musical process and product. Audio representations can
also be used, but retrospectively. That is, the music is al-
ways created on the spot and no musician knows what the
outcome will be a priori.

The issues outlined above, however, do not imply that
these musical expressions lack structure or structural
segments [24, 25]. More specifically, it appears that
macrostructure in freely improvised music is a surface phe-
nomenon emerging from micro-structures which are suf-
ficiently differentiated at some feature level. The transi-
tional regions between these sections are paramount for
the understanding of segmentation boundaries and of their
treatment (e.g., gradual, clear-cut, etc.) in real-time. It has
been shown that expert improvisers can “generate segmen-
tation in high-level musical structure” [24, p. 235].

3. AN INTERACTION-BASED VIEWPOINT

Improvised music can be challenging in many ways, but
can be better understood as a dynamical and distributed
decision making process. Structure is thus a by-product
of such process, which has been investigated in terms of
saliency and coordination [26]. According to this interpre-
tation, the notion of focal point is paramount. This can be
defined as “a point of convergence for expectations” [26,
p.3].

As seen so far, negotiation, coordination and interaction
are the key concepts needed to understand and analyze
freely improvised music. The focus of this paper is in fact
on the real-time interaction of potentially several musical
“voices”, and the relational nature of the musical result.
To this end, it is useful to think of a relationship as the as-
sociation between two elements/agents which emerges via
a specific connection, and of interaction as the events and
actions that help (or not) to form or define a relationship 3 .

Having established this relational/interactional paradigm,
some analogies and metaphors naturally come to the
fore, such as the parallels between music-language and
improvisation-conversation. While these pairs seem re-
lated (two people need a a common language to have a con-
versation, just as musicians might need to operate within
given conventions to musically communicate), the corre-
spondences are subtle, contradictory and often problem-
atic.

3 For example, an estranged father has a filial relationship with his
offspring and a null interaction.
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3.1 Linguistic Approaches

Theories inspired by Chomsky’s generative grammars [2,
27–30] are common in the context of Western tonal mu-
sic, and in computational musicology. They have also
been proposed for musical improvisation [31], with lim-
ited application. Grammar-based perspectives of musical
representation fall under the symbolic category, whereby
deep structures are inferred, parsed or deduced from the
musical surface. These approaches have not been unchal-
lenged. Some have doubted the ability of linguistic-based
and Gestalt-based approaches to generalise across listen-
ers at a macro-structural level [32], others argue for a more
holistic perspective of sounds [33], others yet note that
high-level entities, like beat structure 4 , chord simultane-
ities 5 and voice separation 6 are necessary for the forma-
tion of the musical surface [37]. Importantly, freely impro-
vised music has no (or very little) dependency on musical
surface, as pieces are not planned, notated and performed
accordingly, as discussed in Section 2.2 (although retro-
spective notation by means of transcription can be done).

Furthermore, a grammar-based representation of musi-
cal deep structure is purely functional, and fails to account
for sociological, emotional, moral, aesthetic, and cultural
aspects involved in musical expression. The main dif-
ficulty encountered when employing grammar-based ap-
proaches to music representation is that of modelling con-
text. This is particularly problematic in improvised music,
where phrasing and context are often interrupted and re-
instantiated. To this end, Roads [20] suggests that more
research should be undertaken in “interrupt-driven” gram-
mars.

3.2 Conversational Approaches

Musical interaction occurring in improvisation has been
often viewed under the paradigm of verbal communication.
Drawing from metapragmatics [38], both Sawyer [39] and
Monson [40] develop their frameworks for understand-
ing jazz improvisation though a conversational metaphor.
Sawyer, in the larger context of improvisational studies,
notes that “improvisational interaction can be mediated by
both linguistic and musical symbols” [41, p. 150]. Impro-
visation is thus associated to different voices in dialogue
with one another, a real-time conversation (without a pre-
defined topic). It is arguable that a successful conversation
relies on effective communication. While more idiomatic
forms of musical improvisation such as jazz focus more
on narrative [42] and story telling [43], actively engag-
ing with tradition and lineage, freely improvised music is
less preoccupied with linear accounts and more focused on
real-time distribution of agency and the dialogical aspect
of communication [44].

4 Beat structure comprises beat induction (finding an appropriate rela-
tive clock) and beat tracking (a dynamically changing clock).

5 Chord simultaneity presupposes culture-specific knowledge stored in
long-term memory [34] and it is an emergent quality [35].

6 The auditory system can decompose spectral fusions [35, p.64] into
separate streams, based on pattern analysis. This process was described
in [36] as “auditory stream segregation”.

3.3 Interactional Music-making

Despite the many similarities between music and lan-
guage or musical improvisation and conversation, there
remain sufficiently many fundamental differences to war-
rant caution when blending domains. Beyond the inade-
quacy of formal grammars or the lack of formal theories
in conversational approaches, the relational nature of the
musical interactions occurring in freely improvised mu-
sic is paramount, and it is the principal motivation for
the method proposed in this paper. A dialogical per-
spective foregrounds such interaction between the musi-
cal constituent parts, which can be assimilated to the au-
dio sources (streams) in a recording. Stream segregation
with respect to music improvisation has been investigated
in [45], where the concept of interactional listening is de-
veloped. Interaction is also the pivot of Peltz-Shermans
work, which is reviewed in the next section to investigate
boundary localization and segmentation of freely impro-
vised musical pieces.

4. METHOD

4.1 Overview

According to Pelz-Sherman’s [46] distinction between
monoriginal and heteroriginal musical expressions, freely
improvised music classes among the latter. He posits [8]
that performers are, at any given time, either in a state of
transmitting and/or receiving musical signals, with i-events
representing the mutual response to a musical request,
called a cue. Pelz-Sherman does not offer an exhaustive
list of i-events, but he lists imitation, question and answer,
completion/punctuation and interruption. Furthermore, he
discriminates between static and dynamic modes of inter-
action, whereby the former (sharing, solo/accompaniment,
not sharing) are fundamental states at which players oper-
ate at any given time, and are associated with levels of i-
event density (high, medium, low, respectively). Dynamic
modes (emerging/withdrawing, merging/accepting, inter-
jecting/supporting, initiating/responding) instead can be
thought of as the types of transitions between any two static
modes. To further clarify, static modes of interaction can
be assimilated to the inter-boundary regions in the context
of structural segmentation, whereas dynamic modes can
be considered the intra-boundary segments. Other frame-
works have been proposed in this context, some of which
have a more extensive taxonomy of transitions and/or rela-
tional functions [47], however, these were not considered
in the current study for the sake of simplicity.

In this paper Pelz-Sherman’s scheme is reduced to com-
prise two essential descriptors: static mode (spanning from
not sharing to sharing) and dynamic mode (either mor-
phing or clear-cut). Concretely, the former is a measure
of similarity between the musical features of the audio
sources in-between the segment boundaries, whereas the
latter is a level of agreement between the boundary place-
ment/detection over them. To this end, the author posits
that if a boundary is detected in most parts in a given time
window (thus, a cue was responded to within this thresh-
old), then a (more or less) clear-cut transition is assumed.

14

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Algorithm Accuracy Precision Recall F1 score
vmo (mfcc) 0.805 0.182 0.133 0.154
foote (mfcc) 0.8 0.2 0.056 0.088
cnmf (mfcc) 0.8 0.2 0.056 0.088
olda (mfcc) 0.81 0.375 0.167 0.231
scluster (mfcc) 0.762 0.182 0.111 0.138
sf (mfcc) 0.79 0.167 0.056 0.084

Table 1: Metrics for the different (MFCC-based) algo-
rithms used for segmentation

Conversely, if inter-part segment boundaries do not agree,
a morphing transition is assumed. This might be a sce-
nario whereby one player sends a cue which is not followed
by a significant change in the musical feature space of the
other player(s) (either as the result of a deliberate musical
choice/strategy, or simply because they missed it).

4.2 Procedure

To test the method, the multi-track recording FreeJazz by
MusicDelta, from the MedleyDB [12] was used. This trio
(clarinet, double bass and drums) recording was chosen for
several reasons. Firstly, and as discussed in Section 2, free
jazz shares many of the broader concerns of freely impro-
vised music (such as the desire to break regular tempos,
tones, and chord changes conventions). Secondly, the track
was deemed by the author, a domain expert and practi-
tioner, sufficiently apt to investigate multi-part interaction.
Thirdly, and after extensive search, it was not possible to
source an historical example of either free jazz or free im-
provisation in multi-track format. Several constraints (e.g.,
time, location, musicians’ network) at the time of writ-
ing did not allow for a bespoke recording of a multi-track
piece.

The raw individual audio sources and the audio mix were
segmented using the MSAF Python package [48], based on
several of the available algorithms (e.g., variable Markov
oracle [49], audio novelty [50], convex non-negative ma-
trix factorization [51], ordinal linear discriminant analy-
sis [52], spectral clustering [53]), each in turn based ei-
ther on Mel-frequency cepstrum coefficients 7 (MFCCs)
or tempogram features. The former are shown in Figure
1, for comparison’s sake.

To choose one of these algorithms, the results on the au-
dio mix were compared to the author’s analysis of the same
file. This analysis was used as the ground truth for com-
puting the F-score, shown in Table 1.

The ordinal linear discriminant analysis (OLDA) [52] al-
gorithm was selected, based on its score. In Figure 2 the
ground truth and the detected bounds are plotted for com-
parison. Using the best performing model, the boundaries
obtained on the audio sources were compared. Figure
3 illustrates these boundaries, and reveals several salient
events in the piece. Saliency is inferred because the bound-
aries feature in both the audio mix and the individual
sources.

7 Relating to a representation of the short-term power spectrum of a
sound, based on a linear cosine transform of a log power spectrum on a
nonlinear scale of frequency.

Figure 1: Segmentation boundaries on the audio mix, using
several algorithms and based on MFCC features.

Based on this consideration, clear-cut and morphing tran-
sitions were identified, according to whether the individ-
ual audio sources’ boundaries agreed (+ or - a 2 seconds 8

buffer, factored in to account for the reaction time needed
by one player to respond to a musical cue originated from
the other players) or not, respectively. This procedure for-
malizes what was called dynamic mode in Section 4.1 and
it is shown in Figure 4.

Static mode, on the other hand, is concerned with the
sharing of the musical feature space at a given time. To
this end, regions in between the boundaries were used to
compute the similarity over given audio features. Figure 5
shows the inter-regions zero-crossing rate 9 dynamics for
all three audio sources. A total of 27 such features were ini-
tially computed and are available for inspection, although
they are omitted here for the sake of brevity.

In the example shown in Figure 6, 6 features (root-mean-
square energy, spectral centroid, spectral bandwidth, spec-
tral flatness, spectral roll-off, and zero crossing rate) were
used to calculate the (average) inter-region similarity be-
tween the audio sources, using cosine similarity (Pearson
correlation or other metrics are also possible). The similar-
ity values so obtained were used as the color gradient.

8 This time window is heuristically determined, and used to divide the
audio buffer into bins of this length.

9 The rate at which the signal changes from positive to zero to negative
or vice versa.

15

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Figure 2: Comparing the ground truth (blue) and the
OLDA algorithm (red) based on MFCC features.

Figure 3: Segmentation boundaries on the audio mix and
the audio sources, using the OLDA algorithm based on
MFCC features.

5. DISCUSSION

The objective of this study was not to claim a method-
ology able to improve the current state of the art in seg-
mentation of audio tracks, but rather to offer a perspective
foregrounding the interaction of the musical voices, their
contribution, and how these negotiate structure in real-time
during freely improvised pieces. Neither is the objective
truth used to be considered as a target for the optimization
of the algorithm. Instead, it is used as an initial pruning and
approximation, to choose a segmenter for the exploration
described in Section 4.2. The i-events, the transitions, and
the ‘sharing’ quality of the sections outlined by the method
are offering an opportunity for a re-evaluation of the inter-
pretative and cognitive process occurring when trying to
infer structural dynamics in a freely improvised piece. In
this sense, the method contributes suggestions, hints and
viewpoints. Thus, it can be considered under the same di-
alogical paradigm as the music that it analyzes. For the
user, this might be akin to having a conversation with an-
other musicologist or practitioner, who would present her
opinion about how the musical parts interact with one an-
other, and how the piece emerges from such dynamics.

Inspecting the boundaries in the dynamic mode (see Fig-
ure 4), and ignoring the first clear-cut transition (which is

Figure 4: Dynamic Mode: clear-cut (blue) and morphing
(yellow) transitions shown over the audio mix’s spectro-
gram.

clear-cut 32, 54, 70
morphing 8, 14, 26, 34, 42, 52, 58, 74, 76, 92, 94

Table 2: Transitions types and their activation times, in
seconds

not very informative, since it is the point where the instru-
ments start playing, at the beginning of the recording) one
can consider the activation times given in Table 2.

The method so far operates with an arbitrary time kernel
(or stride), whereby the total length of the piece is divided
into equally spaced windows of such length. While this is
heuristically determined and can be changed to one’s lik-
ing, it nevertheless produces a lower accuracy as for the
boundaries’ activation times. Rather than considering this
as an handicap, it is useful to be reminded that the objec-
tive of the study is to identify patterns of interaction rather
than accurate segmentation boundaries. Furthermore, this
allows to factor in reaction times for the musicians who,
while making decisions in real-time, might change their
musical behavior in the order of a few seconds. Combin-
ing the information gathered from the dynamic mode anal-
ysis, it is thus possible to infer more pronounced regions
of musical interaction between the following times in sec-
onds: 32-34, 52-58, 70-76, and 92-94. These are obtained
by combining activation times that are sufficiently close to-
gether (in both the clear-cut and the morphing class). ‘Suf-
ficiently’ is taken to mean as up to twice the time kernel,
on either side.

Interestingly, these sections exhibit a lower feature simi-
larity (see Figure 6), which might suggest that when cues
are acknowledged and responded to this corresponds to
a higher interaction. Conversely, in the regions in be-
tween, the individual players might adopt more consistent,
static and function-oriented musical behaviors. This find-
ing seems in accordance with the framework proposed by
Pelz-Sherman, as well as with the notions of transitions
and relational functions/composites in Nunn’s work [47].
To test the validity of this approach it would be appropri-
ate to conduct further studies accounting for the opinion of
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Figure 5: Inter-regions zero-crossing rate dynamics.

a wider pool of practitioners and using more recordings,
since one piece cannot offer general insights. These en-
deavors are left for future work.

6. CONCLUSION

To analyze freely improvised music, it is paramount to con-
sider the interaction between players and how their choices
help shape the piece in real-time, without a predetermined
plan or specific musical goals other than those arising as
contingencies of the creative process. In keeping with
the distributed and dialogical nature of this musical ex-
pression, this paper explores a relational stance and im-
plements an essential method for visualizing such interac-
tions. While mainstream musical expressions, styles and
genres are more conducive to elicit well defined segments
and regions (by virtue of intrinsic structural assumptions.
i.e.: chorus, verse, etc.), freely improvised music requires
bespoke treatment and a focus shift from surface to func-
tional level. The current study represent but a small step
in this direction, albeit partial and with a reduced scope of
analysis (limited to two basic modes of interaction). Fu-
ture work would benefit from implementing more discrim-
ination within these levels, as formalized in [8, 46, 47], as

Figure 6: Static Mode: inter-regions feature space sharing.

well as from recording a dataset of multi-track freely im-
provised pieces. To this end, the author plans to record
several duets comprising a wide range of instrumentation,
with active practitioners pooled from the freely improvised
music scene in UK and Japan.
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                                  ABSTRACT

Mechanical Entanglement is a musical composition for three 
performers. Three force feedback devices each containing 
two haptic faders are mutually coupled using virtual lin-
ear springs and dampers. During the composition, the per-
formers feel each others’ gestures and collaboratively pro-
cess the music material. The interaction’s physical mod-
elling parameters are modified during the different sections 
of the composition. An algorithm which process three stereo 
channels, is stretching in and out-of-sync three copies of 
the same music. The performers are controlling the stretch-
ing algorithm and an amplitude modulation effect, both 
applied to recognisable classical and contemporary music 
recordings. Each of them is substantially modifying the 
length and the dynamics of the music and is simultaneously 
affecting subtly or abruptly the gestural behaviour of the 
other performers. At fixed points during the composition, 
the music becomes gradually in sync and the performers 
realign their gestures. This phasing game between gestures 
and sound, creates tension and emphasises the physicality 
of the performance.

1. INTRODUCTION

The computer music research community has been explor-
ing the use of haptics and force feedback within a musical 
context since the first explorations in the late seventies at 
ACROE [1]. Numerous force feedback interfaces for mu-
sical purposes have been developed since then [2–12].

The last decade has similarly presented a growing in-
terest in musical composition with the use of force feed-
back technology. Compositions such as Running Back-
wards Uphill by Hayes , Engraving Hammering Casting 
by Berdahl and Kontogeorgakopoulos, Hélios by Cadoz, 
Quartet for Strings by Beck, Of Grating Impermanence by 
Pfalz amongst others have explored the potential of haptics 
in purely musical or audiovisual artistic context [13–15]. 
In all of these compositions for solo musicians or small or-
chestras such as the Laptop Orchestra of Louisiana, there 
was no intercoupling at the gestural level; the hands of 
the musicians were mechanically coupled with their mu-
sical instruments but not between them. The current pa-
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per explores this novel concept by presenting a composi-
tion based on a developed haptic digital musical instrument
where the gestures of the performers are co-influenced me-
chanically during the performance.

Mechanical Entanglement is an electroacoustic composi-
tion and a research project on a collaborative haptic musi-
cal system. It was composed for a small musical ensemble
of three performers (trio) interacting with three mutually
coupled force feedback devices. The performers process
in real time the same sonic material while they were inter-
acting mechanically between them through a virtual vis-
coelastic network. This novel type of collaborative per-
formance offers a new type of music co-creation based on
haptic telepresence.

The paper is organised in three sections. The first section
presents the technical aspects of the musical system devel-
oped. The second section offers an insight on the composi-
tional and the performative elements of the project. The fi-
nal section presents a discussion on the project holistically,
both from a functional and an aesthetic point of view.

2. SYSTEM DESCRIPTION

A 3D model of the system’s structure used in the project
is illustrated in figure 1. As can see from this higher level
description, the system consists of two main blocks withd-
ifferent functions. The haptic component of the system ex-
ecutes all the haptic signal processing operations and gen-
erates the haptic responses while the sound component ex-
ecutes all the audio signal processing operations and gen-
erates the audio output. The following subsection presents
in more details those two components.

2.1 Haptic Signal Processing

The haptic device used in the research project and compo-
sition is the FireFader [11]. This device consists of open-
source hardware and open-source software elements and
is optimised for introducing musicians to haptics. It of-
fers a single-degree-of-freedom motorised potentiometer
fader at a low price and can be combined with the haptic
signal processing framework (HSP) where the users can
quickly design and develop their own haptic, audio and
visual responses and hence create complete multimodal
environments and compositions [16]. HSP runs on well-
known computer music languages such as Max and Pure
Data which was a considerable advantage for the current
project since other sound processing algorithms which in-
teract with the haptics were developed in those languages

20

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Figure 1. 3D model of the System’s Structure.

too. Alternative commercial general-purpose cost-effective
force feedback devices such as the NovInt Falcon from
NovInt Technologies or the Geomagic Touch (formerly Phan-
tom Omni) from 3DSystems were not considered since
they do not have an appropriate form and workspace aligned
with the concept of the project.

Three FireFaders with two motorised faders each are con-
nected through USB to a computer that performs mainly
the haptic calculations and runs the haptic models designed
by the authors on the Max programming environment. The
audio signals are generated on a different computer, con-
nected to the first one through the open sound control pro-
tocol (OSC). Therefore data captured in real time from the
haptic faders on the first computer are transmitted through
an Ethernet twisted pair link into a second computer in or-
der to control the audio playback and processing. More
details regarding the audio processing part of the setup is
given in the following section. Finally, each haptic device
has two bright LED lights offering visual feedback of the
force applied to each motor. This feature added an inter-
esting angle to the performance which is further explored
in section 3.

The physical model designed and developed for the project
is based on the lumped element modelling paradigm and
more precisely on the Cordis-Anima system [17]. A sim-
ple mass-interaction network, connecting linearly the three
haptic devices between them was implemented on the Hap-
tic Signal Processing framework using the Max program-
ming environment. Each faders physical knob behaves like
an ideal material element in the virtual mechanical net-
work. Those ideal masses are linked between them me-
chanically using linear springs and dampers. The spring
constants and the damping coefficients are modified dy-
namically during the length of the composition as each sec-
tion corresponds to a different set of parameters. Figure 2
presents the block diagram of the overall signal processing
system developed in this project.

Therefore the three haptic devices are part of the same os-
cillatory system. The performers are controlling the same
sound processing algorithms with their gestures while they
are ”internally” interacting between them via the virtual

Figure 2. Block Diagram.

links in the virtual network. Their hands are in continuous
mechanical interaction which creates a mysterious recip-
rocal influence. The whole process is coherent energeti-
cally because of the nature of the force feedback devices
and their coupling with the physical models. This is what
Cadoz calls ergotic interaction [18]. The OROBORO con-
troller futures some similar aspects where they introduced
a haptic mirror in which the movement of one performers
sensed hand is used to induce movement of the partners
actuated hand and vice versa [19].

2.2 Music Signal Processing

All sound is produced through the Ableton Live digital au-
dio workstation with the embedded Max For Live environ-
ment (Max4Live). Therefore, the Live software forms the
space in which the composition is created in a traditional
linear timeline and at the same time hosts all the necessary
software that enable the faders to control the performance
through the OSC messages. This software was created as
two Max4Live software devices, that is, special Max/MSP
patches that can be loaded as plugins in the Ableton Live
environment.

Our composition was created as a Live Set, that is, the
type of document that you create and work within Able-
ton Live. It comprises three identical but independent of
each other tracks corresponding to the three pairs of haptic
faders. Each track hosts the two Max4Live devices seri-
ally connected that we developed for the purposes of this
composition. The first device plays back a predefined au-
dio file at a variable playback speed without affecting its
pitch, while the second controls the amplitude of its output.
Each pair of faders controls a single track. The position of
the first of the two faders in the pair controls the playback
speed, so that it varies between normal to the extreme 0.1
x the original speed, which resembles a freeze effect. The
velocity of the second fader controls the amplitude, so that
when the fader does not move no sound is coming out of
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the trackss output. A linear mapping between velocity and
amplitude was used with an adjustable scale factor.

All three tracks play the same audio file which is pre-
loaded into memory using a shared buffer Max object.
Playback starts at the beginning of the file and in syn-
chrony between the three tracks. However, as the play-
back speed varies according to the position of each fader,
a phase difference between the tracks accumulates. How-
ever, each playback device is equipped with a sync button,
which sends its playback position to the other playback de-
vices (through send-receive Max objects), effectively forc-
ing playback in all tracks to align again. Before the tracks
jump to the new sync position, they smoothly fade out leav-
ing only a single track sounding for a short duration of
about 2 sec, before all tracks start playing back together in
synchrony. The amplitude dropping not only helps avoid-
ing undesirable cuts in the sound but it also emphasizes the
synchronization.

Besides controlling the performance, the Live Set was
used to structure the composition into sections. To this end,
a separate track was used to send OSC messages to the hap-
tic faders system through a dedicated Max4Live device. In
this way, we could choose dynamically or according to the
timeline the parameters of the physical models correspond-
ing to each section of the composition. Since our compo-
sition comprises several sections that need different audio
files, several memory buffers were used to load the audio
files of each section at the beginning of the performance,
ensuring a smooth transition between the sections. The
playback devices were simply switching between memory
buffers at the beginning of each section.

3. COMPOSITION

3.1 Ideas and Concept

The music project is based on the concept of stretching:
physically-stretching a simulated material while simulta-
neously time-stretching a pre-recorded music material. It
aspires an integration of auditory, haptic and even visual
cues with use of dimmed LED lights as we will see in
the following section. Figure 3 illustrates metaphorically
what was happening at a mechanical level during the per-
formance.

Each performer is allowed to move at his own speed by
the time-stretching algorithm through the given material, a
process which Michael Nyman calls people process [20].

The tensions created by this process, form the ”sculp-
tural” elements of the musical composition. The action-
reaction pair of forces from all the performers, acting to-
gether on the same musical parameters is creating points of
equilibrium, sonically and gesturally. The principal com-
positional process employed is phasing [21]. The time-
stretching algorithm simultaneously processes three stereo
audio channels, stretching in an out-of-sync three copies of
the same music recording.

The simultaneous playback of the same material at differ-
ent speeds creates tension both harmonically and rhythmi-
cally [22]. This tension is resolved when the playback be-
tween the tracks is forced to realign at certain moments in

Figure 3. A metaphor: hands stretching a physical mate-
rial.

the composition (through the sync button on the playback
Max4Live devices described in section 2.2). This resolu-
tion does not last long as the playback drifts anew between
the tracks. Nevertheless, these moments of ephemeral syn-
chronisation function as structural anchors in the composi-
tion.

Rhythmically, layering the same rhythmic pattern at three
different speeds presents the listener with three different
possible metrical frameworks, each at a different tempo
and phase. Some listeners might focus on the stream that
has a moderate tempo (in the range 80-130 bpm) as Parn-
cutt has shown, [23], or on the stream that is closer to the
original speed and therefore more recognisable. As the
speed and tempo of each stream varies, the attention focus
of the listener constantly shifts between them.

At the same time, each tracks rhythm is the result of
the interaction between the amplitude modulation and the
rhythm resulting from the playing back at a variable tempo.
However, even though each tracks audio is manipulated in-
dependently, both the tempo and amplitude modulation are
the result of a single physical model realised in the network
of haptic faders. The interaction between the performers is
what drives the variance between the tracks. After all, until
the performers interact through the faders no sound is pro-
duced as the tracks move forward through the audio files
silently and in synchrony. Any tension arising from layer-
ing different versions of the same material reflects the ten-
sion and forces between the faders arising from the physi-
cal model system connecting the performers.

3.2 Performance in the Gallery

Mechanical Entanglement was performed in M.A.D.E.
gallery in Cardiff in June 2016. It was not a typical con-
cert situation, which created a captivating experience both
for the performers and the audience. The composers of the
piece, also the performers in that occasion, tried to create a
serene environment which matched the quiet nature of the
composition. They sat on cushions on the floor in close
proximity to each other, each holding a haptic device on
their hand while the audience sat or stood around them.
The room was dark enough in order to emphasise further
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Figure 4. The performance in the gallery space.

the force feedback activity with the use of responsive LED
lights as mentioned in section 2.1 and depicted in figure
4. This created a dramatic atmosphere, where the hands
of the performers were cast with light in the moments of
the performance with high physical tension. A camera op-
erator was also filming the process and projecting it on a
gallery wall.

The music material may vary each time the piece is per-
formed. The following list is the selection of music tracks
that were used completely or partially in the performance
in M.A.D.E. in the order of appearance. The total duration
of the concert was approximately 30min.

• Pavane pour une Infante Defunte by Maurice Ravel

• Superman by Laurie Anderson

• Cello Suite no1 by Johann Sebastian Bach

• Drumming pt. II by Steve Reich

• Prelude and Fugue No 1 C by J. S. Bach

• Symphony No 6, 5th movement by L. van Beethoven

• Blue Moon by Elvis Presley

• Bolero by Maurice Ravel

Each section of the composition corresponded to a dif-
ferent music track and had its own physical modelling pa-
rameters. Therefore it allowed different type of gestural
interaction, from very fast ones to smooth and precise ones
where the nuances amongst the performers where felt more
intensively. A few excerpts from the performance can be
heard on the following link 1 , as recorded from a stereo
microphone positioned in the middle of the room of the

1 https://onecontinuouslab.net/Projects/#MechanicalEntanglement

gallery space. The music tracks were chosen according to
how they responded to the time-stretching algorithm and
their overall texture. The authors prefered to include well-
known tonal musical compositions from different genres
with clear and preferably repetitive musical structure and
moderate dynamic range.

It is interesting to mention that during the performance,
the modelling coefficients often took values impossible to
occur in nature such as negative damping between the in-
teraction of the performers, thus creating very unfamil-
iar interaction sensations. Moreover, instabilities that oc-
curred due to the long feedback control delays made the
gestural and sonic dialogue very difficult and quite often
unpredictable. This is a difficult problem in haptic inter-
action and is related to the latency between the hardware
and the software components of the device. The total la-
tency all the way around the control loop with audio run-
ning in Max ranges between 7ms and 15ms due to jitter
as measured and reported on the firmware of the FireFader
device. In the current occasion the composers decided to
use creatively these instabilities and make them part of the
compositional and performance discourse.

4. DISCUSSION

The performers constantly shaped and explored a ”viscoelas-
tic” environment of gestures and sound. In the physical-
tactile level they were always feeling the flow of interac-
tions between them and had to find ways of anticipating
the unpredictability of their instrument behaviour. The fin-
gertips functioned simultaneously to express the perform-
ers own musical intention and experience the intentions
of others. As such, the act of performing was indispens-
ably connected with the act of tactile-listening, forming
an enhanced tactile environment, where every performing
force is applied upon forces produced by the other per-
formers. By participating in this mass-interaction network
the performers could perceive themselves as active counter
weights on an oscillatory system, which had no fixed point
at all. This intercoupling at the gestural level provided
a haptic telepresence where each performer preserved a
unique ”view point” or tact-point as authors called them,
of the performance space.

The auditory experience was common for every performer;
by aligning the performers to a common task gave the shift
for an intense collaborative group experience to happen.
The auditory level acted as a catalyst for the abstract and
mental aspects of the composition to permeate into the
physical level. The performers were challenged to focus
on the flow dynamics of the group’s interaction environ-
ment, instead of solely mastering a deterministic musical
instrument.

This approach is aligned with Chadabe’s taxonomy of
electronic musical instruments as a continuum between de-
terministic and indeterministic function [24]. The current
project fluctuates continuously between those states, since
the shared control with the other performers (and not with
algorithms as in Chadabe’s case) often gives the impres-
sion that the instrument in itself generates unpredictable
information to which the performers have to react.
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A minor problem of the design of the haptic devices was
that the auditory experience was interrupted by sounds made
by the haptic device itself, when the fader was reaching its
end points during abrupt oscillation moments. This prob-
lem can be solved partially by designing a more robust en-
closure for the haptic device, a direction which the team
has started to explore after the performance 2 .

From the point of view of the audience, the LED lights
provided a pleasant visual feedback of the interactions and
gestural activities but often proved inadequate to offer a
coherent understandable connection between the compo-
sition and the haptic system. However,, they reveal the
systems idiosyncratic nature at moments of apparent inac-
tivity but with strong counter forces at the fingertips of the
performers.

It would be interesting to recreate the same conditions
in the future, with haptic digital audio effects as described
in [25]. In this scenario, the physical audio effect models
implemented likewise with the mass-interaction physical
modelling paradigm would provide force feedback to the
performer without any disruption of the energetic loop be-
tween the performers, the haptic device and the physical
models. The audio processing and haptic processing algo-
rithm belong to the same physical model. Therefore the
performers would be fully immersed in a mechanical net-
work that would equally produce the haptic responses and
the audio output without any ”artificial” mapping strategy.
Finally network music performances and further research
on the topic of haptic telepresence within the music context
are planned in the future.
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ABSTRACT

Artistic installations using brain-computer interfaces 
(BCI) to interact with media in general, and sound in spe-
cific, have become increasingly numerous in the last years. 
Brain or mental states are commonly used to drive musi-
cal score or sound generation as well as visuals. Closed 
loop setups can emerge here which are comparable to the 
propositions of neurofeedback (NFB).

The aim of our audiovisual installation State Depen-
dency, driven by brain states and motor imagery, was to 
enable the participant to engage in unbound exploration of 
movement through sound and space unmediated by one’s 
corpo-reality. With the aid of an adaptive feedback loop, 
perception is taken to the edge.

We deployed a BCI to collect motor imagery, visual and 
cognitive neural activity to calculate approximate entropy 
(a second order measure of neural signal activity) which 
was in turn used to interact with the surround Immersive 
Lab installation. The use of entropy measures on motor 
imagery and various sensory modalities generates a highly 
accessible, reactive and immediate experience transcend-
ing common limitations of the BCI technology.

State dependency goes beyond common practice of ab-
stract routing between mental or brain with external au-
diovisual states. It provides new territory of unrestrained 
kinaesthetic and polymodal exploration in an immersive 
audiovisual environment.

1. INTRODUCTION

Interaction with sound and image without a direct physical 
action is possible with the aid of BCIs. With this technol-
ogy, ‘imagined’ activity, so called motor imagery can be 
directly linked to sound and image and influence the per-
ception of motion in space. Placed in an immerse audio-
visual environment, such a technically mediated percep-
tual cycle can provide a clear experience of an intentional, 
but suppressed movement and its reality to the mind. This 
shows that human perception of agency and the emergence 
of reality is constructed by the brain and completed in a

Copyright: c© 2019 Patrick Neff et al. This is an open-access article distributed 
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permits unrestricted use, distribution, and reproduction in any medium, provided 
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multimodal fashion, even if certain sensory elements are
missing.

Media technology allows the simulation of a physical sur-
rounding through a few well placed and carefully balanced
sound and image elements. This functional and mostly
modality-specific simulacrum of a naturally occurring phe-
nomenon may induce the brain to enter into resonance with
and to reinforce the perception of the most credible sce-
nario through completion [1].

State Dependency aims at realising a NFB scenario
through a research experiment with artistic techniques and
scientific methods. In the feedback between the (prepara-
tory) imagination of movement and the perception of mo-
tion, the blending of modalities becomes possible, in a way
that goes beyond established functional combinations of
sensory inputs.

The adaptive feedback configuration proposed is based
on the premise that perception depends on both inner and
outer states and is dependent on reactive behaviour. In this
experimental approach, the reactive loop is modulated to
extend the limits of normal perception and (re-)action cy-
cles.

Concretely, we want to combine movement control via
motor imagery [2] and audio-visual media in a spatial
setup. Driven by entropy measures, these two layers can
coalesce into a coherent multi-modal immersive experi-
ence that is rooted in kinaesthetic and visual perception.

The inner sense of position and movement in space of
the participant gets projected or linked onto a physically
present, enveloping audio-visual flow of particles. The re-
sulting amalgamated experience points toward the concept
of ‘telekinesis’. Thus, the installation can be experienced
as a participant-centric telekinetic steering of the energetic
particle flow. Alternatively, it can be felt as a physical
trans-location inside a stream, where the sense of position
and centrality gets lost, even if momentarily.

The merging of the modes of position, agency, and move-
ment sensing lead to a new experience and awareness of
interaction with – projected – reality. This pre-reflective,
sub-personal access to agency and a sense of position and
orientation proposes a mode of experience that explores
poly-modal kinaesthetically-driven awareness, hitherto an
uncharted territory.
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2. BACKGROUND

BCIs, mostly in the form of commercial ready-to-
wear electroencephalography (EEG) devices, have become
widely-used in (digital) art and music [3]. 1 In these in-
stallations, brain-derived EEG signals are measured on the
head, amplified and sent to a recording or streaming device
(e.g., computer or mobile device). The raw signal or pro-
cessed derivatives are then used to control visual or acous-
tic features of the installation.

Given the plethora of recent and current works using BCI
in the art and music context, we here focus on relevant
works using real-time brain signals mapped to audio-visual
outputs in a performative setting. The first report of BCI art
is from 1965 where Lucier performed ‘Music for Solo Per-
former’ which can be considered the first brain-driven mu-
sical piece [4]. Pioneering visuals, Nina Sobell in her work
‘Brain Wave Drawings’ [5] overlayed a real-time video
portrait of two persons with the EEG raw signal reflective
of putatively synced brain states of the portrayed persons.

Following advances in technology, especially regarding
portability of systems, BCI art became more common in
the early years of the third millenium. In a recent work
by Dmitry Morozov named ‘eeg deer’, the brain activity
of the user was used to generate music and visuals in real-
time with no further actions by the user [6]. In Novel-
los performance titled “Fragmentation” [7], on the other
hand, the user performed with dance while the BCI and the
linked audio-visual streams served as an extension. Com-
bining live video footage with brain activity of users, Ur-
sula Damm manipulated the degree of abstraction of video
streams in ‘Chromatographic Orchestra’ [8].

Further adding aspects of immersion and interaction, cur-
rent works also apply virtual reality (VR) technology. In
‘The Hidden Rooms’ [9] and the ‘Errant Eye’ [10] vir-
tual (visual but not acoustic) reality is explored driven by
brain states. Lastly, ‘Conductar’ [11] combines virtual and
augmented reality with a BCI in a mobile setting. The
setup depends on the GPS location and produces an artifi-
cial world on the screen of a smartphone alongside sounds
driven by EEG and movement data.

The stability and quality, but also the reliability and va-
lidity of these measured frequency band power values are
partly questionable. This is especially true when they are
used in interactive closed loop setups like many of the ex-
isting BCI art installations. This is partly explained by the
equipment employed, especially low-grade consumer de-
vices with dry electrodes, but also by the situation (move-
ment and other artefacts) and inappropriate use. In neu-
roscientific literature, consensus has arisen that the signal
quality but also related claims of access and control over
mental states are lacking any solid evidence and theoreti-
cal background [12].

Our goal was to set up an immersive 3D environment
where accessible states can be explored using BCI tech-
nology in a functioning interdependent manner.

1 https://bci-art.tumblr.com/

3. BRAINSTATES

In the last section, we introduced the current state of use of
BCI systems in art. Concretely, we also shortly discussed
technical details and limitations of BCI signal acquisition,
processing and mapping, and also looked at fundamental
claims of the relation between neural activity and subjec-
tive mental states. Because we identified several shortcom-
ings or even questionable claims, the central motivation of
the work at hand was to implement a working BCI instal-
lation which builds on verified aspects of current mobile
neural technology.

First, motion control via motor imagery is an established
concept which is used effectively for lateral bodily move-
ments (e.g., left motor cortex µ-rhythm de-activation to
control the right arm) [13]. Usually, with electrodes placed
over positions of the motor cortex, µ-rhythm de-activation
is then measured during motor imagery and compared to
idle baseline activity of the same electrode. This procedure
can be both time-consuming and unreliable, as the contrast
between active and passive activation patterns can be too
weak or disturbed by artefacts or general signal quality.
The resulting baseline or calibration period can be consid-
ered as detrimental for any spontaneous setup and immer-
sion into an art installation. In recent times, attempts have
been made to optimise the measurement of this motor ac-
tivity by applying machine learning (ML) on the features
of motor imagery with a respective optimisation of the for-
mer differential approach [14].

Yet, the latter approach is in need of individualised base-
line measurements and respective investment of comput-
ing power and time to train the ML algorithms. There-
fore, we planned to use an entropy-based, second order
information-theoretical analysis of ongoing neural activity
to enable us to overcome the baselining as well as calibra-
tion phase and immediately start to derive motor imagery
data from the activity at the electrode. This becomes pos-
sible because the µ-rhythm is highly responsive and, more
importantly, regular so that the entropy algorithm identi-
fies the rhythm as highly ordered and thus non-entropic.
The detection properties of the entropy algorithm come in
handy for movement control and have already been simi-
larly implemented in state of the art BCI applications [15].
Details about our implementation can be found in the next
sections (4).

Second, while motor imagery is able to control move-
ment or directional parameters of the audiovisual flow, we
were interested in aesthetic mappings of the sensory input
domain, namely the visual system. We considered the im-
plementation of this sensory neural input as feasible for a
mapping beyond movement control, as the visual cortex is
a large, accessible site with high activity. With the map-
ping of entropy measures derived from visual cortex activ-
ity, we envision a closed-loop NFB between visual effects
projected and the response of the visual system. Naturally,
this feedback loop is not directly controllable by the partic-
ipant but rather relies on the unsupervised reactive neural
activity (reflective of visual processing) in the individual’s
visual cortex.

Lastly, in an attempt to additionally experiment with cog-
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nitive states, we incorporated an electrode on the forehead
measuring frontal, potentially cognition- and memory-
related, activity. Again, by using entropy instead of fre-
quency band power, we aimed at covering a more global
state of cognition, which contrasts ordered putatively goal-
oriented active cognition with more entropic idle states of
thinking. We furthermore opted to use this remaining elec-
trode of the current BCI system to both test for mental con-
trol option and to be able to access a ‘control’ electrode
signal (e.g., muscle noise artefacts from frowning). This
signal could then be used to test the entropy algorithm’s
vulnerability to noise or general responsiveness.

The implementation of entropy measures for motor im-
agery and NFB features in State Dependency can be con-
sidered a novel territory of artistic and scientific explo-
ration.

4. DEPENDENCIES

4.1 Technical Implementation

The hardware and software setup of State Dependency pro-
vides the technical means for establishing a feedback loop
between a participant’s audio-visual perception and men-
tal activity and the generation and spatialisation of audio-
visual media (see figure 1).

The setup consists of a wearable EEG BCI, a computer
for acquiring and analysing EEG data, and a second com-
puter for generating real-time audio-visual content. The
BCI is based on the OpenBCI Ganglion 2 board to which
multiple wet electrodes are connected. Two of these elec-
trodes provide reference and ground signals and are at-
tached to the Lobule and Scapha of the right ear (see fig-
ure 2). The other four electrodes are embedded into an
elastic headband and mounted at the back, forehead, and
crest of the head. These sensors measure neural activity in
the visual cortex, pre-frontal area, and left and right pri-
mary motor cortex. The interface, which is worn around
the neck, sends the sensory signals via Bluetooth to a com-
puter. The setup of the BCI with the current wet electrodes
takes about 10 minutes before the user can properly inter-
act with the system. This computer runs the OpenBCI GUI
application which conditions the sensor data. Condition-
ing involves removal of signal values around 50 Hz by a
notch filter to eliminate interference from AC current. For
the motor imagery data, frequencies below 8 Hz and above
14 Hz were filtered out with a band pass filter to better
access the µ rhythm. The visual and prefrontal data was
filtered with a wider band pass filter between 5 Hz and 50
Hz to capture a wider range of frequencies typically pro-
duced by the areas underlying the respective electrodes.
With this filtering strategy measuring artefacts, that would
appear due to facial and bodily movement (i.e. below 5
Hz and above 50 Hz) as well as unwanted neural activity
in different frequency bands, are suppressed. The condi-
tioned sensor signals are subsequently sent via the Open
Sound Control [OSC] protocol to an additional application
that conducts feature extraction.

2 http://docs.openbci.com/Hardware/07-Ganglion

This application has been custom designed in the Open-
Frameworks C++ programming environment and imple-
ments the Approximate Entropy [AE] method according to
the mathematical description provided by Sabeti et al. [16]
(see figure 3). Approximate Entropy is a statistic measure
for the predictability of new values in a time series based
on the history of previous values [17]. For our purpose
of controlling through neural activity the generation of
video and audio in real-time, this entropy measure proved
to be more responsive than other entropy measures such
as Shannon Entropy or Spectral Entropy. Optimal perfor-
mance of the AE algorithm was achieved by setting the
size of the sample window to 512, the embedding dimen-
sion to 2, and the threshold to 1.0. Latency and responsiv-
ity are issues to be considered in this optimisation process,
which was mostly performed by manual approximation re-
sulting in the final values above. Taking into account all
elements of the feedback system from measuring the ac-
tivity on the scalp to the audiovisual presentation in the
IL, the resulting latency is estimated at about 350-500 ms.
This includes time for data transfer, parsing, processing,
and feedback (e.g. visual delay of the beamers of about
100 ms). Considering aspects of volition and cortical ini-
tialisation the latency value is slightly increased. Overall,
we estimate the latency not to be larger than 1 second for
all the processes described above. Certainly, the system
will be further optimised to decrease latency and increase
responsivity for better immersive experiences.

4.2 Experimental Setting

An essential part of the experimental setting for this project
is it’s application in an immerse media space called the
Immersive Lab 3 . The installation was developed by two
of the authors as a platform for artistic creation and re-
search. It combines panoramic video and surround au-
dio with touch-based interaction across its entire projec-
tion surface [18, 19]. The installation’s video projection
screens are arranged into a circular setup with a diame-
ter of about 4 meters. It is furthermore equipped with 16
loudspeakers, arranged in two rings of eight loudspeaker
placed above and below the screens and complemented by
two subwoofers.

The capability of the installation to fully immerse partic-
ipants plays a crucial role in establishing a feedback loop
between EEG controlled media generation and movement
perception (see figure 4). The EEG entropy measures con-
trol the creation of audio-visual media presented in a sur-
round format to the participant in real-time.

4.3 Media

4.3.1 Audio

The auditory side of the media aims at providing a flow
of sound elements that envelop the listener. The contin-
uous flow of sound particles reinforces an immersed, al-
most hypnotic state. Changes in brain states modulate
sound elements, in their balance, their spatial distribution,
and their timbre. In our setup, the sound parameters are

3 http://immersivelab.zhdk.ch
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Figure 1. Schematic depiction of NFB loop. The sequence
of EEG data acquisition and processing is shown in the
middle section. From left to right: electrodes mounted to
the participant’s head, four channel EEG interface, approx-
imate entropy-based analysis. The top and bottom sections
depict the visual and acoustic feedback channels, respec-
tively. From right to left: EEG-based control of media
generation, panoramic media projection

Figure 2. Schematic depiction of electrode placement. Six
wet electrodes are mounted to the participant’s head. Four
electrodes are attached to an elastic headband and located
above the following brain regions: 1. prefrontal area, 2.
left primary motor cortex, 3. right primary motor cortex, 4.
visual cortex. Two additional electrodes serve as reference
and ground and our mounted with tape to the ear’s 5. lobule
and 6. scapha, respectively.

tightly linked to the flowing particles’ behaviour and rein-
force their physicality: A constant flow of sonic particles
is streaming past the listener, always synchronised with the
visual elements. Two continuously fluctuating instrumen-
tal voices provide a second, musical layer.

The sound particles are generated via granular synthe-
sis of filtered noise. A bandpass filter is applied to the
noise sources and serves two functions: The filter produces
an individual pitch for each particle. The frequency of
the filter is swept downwards as each particle moves past
the listener, creating a Doppler effect. The particles are
spatialised around the listener using Ambisonic process-

Figure 3. Approximate entropy feature analysis. Shown
are entropy values as time series for all four electrodes.

Figure 4. Schema of the installation setup. Two rings of
speakers produce spatialised sound in azimuth and eleva-
tion. A panoramic screen presents an enveloping image.

ing [20], which provides a clear localisation of the sounds
in the actual space of the installation.

The musical sounds originate from double bass record-
ings of continuous bowing. One consists of bow hair noise
near the bridge of the instrument and the other stems from
extended techniques providing multiple harmonics. The
sound’s pitches get altered through changes in playback
speed, to provide a slightly alien harmonic timbre. The
balance between these two sound layers is controlled by
the difference in AE between left and right motor cortex.

The density of the sonic field duplicates the effect of the
visual, where paying attention to a single event becomes
difficult, i.e., the auditory stream segregation fails [21].
This increases the sensation of immersion and contributes
to the perception of egocentric self-motion.
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Figure 5. Screen capture of visual feedback. The image
shows a section of the graphical rendering of a particle field
which is four times as wide as shown here.

4.3.2 Video

The imagery evokes the sensation of being in an infinite
space, densely populated by a stream of visual particles in
the viewer. The particles of identical appearance exhibit
a uniform global movement (see figure 5). This creates a
perception that lies at the limit of a participant’s capability
for visual stream segregation. Depending on the density
and visual representation of the particles’ motions, the par-
ticipant’s attention is either drawn torwards the individual
visual elements or instead evokes an illusion of egocentric
imbalance and translocation. By relating EEG measure-
ments of neural activity to changes in the particles’ motion
and appearance, the balance between egocentric and allo-
centric movement perception is altered.

The visual flow is created by drawing 500’000 particles
as textured billboards whose size, colour, and transparency
vary with distance. The motion of the particles is visually
accentuated by superimposing the most recent image with
previously drawn images. This causes a motion blur effect
whose strength depends on the amount of transparency ap-
plied to the previous images.

The particles move through an euclidean space that is
delimited by a spherical boundary whose origin coincides
with the center of the installation. When particles exit this
boundary, their positions are wrapped around to slightly
randomised positions on the opposing side of the bound-
ary surface.

In order to create a panoramic projection for the circular
screen, the image goes through two stages of optical and
geometrical correction. A cube map captures the space and
gets transformed into a panoramic image by an equirect-
angular projection shader. The shader’s output is mapped
onto four Bezier surfaces which compensate for the curva-
ture of the projection screens.

Several parameters of the particle visualisation are con-
trolled by EEG signals acquired from the participant (see
figure 6). The difference in the AE levels of the EEG sig-
nals acquired from the right and left primary motor cortex
controls the direction and amount of lateral movement of
the particles. The AE level of the primary visual cortex
controls the amount of motion blur in the visual image.
The AE level of the prefrontal area controls the distance
threshold of the particle’s transparency and thereby alters
the visual density of the particle system.

Figure 6. Overview of mapping between EEG features and
visual control parameters. Approximate entropy analysis
values of all four electrodes are mapped to visual control
parameters as follows. The neural activity difference be-
tween the right and left primary visual cortex controls the
horizontal direction of the particle’s movements. Neural
activity in the primary visual cortex is proportional to the
amount of motion blur in the visual output. Neural activ-
ity in the prefrontal area is inversely proportional to the
distance-based transparency increase of the particles.

5. EXHIBITION

Some visual impressions of a NFB interaction situation
within the Immersive Lab are provided in figures 7 and
8. A video recording of this interaction situation is avail-
able online. 4 Notably, the installation has merely been
tested by a single user which renders the following state-
ments and claims anecdotal in nature at this point in time.
It is though envisioned to continue with the installation and
make it accessible to general public by working on all tech-
nical aspects of the BCI, data processing, mapping and au-
diovisual feedback.

During the setup, calibration and first experimental
phases of State Dependency, the chosen NFB setting could
demonstrate its potential in creating an immersive, voli-
tional movement control and (mental) state dependent ex-
perience. The specific combination of state of the art tech-
nology with a consistent, intuitively-accessible installation
enables immediate entrance to polymodal movement, drift

4 http://immersivelab.zhdk.ch/?page_id=4485
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and flow through audiovisual space without intermediate
physical borders. The motor imagery setup is responsive
and the interaction with it can be quickly integrated in
one’s own mental movement perception, while the sepa-
rate visual NFB loop allows the participant to de-focus and
even lose track of the granularity of the audiovisual out-
put. The visual blurriness nicely emphasises this visual
and possibly related attentional de-focus. Regarding cog-
nitive control, we did not expect much intentional control
options through mental imagery or cognition, which also
became obvious when actually interacting with the setup.
This comes as no surprise given the complexity of human
cognition and related neural correlates - yet may be an in-
teresting avenue for further iterations of this installation
and BCIs in general.

An important novel insight generated by this installation
was the the observed mechanism of a kinaesthetic sense
strongly influenced by the visual motion. This mechanism
can enforce the perceived movement immensely and there-
fore acts as a cross-modal ‘ interaction between visual, au-
ditory and kinetic modalities. It can thus be very difficult
to neutralise or change directions, when exposed to the vi-
sual motion with ever increasing speed (i.e., to move in the
opposite direction than the visual and kinaesthetic modali-
ties are implying). This challenge in the actual movement
control has to be learned to keep a balance and flexibility
in the movement interaction with the setup.

All in all, this novel immersive closed loop setup has
shown to be successful in enabling the participant to freely
interact with an audiovisual surrounding blended with his
motor imagery, sensory and mental states. With time, the
participant can reach a state of dependency with the linked
system, which extends his self-concept and agency beyond
the usual physical and mental boundaries.

Figure 7. Exhibition situation in the Immersive Lab. A par-
ticipant controls audio-visual media through a NFB loop

6. DISCUSSION

6.1 Perception

In the immersive, interactive situation of this installation,
the participant is able to explore kinaesthetic and propri-
oceptive modalities in their pure form: No intermediate
motor system is required to alter movement and in conse-
quence its perception. In practice, the participant there-

Figure 8. Overview of the exhibition situation in the Im-
mersive Lab. A participant controls audio-visual media
through a NFB loop

fore merely imagines (rotary) movements on a basic, pre-
conscious or intuitive level, while at the other end of the
feedback loop the media-counterpart of this imagination
is manifested. It is surprising, how intuitively this motor
imagery can be learned and applied. However, this im-
pression emerged during the testing of the installation by a
single user. The setup has to be validated with other users
to further back these experiences. Certainly, the respon-
siveness of the system contributes critically to this effect
and thus also further increases immersion. 5

A fundamental question that becomes apparent in this set-
ting is about the contradiction inherent to presenting sim-
ulated content in a physical media installation. From an
‘enactive’ point of view [22], the participant is put into a
state of suspension, in order to eliminate the disparity be-
tween physical space and simulated perception. From a
phenomenological point of view [23], however, this set-
ting makes sense: the presented stimuli reach a level of
consistency, and are convincing enough for the perception
to fill in the missing pieces. The suspension of disbelief
on the one hand, and the physical embeddedness in the im-
mersive setup on the other, allows the participant to reach
the edge of coherent perception and experience the break-
down and error-correction of movement control and spatial
movement perception.

The goal is to take perception to the edge, with the aid
of an adaptive feedback loop. This loop involves the par-
ticipant’s intention, through the motor imagery of motion,
and affects the perception of stability in space, which is
both a kineasthetic and a proprioceptive perception. There
is a contradiction between the visual and auditory flow and
the physiological stability in place in the centre of the in-
stallation. The inner perceptual achievement of suspension
allows for a sense of effortless movement through space.
The real-time nature of the adaptive loop contributes to
the sensation of agency. Perceiving that one is ’the author
of change in the environment’ is usually physiologically
linked through the coherence between the efferent and af-
ferent sensory streams tied to an action [24]. In this con-
figuration, providing agency is achieved by circumventing
direct action and directly taking the cortical arousal state to

5 For a short video documentation see:
https://tube.switch.ch/videos/e815b5e7
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modify the media stimuli presented to vision and audition.
Critical for the success of this effect is a responsive map-

ping and relaying of the felt inner states to the external
audiovisual stream. Not only should the setup be reac-
tive in the split-second temporal resolution, but also cover
a meaningful range, which can be thoroughly explored.
Only then does the setup become an extension or dissol-
vent of the participant’s corporeal boundaries.

6.2 Implementation

On the hardware and setup level, the applying of the EEG
BCI system remains critical for a reliable and valid data
flow from the brain to the subsequent devices. Dry elec-
trodes have not been able to convince any EEG expert in
respect to signal quality. Impedances below 10 kΩ at the
electrode are not considered feasible for any EEG appli-
cation, especially not for real time signals. In the case
of dry electrodes, impedances can be as high as >100 kΩ
and therefore the measured signal is highly unreliable [12].
Notably, signal quality or vulnerability to external noise
sources increases proportionally with the impedance. Wet
electrodes, on the other hand, require a more tedious and
time-consuming mounting, which certainly limits their use
in artistic contexts, especially in public installations or per-
formances.

Even with an implementation of second order computa-
tions on the signal like entropy measures, which are less
susceptible to bad signals, stable and reliable signals are
key for a proper setup. This is particularly true when it
comes to scales and ranges of mapped parameters, which
have to be carefully optimised to allow for a satisfying im-
mersion, as it is aimed at in the case of our installation.
Of special note, we can not generalise our settings to a
broader audience at this point because our installation has
been set up and calibrated for a single individual. Beyond
electrode montage difficulties, impedances and individu-
ality issues, further artefacts can be present in the signal.
Most prominently, and inevitable in an unconstrained me-
dia installation, are movement artefacts. There are also is-
sues with the wireless data transmission streaming (mostly
Bluetooth) given the spatial extent and interference present
in many installation venues.

Taken together, these technical aspects still pose some
limitations on the endeavour of using BCIs as live data for
art installations.

7. OUTLOOK

It is conceivable that changing the currently fixed relation-
ship between mental states and media content to an evolv-
ing one could increase immersiveness and alleviate the ha-
bituation and saturation process taking place in any arti-
ficial scenario. On the other hand, a quick succession of
changes might prove to be counterproductive. After all,
achieving through an adaptive loop an inner state of agency
and telekinesis relies on a carefully calibrated configura-
tion of techniques and connections. Another interesting
modification of the setup could involve the generation of

more naturalistic audiovisual content as part of the adap-
tive feedback loop.

On the technical side, the basic setup would profit from a
faster and easier montage of the electrode headband. Addi-
tionally, exact positioning, especially in the case of the mo-
tor cortex electrodes, and individual differences are critical
for optimised data quality. The responsiveness of the EEG
entropy feature extraction could also be improved to better
handle the participant’s willingness to change movement
directionality. Such optimisation could not only be per-
formed on the parameters inherent to the AE calculation
but also be implemented as an additional layer of signal
analysis (e.g., rate of change of AE difference).

Given the relative stability of the BCI headset construc-
tion and measures of artefact and noise control in the EEG
signal processing pipeline, it is conceivable that the partic-
ipant can also make use of the touch features of the Immer-
sive Lab. This could add an interesting optional layer of
possibly further explorable amalgamation of the fed back
states and modalities.

Thinking ahead, the chosen approach possesses great ap-
plication potential in the context of VR. Being able to
control through imagined rather than physical locomotion
ones own movement through a virtual environment consti-
tutes a fundamentally different approach to currently ex-
isting navigation and locomotion interfaces for VR. Tra-
ditional locomotion interfaces place the user of a VR sys-
tem into a constraining physical exertion device such as a
omni-directional treadmill or sliding surface within which
he or she is barely able to execute natural locomotion be-
haviours, BCI-based interfaces dont require such a setup
since they abolish the need for actual physical locomo-
tion but instead tap into the brains innate capability to sup-
plant actual motor activity with imagined motor activity.
The preliminary results that have been described in this
paper indicate that a BCI-based interface in combination
with highly correlated and spatialised audiovisual feed-
back can successfully supplement physical and vestibular
self-motion cues and thereby offer a level of movement
control and awareness that is likely more natural and intu-
itive than is the case for traditional mechanical locomotion
interfaces.

Finally, given the current state of the project and its eval-
uation, the installation would profit from experiences from
different users. Ideally, technical functionality should be
tested with different age groups and their respective tech-
nological backgrounds to investigate individual differences
and generalisability of the system. A survey on both the
control aspects but also on the subjective, immersive ex-
perience is envisioned to better evaluate the installation.
Lastly, given the slow visual movements and absence of
flickering or flashes, health issues (e.g. epilepsy or nausea)
are very unlikely. General reported side effects of NFB
are unsystematic and only reported in very rare cases with
non-critical symptoms. On the other hand, the situation in
the installation and the relying on NFB principles, may ad-
ditionally qualify State Dependency as a relaxing or medi-
tative experience.
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ABSTRACT

The use of real-time sound synthesis for sound effects can 
improve the sound design of interactive experiences such 
as video games. However, synthesized sound effects can 
be often perceived as synthetic, which hampers their adop-
tion. This paper aims to determine whether or not sounds 
synthesized using filter-based modal synthesis are percep-
tually comparable to sounds directly recorded. Sounds from 
4 different materials that showed clear modes were recorded 
and synthesized using filter-based modal synthesis. Modes 
are the individual sinusoidal frequencies at which objects 
vibrate when excited. A listening test was conducted where 
participants were asked to identify, in isolation, whether 
a sample was recorded or synthesized. Results show that 
recorded and synthesized samples are indistinguishable from 
each other. The study outcome proves that, for the anal-
ysed materials, filter-based modal synthesis is a suitable 
technique to synthesize hit sound in real-time without per-
ceptual compromises.

1. INTRODUCTION

Nowadays, most video games, films and pieces of me-
dia are sound designed using pre-recorded samples. Pre-
recorded samples are obtained from direct audio record-
ings or layered sound effects and stored in audio files. How-
ever, pre-recorded samples have several limitations in in-
teractive environments such as video games. As actions in 
games can be performed several times, if there is only one 
sample per action, the sound will be repeated, which can 
lead to listener fatigue and loss of authenticity [1]. To solve 
this, several samples can be assigned and shuffled played 
when a player performs an action, which the consequential 
increment in studio and implementation time, asset man-
agement and memory footprint problems.

Hit or impact-based sounds are the acoustic consequence 
of physical collisions. Changes in an object material or size 
will produce changes to the resulting impact sound. For 
games or interactive applications with hundreds or thou-
sands of interactable assets, such as open world games or 
VR experiences, this will lead to an exponential growth in
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the need for different sound samples to sonify any particu-
lar scenario where two or more of those assets collide.

In the context of video games and interactive applica-
tions, an alternative solution is to use real-time sound syn-
thesis during gameplay. This approach, known as procedu-
ral audio, is defined by Farnell [2] as a “non-linear, often
synthetic sound, created in real time according to a set of
programmatic rules and live input” .

Farnell [2] enumerates several benefits procedural audio
has over pre-recorded samples. Among them, the program-
matic nature of procedural audio allows sound designers to
decide or change aesthetic considerations later in the de-
velopment cycle. Moreover, as procedural audio is object
based, it can automate part the sound design process, espe-
cially in the implementation stage, as a single procedural
audio model can contain all the possible sonic interactions
a player can perform. Procedural audio also offers more
variety, versatility and adaptability than pre-recorded sam-
ples. While a pre-recorded sample will always play the
same way, procedural audio can change dynamically.

However, Farnell [2] also identifies perceived realism as
one of the problems in procedural audio. Synthesized sound
effects can often be perceived as too synthetic compared to
pre-recorded samples. One of the challenges is, then, to
create procedural audio models that can be indistinguish-
able from pre-recorded samples.

This study aims to measure whether or not it is possible
to identify synthesized hit sound effects using filter-based
modal synthesis. Instead of comparing pre-recorded sam-
ples and their synthesized versions side by side, this study
will present them independently. The motivation of tak-
ing this approach relies in the idea that if pre-recorded hit
samples and efficient real-time synthesized hit sound ef-
fects are indistinguishable from each other, the synthesized
version can be used without perceptual loss of authenticity
and obtaining all the benefits procedural audio presents.
The null hypothesis of this study is that the synthetic sound
effects are easily recognizable from the recorded ones.

1.1 Previous work

There is a body of research on evaluating the perception
of synthesized sounds. A recent study analysed different
sound synthesis techniques for different sound classes (ap-
plause, babble, bees, fire, rain, stream, waves and wind),
concluding that there is not substantial difference between
the reference sample and the synthesized version when an
appropriate synthesis method was used, except for additive
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synthesis [3]. However, they did not focus on impact-based
sounds.

Other studies evaluated the use of modal synthesis for the
synthesis of weapons sounds [4]. The results showed a
convincing result for weapons with resonant modes (such
as axe, hammer or rapier). However, they took a rating ap-
proach for the experiment, where participants rated several
versions of the sound effects (synthesized, synthesized and
processed and pre-recorded) instead of evaluating them in
isolation. The motivation of evaluating the sounds in isola-
tion instead of rating several versions of them comes from
avoiding any possible bias from comparing a specific sound
to another. Real-time synthesized rolling sounds of glass
and wood were also evaluated in other experiments [5]. In-
stead of identifying synthetic samples, participants rated
the synthesized sounds in a 0-100 scale to evaluate the re-
alism obtained in the rolling effect.

Tests to discriminate whether a sound is recorded or syn-
thetic have been developed in the field of synthesis of mu-
sical instruments. Wun, Horner and Ayers [6] proposed
a discrimination factor, d, which measure the quality of a
synthetic tone based on how often it can be distinguished
from its recorded counterpart. The discrimination factor
is similar to the Accuracy rate used in other works deal-
ing with binary classifiers [7]. This metric has been used
to evaluate the use of synthetic piano sustain-pedal effects
[8] or a synthetic clavinet model [7].

2. METHOD

2.1 Sound Synthesis

Filter-based modal synthesis is a particular use of subtrac-
tive synthesis and it is especially indicated to synthesize
impact-based sounds [9]. Filter-based modal synthesis has
two components: a deterministic part, the model modes,
and a stochastic part, the model noise envelope.

The process consisted in analysing a pre-recorded sample
to extract its modes. Modes are the individual sinusoidal
frequencies to which an object vibrates, in this case, when
it is impacted. In the spectrogram of a hit sound, these
modes are represented by straight horizontal lines (Figure
1). The modes are used as frequency bands in a series of
resonant filters which band-pass an enveloped white noise
signal. These modes represent the deterministic part of the
sound.

Figure 1. Recorded metal flask hit spectrogram.

The modes are then subtracted from the original sound,
obtaining the noise envelope, also known as the residue.
This represent the stochastic component of the signal. The
residue is stored in an audio file and it is triggered with the
deterministic component.

The ChucK programming language [10] was used for the
modes extraction and residue generation. The extraction
and residue generation code was written by Perry Cook
[11].

For this study, nine sounds were recorded from materi-
als that exhibit clear modes when excited. The choice of
the materials was driven by the suitability of the synthesis
method used. These materials were ceramic (2 samples: a
plate and a mug), glass (3 samples: an empty bottle, a wa-
ter glass and a pint glass), metal (3 samples: two lids of dif-
ferent sizes and a flask) and wood (1 sample: a short rod)
(Figure 2). The hits were performed with a metal spoon.
The recordings were made at 44.1kHz/24bit with a Zoom
H6 recorder, using the built-in XY capsules. 100 modes
were extracted from each material and subtracted from the
original recording to generate the residue.

Figure 2. Materials used.

The modal synthesizer was also programmed in ChucK,
using a modified version of a modal synthesizer created by
Cook [11]. Each sound was synthesized by using an en-
veloped white noise signal thought 100 resonant band-pass
filters plus the residue. Every time a hit is triggered, the
individual mode frequencies, individual mode gains, indi-
vidual filter Q, residue pitch (playback speed) and balance
between the deterministic and stochastic components were
randomized. The level of randomization differs slightly
for each material. For context, in the case of the mug,
the range of randomization of the individual frequencies
was of frequency ± frequency/300, of the individual gains
was of gain ± gain/5, the individual filter Q were random-
ized between 800 and 1200, the residue playback rate was
randomized between 0.99 and 1.01, the gain of the deter-
ministic component was randomized between 5 and 30 and
finally the gain of the stochastic component was random-
ized between 0.7 and 1. The aim of this randomization is
to create a natural variation between hits.

A live performance of the modal synthesizer was recorded.
One audio file between 3 and 6 seconds with a series of hits
was recorded for each object. The original non-synthetic
recordings were sliced to generate one audio file for each
object comparable to the synthesized version. The syn-
thesized versions did not have any reverberation as they
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were not recorded in any physical environment. To avoid
any bias in the perceptual evaluation, an impulse response
of the room where the original recordings were made was
recorded and mixed with the synthesized samples. All au-
dio files were normalized to 0LU and exported in Ogg Vor-
bis. The choice of Ogg Vorbis instead of uncompressed
WAV was determined by the technical limitations of the
questionnaire platform used, Qualtrics 1 . However, this
should not cause a drastic perceptual variation [12]. No
more processing was applied to the audio files.

The recorded sounds, the ChucK code of the synthesizer
used and the resulting synthesized sounds can be found in
the online repository 2 .

2.2 Experimental design

The test used was inspired by the RS -or real and synthetic-
listening test proposed by Gabrielli, Squartini and Vlimki
[7]. Although the test was originally used with musical
instruments, it can be easily applied to sound effects. The
RS listening test proposes a series guidelines and this study
does not follow all of them.

In this study, as opposed to the RS guidelines, the test
was not carried out in a controlled listening environment.
The listening test was conducted online with no informa-
tion of the playback device used by the participants, al-
though the use of headphones was suggested. This helps to
replicate more closely the playing environment, where the
participants are likely to use their own equipment to play
the game or interactive application. The participants were
asked to identify, one by one, whether the sound played
was recorded or synthesized (Figure 3). Participants clas-
sified the samples without being asked to specify to which
material a sample belongs to. The order of the audio sam-
ples was randomized and the participants were asked to
listen to each sound just once. As suggested in the RS test
guidelines, an acid test (a clearly synthesized sound) was
included to acts as a control.

The participants were also asked to introduce their level
of expertise in sound design, ranked from 1 (no expertise)
to 5 (professional).

Figure 3. Online test interface.

The metrics used were the discrimination factor and the
F-measure.

The discrimination factor, d, is described as [6]:

1 https://www.qualtrics.com
2 Repository containing the recorded sounds, the ChucK

code of the synthesizer used and the resulting synthesized
sounds: https://github.com/adrianbarahona/SMC-
Conference-2019_Perceptual-Evaluation-of-Modal-
Synthesis-for-Impact-Based-Sounds

d =
PCS − PFP + 1

2
(1)

With PCS being the percentage of correctly detected syn-
thesized sounds and PFP the false positives (recorded sam-
ples identified as synthetic). Following the RS test criteria,
d values below 0.75 mean the sounds compared are consid-
ered indistinguishable from each other. Values of d around
0.5 are not different from random guessing.

As suggested in the RS guidelines, the F-measure was
also evaluated. F-measure is described as [7]:

F −measure = (β
2
+ 1)× Precision×Recall
β2 × Precision+Recall

(2)
With Recall defined as:

Recall =
PCS

PCS + PFN
(3)

And Precision defined as:

Precision =
PCS

PCS + PFP
(4)

Being PFN the percentage of false negatives (synthetic
sounds labeled as recorded) and β = 1. The interpreta-
tion of the F-measure values is similar to the d values.

A total of 19 participants, 12 males and 6 females (1 par-
ticipant did not disclose this information) with ages be-
tween 18 and 58 took the test. A breakdown of the par-
ticipants level of expertise in sound design is showed in
Figure 4.

Figure 4. Participants level of expertise in sound design.

3. RESULTS

All participants correctly labelled the acid test as synthetic,
so it was removed from the analysis of results. The pur-
pose of this sample was to filter out participants that were
random guessing or not paying attention to the test.

The mean results clearly show that recorded and synthetic
hit sound effects are indistinguishable from each other. All
scores are below the 0.75 threshold and closer to the ran-
dom guessing mark of 0.5. There is also a low fluctuation
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Avg d σ σ2 Max d Avg F-measure σ σ2 Max F-measure
0.5 0.12 0.02 0.72 0.43 0.16 0.02 0.73

Table 1. d and F-measure values across all participants.

Samples % Correctly labeled as recorded Samples % Correctly labeled as synthesized
Ceramic recording 66% Ceramic synthesized 29%

Glass recording 54% Glass synthesized 37%
Metal recording 60% Metal synthesized 40%
Wood recording 68% Wood synthesized 68%

Table 2. Different materials raw results.

Figure 5. d and F-measure values across all participants.

between the participants (Figure 5). The results are shown
in the Table 1.

Some samples performed better than others. The syn-
thetic version of the wood rod was successfully identified
by 13 of the 19 participants. In the other hand, the synthetic
version of the mug was only identified by 4 of 19. An
overall breakdown of the different materials performance
is shown in Table 2. The table shows the different objects
grouped in the correspondent material.

The level of expertise in sound design was not a decisive
factor to spotting synthetic sounds. Participants with an
expertise in sound design ranked between 1 and 2 (out of
5) scored a d and F-measure of d = 0.48 (σ = 0.10) and
F-measure = 0.42 (σ = 0.14). Participants with the highest
level of expertise in sound design, 4 and 5, scored d = 0.55
(σ = 0.11) and F-measure = 0.46 (σ = 0.17). In fact,
the participant with the highest d and F-measure (0.72 and
0.73 respectively), had no expertise in sound design.

4. DISCUSSION

This paper presented the perceptual evaluation of filter-
based modal synthesis hit sounds using a method inspired
in the RS listening test. The aim was to measure whether
or not listeners can identify synthesized hit sound effects

using filter-based modal synthesis. Results showed that,
for the analysed materials, recorded and synthetic samples
are indistinguishable from each other.

The different performance among the materials suggest a
further study focused on what specific materials are more
suitable for this particular synthesis method. Moreover,
a bank of modes and their relative residue files could be
created, removing the need of analysing a new audio file
for each new model. The bank of modes can be created
by analysing several recordings from the same material to
establish a range of common modes for each material anal-
ysed.

Filter-based modal synthesis is comparable to the method
used by Mengual, Moffat and Reiss to synthesize weapon
sounds [4]. In their case, they took an additive approach,
using spectral modelling synthesis [13]. Instead of using
filtered white noise for the deterministic component, they
used sinusoidal waves and the noise component is also
modelled instead of triggered from the residue file. Filter-
based modal synthesis offers more control over the deter-
ministic component as the parameters of the filters, such
as the Q, can be controlled in real time. However, filter-
based modal synthesis offers less control over the stochas-
tic component in this case, as it is extracted directly from
the original recording and stored as an audio file.

There are some improvements to the modal synthesiser
than can be implemented and evaluated. First, to ease the
CPU usage, a test measuring the perceptual impact of us-
ing less modes can be performed. The synthesizer pro-
grammed for this paper uses 100 modes for each material,
but it would be beneficial to draw threshold in the num-
ber of modes where models start losing authenticity. This
could be also applied to implement dynamic levels of audio
detail in video games. Another test could measure where
that threshold is situated when the procedural models are
not played in isolation but as part of a soundscape, given
that frequency masking could hide their synthetic nature.

Another improvement can be the use of individual filter
frequency decay time as every individual mode decay time
is different for each material. This effect can be clearly ap-
preciated in Figure 1. A test could measure the perceptual
impact of this feature, comparing models with and with-
out it. This is especially interesting for materials that per-
formed worse using the current synthesizer, such as wood.
In addition, the residual component could be also modeled
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with filtered white-noise by taking the most relevant modes
from the residue file.

The study results combined with the fact that the syn-
thesizer runs in real time encourages the use of the mod-
els within a game engine. This can be done in the Unity
game engine [14] by using the Chunity plugin [15]. Chu-
nity is a package for Unity that integrates ChucK within
the game engine. Tests to measure the synthesizer impact
on the CPU at runtime could be done to determine whether
the models are ready for production.

Controlling the synthesizer in real-time can also be a di-
rection for a second stage of this study. Physical parame-
ters within the game engine such as stiffness, size or geom-
etry have been already used to control the sound of modal
synthesizers in real-time [16]. This opens the possibility of
expanding the use of the models to perform other actions
apart from hits, such as scratching or brushing, or using
haptic controllers to interact with the synthesizer.
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ABSTRACT

The paper presents the interactive dance project VIBRA,
based on two workshops taking place in 2018. The paper
presents the technical solutions applied and discusses artis-
tic and expressive experiences. Central to the discussion
is how the technical equipment, implementation and map-
pings to different media has affected the expressive and
experiential reactions of the dancers.

1. INTRODUCTION

VIBRA is a project exploring expressive and artistic pos-
sibilities of interactive dance involving a group of artists
based in Trondheim, Norway (www.vibra.no). The acronym
VIBRA is Norwegian and translates to Video/visuals, In-
teraction, Movement, Space and Audio. The project started
with several activities in 2017 (although, at the time, not
under the name of VIBRA), involving the first and second
authors and two dancers. This paper will focus on two
workshops held during the spring of 2018 involving a total
of eight participants.

1.1 Aims of the project

The main aim of the project from the beginning has been
to explore interactive dance as artistic medium. Even if the
project has had the artistic development at its core, it has
also involved several technological components. Thus, the
research questions that we aimed to answer in the project
has been both of artistic and technical nature:

• How can different sensors be used in combination so
as to convey movement data that corresponds well
with experienced movements and how can this data
be shared orderly and effectively to accommodate
different mappings and media?

• How can different sensors and different mappings
affect the movements of the dancers?

• How can musical and musical-spatial mappings be
designed that work well for two or more dancers at
a time?
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It has also been important for the project to work with
an inclusive conception of dance, where different bodies,
abilities and levels of training are seen as productive ingre-
dients rather than obstacles of the creative process. Several
of the project participants have been working with such in-
clusive conceptions of dance in earlier projects [1]. For
the first author, the use of sensor technologies and interac-
tive music systems has been an important tool in expanding
the embodied expressive palette of people with different
abilities [2]. Openness to dialogue with, and participation
from, the audience has followed from this inclusive view
of dance, and has been central to our approach since the
beginning.

1.2 Participants

Since the first collaborative projects in 2017, a total of
eight people have been engaged in the project at differ-
ent stages. The first author has figured as initiator, project
coordinator, artistic director, programmer and composer/
sound designer and been involved in all of the events. The
second author has mainly been involved in the sensor com-
munication, including programming the VIBRA-hub ap-
plication. The third author made interactive computer graph-
ics for the second VIBRA workshop and participated in
the first, testing data communication and mappings. Gina
Sandberg was responsible for documenting the workshops
in audio and video. All project participants were consid-
ered a part of the creative team in that they could contribute
in discussions and reflections happening in the workshops.

Four dancers have been involved, Arnhild Staal Pettersen,
Luis della Mea, Tone Pernille Østern and Elen Øien. The
three former have professional training and are also ac-
tive as choreographers, while Øien is an active amateur
wheelchair dancer, but has also done productions with pro-
fessional dancers. All of them have danced together earlier
in different projects, but have had little or no experience
with interactive dance prior to the start of the project in
2017. It must also be noted that Della Mea is active both
as musician and composer. Henceforth, the dancers will
be referred to by the first letter of their first names (A, L, T
and E).

2. BACKGROUND

2.1 Interactive dance

Variations V from 1965, involving John Cage, Merce Cun-
ningham, Max Mathews, Nam June Paik and many oth-
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ers, started a revolution when it comes to exploration of
the collaboration between music, dance and technology,
with dancers exerting as much influence over the sonic
landscape as the musicians [3]. Following in Cage’s foot-
steps, the term interactive dance has often been applied
to artistic expressions in the same vein, especially as they
implemented digital technology and computers from the
late 1980’s and onwards [4]. Mullis has defined interactive
dance as ”performances in which a dancer’s movement,
gesture, and action are read by sensory devices, translated
into digital information, processed by a computer program,
and rendered into output that shapes the performance en-
vironment in real time” [5] . Such environments can in-
clude media and technologies such as interactive music,
lights, video, computer visuals, electro-mechanical instru-
ments, pyro-technics, smart fabrics, internet interfaces and
more, in combination with non-interactive elements or not
[4–10].

A particular trait of interactive dance is that it makes lit-
tle sense to apply a fixed choreography in the creation pro-
cess. Without some freedom for the dancers to go beyond
a strict choreography, e.g. moving freely or using struc-
tured improvisation, the interactive system will produce a
more or less fixed output [6, 11]. Thus, interactivity can
be seen as something that increases the creative control of
dancers [12] and gives them more freedom of expression,
especially in the temporal domain [4].

3. OUR APPROACH

While there have been many technological challenges to
the VIBRA project, the core of it has been to explore and
develop the artistic possibilities and experiences of interac-
tive dance. In that it aimed to generate knowledge through
an embodied and situated artistic practice embedded in artis-
tic and academic contexts, our approach has affinities with
Borgdorff’s conception of artistic research [13]. How-
ever, since we consider our workshops more as work-in-
progress, and since we haven’t at this point conducted a
deeper analysis and discussion of them, we don’t regard
our work as a completed artistic research project.

Our work also has affinities with approaches such as prac-
tice-as-research, practice-based or practice-led research
[14]. In making the case for the latter of these, Grey dis-
cusses the role of what she calls the ”practitioner-researcher”,
and this role seems highly fitting for the first author’s role
in this project: ”The role is multifaceted - sometimes gen-
erator of the research material - art/design works, and par-
ticipant in the creative process; sometimes self-observer
through reflection on action and in action, and through dis-
cussion with others; sometimes observer of others for plac-
ing the research in context, and gaining other perspectives;
sometimes co-researcher, facilitator and research manager,
especially of a collaborative project” [15]. Ideally, the re-
flective part of the research process could have been made
epistemologically more robust by inviting all project par-
ticipants to observe and reflect on the documentation of
the workshops, but this was unfortunately not practically
possible at this point. The dancers’ experiences and reflec-
tions are therefore implied from analysis of the video mate-

rial, where the alternation between dialogue/reflection and
practical exploration still attests to the importance of re-
flexivity, dialogue and common artistic development through-
out the workshops.

Finally, it is not difficult to argue that the kind of knowl-
edge production Borgdorff refers to above is processual
and embodied [16]. It is only by moving, listening, feel-
ing one’s own body and observing others’ that one can de-
velop knowledge of the most important aspects of interac-
tive dance. Therefore, it has always been important for the
project to let all project participants experience the interac-
tion.

4. TECHNICAL SETUP AND VENUES

4.1 Venues, workshop structure and documentation

The first workshop took place over two days at DansIT
(http://www.dansit.no/), a dance studio owned by a net-
work organization for dance in the region going under the
same name. The workshop was conducted in a very open
and exploratory manner, where the focus was on including
all the participants in a collective creative process develop-
ing material for a showing at the end of each workshop. In
the process, the dancers got to test and respond to different
sensors and mappings, and then develop movement mate-
rial through improvisation. The structuring of this mate-
rial for the showings was done collectively. We also made
room for conversations during and at the end of each work-
shop day, so as to sum up the salient experiences of all par-
ticipants. The experiences and reflections then guided the
further development of instruments and mappings, which
happened before and in-between the workshop hours.

For the first workshop, the focus was on the audio part
of the interaction, although the third author was present
and making tests of his setup for computer visuals. Due
to the available equipment at the venue, and that the tech-
nical setup required quite a bit of setup time, we used the
available stereo PA system at the venue.

The second workshop took place at Verkstedhallen, a black
box theatre in Trondheim (http://www.verkstedhallen.no/).
In addition to the mentioned sensors and the action-sound
mappings, this workshop also integrated computer visuals
and 8-channel spatial audio (See fig.1).

Both workshops, were recorded in audio and video by the
videographer, Gina Sandberg, using two cameras; one on
a stand, and the other handheld. The audio and video doc-
umentation, along with notes and computer files applied in
the technical setup, form the material that is the basis for
this paper.

4.2 Sensors

In the two workshops discussed, we have explored two
types of sensors:

1. NGIMU sensors, 9DOF IMU sensors with on-board
sensor fusion algorithms for absolute orientation

2. Myo armbands, combining 8 EMG electrodes and
9DOF IMU sensor
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These were chosen because they were lightweight and ro-
bust, they were easy to fasten on the dancers and had wire-
less communication with low latency. In addition, they
both supported, directly or indirectly via available and easy-
to-use software, the OSC-protocol, something which greatly
facilitated the data communication (see sect. 4.3).

4.2.1 NGIMU

The NGIMU sensor 1 communicates with OSC-messages
over Wi-Fi networks, both for transmitting sensor data and
for configuration. The use of Wi-Fi technology allows
higher data rates, longer operating range and higher trans-
mission power at the cost of higher power consumption
and shorter battery life compared to competing technolo-
gies such as ZigBee and Bluetooth [17].

The AHRS sensor fusion algorithm provides several mea-
sures of absolute orientation, but we focused on the Euler
angles (roll, pitch and yaw) that presented stable results
in most cases. A noticeable exception was the case when
pitch approached ± 90◦ leading to erratic measures of roll
and yaw (the gimbal lock problem). In order to stabilize
the orientation measures we discarded incoming measures
of roll and yaw when pitch approached the critical angle.

Another problematic issue appears when the sensor is ro-
tated. Both roll and yaw display discontinuous jumps be-
tween -180◦ and +180◦. In most practical cases it is suf-
ficient to unwrap the angle values by adding or subtract-
ing 360◦when a jump is detected (in our case defined as
a value change exceeding a threshold of 320◦). It is not a
permanent solution, but it holds for the typical movement
patterns of our dancers.

4.2.2 Myo armbands

The Myo armband 2 , with its combination of EMG and
IMU sensors in one compact wearable armband, has been
explored both as a DMI [18] and also more relevantly here,
in dance contexts [10, 19–21]. The Myo armband commu-
nicates over Bluetooth LE, but several software tools are
available for mapping Myo data into OSC. We chose Myo
Mapper that incorporates several useful functions for fil-
tering, scaling, calibration and error correction [22]. One
Myo Mapper instance can communicate with only one arm-
band, but up to three instances may run on a single com-
puter.

4.3 Data Communication

The technical setup involved three computers in order to
distribute tasks, responsibilities and load among the three
authors (see Fig. 1):

1. First author controlled the interactive instruments and
spatialized sound output.

2. Second author controlled sensor communication and
data distribution.

3. Third author controlled computer visuals.

1 http://x-io.co.uk/ngimu/
2 https://support.getmyo.com/. The product has been discontinued

since Oct 2018.

The computers were interconnected through a router that
also served as a wireless access point for the NGIMU sen-
sors. The three computers all needed access to the same
sensor data, but the sensors communicated exclusively with
a single host. Hence, we decided to establish a hub for data
distribution on the second computer, the VIBRAhub (See
fig.1). This is an application written specifically for this
purpose. 3 OSC-messages sent from the sensors to the hub
are immediately passed on to all connected receivers, but
with a unique address prefix added to identify each sensor.
We have not implemented message filtering at this stage.

The VIBRAhub communicated directly with all NGIMU-
sensors. It also took care of the Euler angle issues dis-
cussed in section 4.2.1 before passing the data on. We also
found it useful to monitor the battery status of the NGIMU
sensors in the VIBRAhub graphical interface, as a reminder
to recharge when required during a long workshop.

The Myo armbands communicated over Bluetooth to their
designated Myo mapper, which translated the data to OSC
messages and passed them on to the VIBRAhub. Due to
the limitation of three Myo mappers on a single computer,
one of the four Myo armbands had to connect to a differ-
ent computer. Nevertheless, all Myo messages were sent
to the VIBRAhub and redistributed from there to the con-
nected receivers.

4.4 Interactive instruments and Mappings

All of the interactive instruments were programmed using
Csound. 4 The data from the VIBRA-hub were received
via an Ethernet connection for minimal latency, using the
OSC implementation in Csound (OSClisten opcode). The
setup in Csound was flexible in that data from all sensors
could be routed to the different instruments, and also in that
every instrument could be set up with different parameters
to create variations in their sonic qualities. However, due to
the particular nature and structure of the EMG data, some
instruments were designed particularly for the data they
provided. Four simple instrument sketches were developed
prior to the first workshop, whereas the majority of the in-
strument development happened in response to what hap-
pened in the workshops. A total of eight instruments were
used in the workshops, where five used different methods
of sound synthesis and three used different kinds of pro-
cessing of sampled sounds. The interactive instruments
and their mappings have been described in more detail in
a blog post on the vibra.no website, including video exam-
ples. 5

The instruments also varied with regards to which sonic
parameters that were modulated and the degree of tempo-
ral synchronization in relation to the input data. The instru-
ments we called MultiSine (used with the Myo EMG) and
Noizer (used with the NGIMU) were perhaps the most un-
clear and clear with regards to causality, respectively. For
the MultiSine instrument this was due to using the values
from the EMGs without any gating, so that the base tension

3 Available as open source at https://github.com/ssaue/Vibra
4 https://csound.com
5 https://www.vibra.no/blogg/interactive-instruments-and-mappings-

used-in-the-vibra-workshops
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Figure 1. The VIBRA setup. A central computer communicates with NGIMU and Myo sensors and distributes sensor data
to the computers controlling sound and visuals.

in the muscle would produce sound, and that the triggering
of a new sine tone would have to wait until the already
playing tone was finished.

4.5 Sound Spatialization

In the second workshop we used a 8-channel speaker setup
with eight Genelec 8030A speakers in a circle configura-
tion around the dancing area. The audience was localized
along the rim of this circle, but we were careful not to
place anybody in front of any loudspeaker. In this way,
the audience would not experience any surround sound, but
rather a complex spatial image in front and to their sides.
Moreover, this spatial image would differ depending on the
placement of the individual spectator.

The sound spatialization at the second VIBRA workshop
was implemented using IRCAM Spat running in Max [23],
with spatialization parameters sent from Csound to Max
internally in the computer using the csound∼ object in
Max. We used the vector based amplitude panning as im-
plemented in the spat.spat∼ object with the vbap2D pan-
ning method with 8 individual sources. This enables con-
trol of azimuth, distance and spread for each source, and
offers many settings to adjust the audible characteristics of
the simulated reverberation.

We tested a number of mappings between the sensor data
input and the spatialization parameters through a flexible
user-defined-opcode in Csound, where we could choose
mappings and parameter settings. Having tried out a rel-
atively straightforward mapping in which the direction of
the torso of the dancer controlled the azimuth angle of the

spatial image at an earlier collaboration 6 , we wanted this
time to use a less direct mapping with more movement and
variation. The gyro values of the NGIMU and Myo sensors
were used to get the change in angle of the body part wear-
ing it (arm and calf), and we tested how this could be used
to control the location, the speed and direction of rotation,
as well as the distance of the individual sound sources.

All in all, the spatialization added spatial dynamics and
interest, as well as clarified the source separation for each
of the dancers. Since it perhaps was the least developed
part of the performance, it will not be discussed in further
detail in this paper.

4.6 Computer Projections

The computer projections were set up for the second of the
VIBRA workshops, and were controlled partly through the
use of sensor data from the dancers, and partly manually
controlled by the third author. As for the former part of
the technical setup, it consisted of a simple receiver ma-
trix to accept all sensor data coming out of the VIBRA
hub controller system. The incoming data was then sorted
and smoothed, before being routed to Processing 7 and
VDMX 8 running shaders and FFGL plugins, using OS-
Culator 9 for internal data communication. Within these
environments the data was mapped to triggers for differ-
ent actions, large and small, generative and affective. As
for the manual control, the third author would observe the
dancers’ performance with his fingers on the faders of his

6 http://folk.ntnu.no/andbe/Sound-Space-Movement
7 https://processing.org
8 https://vidvox.net
9 https://osculator.net
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MIDI controller hooked up to his computer, adjusting the
routing of sensor data according to his own aesthetic pref-
erences. The computer visuals were projected onto a black
stage carpet hung on one of the walls in the black box using
a Panasonic 10 000 lumen projector.

5. ARTISTIC EXPERIENCES AND REFLECTIONS

After the technical setup in each workshop, the structure
was quite open and exploratory. Besides simple expla-
nations of the functionality of the two sensors and some
help of attaching them to their bodies, the dancers had no
specific instructions or choreography. However, since all
of the dancers had extensive experience in improvising,
the implicit expectations were that they improvised freely
within the interactive system. With an open showing at the
end of each workshop, it was also implied that the group
developed some material to be presented there.

5.1 Experiences of Individual Causal Relationships

The initial focus for the dancers after putting on the sensors
and starting the interactive instruments was to establish
causal relationships between their individual movements
and the sonic feedback it caused. All of the dancers in-
tuitively started to move the limb with the sensor and lis-
tened to identify their individual sounds. However, in those
cases where the initial instruments were relatively similar
in sound quality, they had some problems discerning which
dancer made which sound. After a suggestion from one
of the dancers, they decided to dance only two at a time,
to make the causal relationships between movement and
sound clearer.

However, after the initial causal relations had been estab-
lished, the nature of the relationships was something that
both interested dancers as well as audience. The dancers
would express how they found variation in the degree of
directness of the mappings interesting. And, during the
de-brief after the showing at the first workshop, one of
the spectators observed how the time between movement
and sound differed between the different instruments, and
found it exciting to ponder which movement caused which
sound.

5.2 Placement of Sensors Affected Movements

In several of the sessions during both workshops it was
interesting to observe the degree to which the positioning
of especially the Myo sensor seemed to have an affect on
how the dancers moved. In the first workshop, three of the
dancers tried to have the Myo sensor positioned on their
calf.

L in particular seemed to be very conscious of how he
could activate the muscles in his calf to affect the sensor
values: He often put the weight on the leg not wearing
the sensor, and then carefully stretching out the sensor leg
towards the floor and pushing the heel up and down. Fre-
quently, he put all his weight on the leg with the sensor,
seemingly to achieve a peak value. At other times, he lifted
it the sensor leg from the floor, thereby minimizing mus-
cle activation and consequently reducing the auditory feed-

back to the minimal. With the foot lifted from the ground,
he would also rotate, bend and stretch the foot, as well as
keeping it completely still and kicking forcefully into the
air. In this position, naturally, the muscle activation would
be freed from efforts of standing or putting weight on the
foot. Generally, it was notable how L in this phase of the
workshop appeared to act as a musician ”playing” an in-
strument. 10

It was also interesting to notice how T’s improvisations
were quite different when she wore the sensor on her arm
compared to when she wore it on her calf. For instance, she
frequently emphasized the movement or the position of the
limb wearing the sensor through either following it with
her eyes, keeping the rest of her body still while moving
it, moving it more, moving it with a more emphatic qual-
ity (often stretched out/erected) than the rest of her body,
or positioning it with some distance from the rest of her
body. This emphasis appeared quite differently with the
sensor on the lower arm than on the calf. The same type of
emphasis was also apparent with the NGIMU sensors, but
since we just tried localising it in the hand or on the lower
arm, the difference was not so striking.

Lastly, it could sometimes be observed how, especially
when wearing only one sensor (most of the time in the sec-
ond workshop they would wear two), the dancers were able
to clearly separate the sound playing body part from the
rest of the ”dancing” body . In particular A, when wear-
ing one Myo armband, would sometimes relax the mus-
cles in her sensor arm, while moving the rest of her body,
and then, in response to that, initiate a movement with the
sensor arm activating the muscle and thereby the sonic re-
sponse. Thus, she seemed to engage in a creative dialogue
between the ”playing” and ”dancing” parts of her body.

5.3 Playing Gestures are Included in the Repertoire

An analysis of the movements of the dancers during the
workshop also showed that many of the types of move-
ments that the dancers initially used to explore the sonic
affordances of the sensors on one of their limbs, were later
also applied in the body parts not wearing sensors as a part
of the improvisation repertoire. In a sense, the playing
gestures were treated like musical motifs first being intro-
duced with a focus on the interaction with the sound, and
subsequently taken up and developed further in interplay
with body parts without sensors and other dancers.

One example was a duet with T and A in the first day of
the first workshop. Here, T in her initial exploration of the
sonic affordance space of the Myo armband started to push
her arm towards the floor to get a sonic response. After T
had explored several other ways of heightening the sonic
response through touching the floor - pushing, sweeping,
stroking - A then took up the motif by standing on her
knees and hands, and then crawled over the floor, alter-
nately pushing both hands emphatically towards the floor
in a rhythmical manner - simultaneously creating a clearly
audible pulse. The motif was further emphasized when T
then picked up the rhythm by repeatedly pushing her right

10 It might be that his background as a musician and composer has af-
fected his approach to the interactive instruments.
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Figure 2. Tone (left) and Arnhild (right) synchronously
pushing towards the floor.

hand towards the floor while moving in the opposite direc-
tion (see Fig.2). The simultaneous interplay both move-
ment and sound made this a particularly heightened point
in the improvisation. 11

5.4 Character of Instruments Affected Movements

The instruments used with the different sensors employed
in the two workshops were quite different in character. Some
of the instrument had a relatively tight coupling between
the effort or energy in the movement or muscle activation
and the intensity and character of the sound, whereas oth-
ers had a more indirect coupling. It could be observed that
the more direct couplings often tended to motivate faster
and more abrupt movements with more effort, whereas the
latter tended to have more flow and less effort.

One instrument, which we called the ”Noizer”, stood out
in that respect. The instrument featured four layers of dif-
ferently modulated and filtered noise, rendering a relatively
complex texture. The intensity and character of the noise
was mapped to a normalized acceleration vector, using an
algorithm for intensity ported from the IRCAM’s RIoT-
intensity Max object 12 to Csound. The quite immediate
coupling between the energy/effort of the movements and
the intensity of the sound appeared to often instigate move-
ments with high effort, speed, energy and/or abruptness in
the dancer’s improvisations. Interestingly, this could also
be observed during the audience’s tryout of the sensors af-
ter the first workshop.

5.5 Artistic Expression through Chairs

Dancing in a wheelchair naturally presents different affor-
dances for movement and expression in space, time and

11 This can be seen in the video demonstrating the WarbleSine instru-
ment at https://youtu.be/jrh7-PXjVdk

12 http://forumnet.ircam.fr/product/bitalino-r-iot/

dynamics than other forms of dance [1,24]. While E defin-
tely had an ample expressive possibilities with the Myo
and NGIMU attached to her lower arms in the first work-
shop, her arms were nevertheless restricted by the need of
navigating the wheelchair in the dance quite frequently. At
the beginning of the second workshop, we wanted to bet-
ter capture salient features of wheelchair dance and thus
extend E’s expressive possibilities. To do this, we kept the
Myo on E’s arm, but also attached a NGIMU sensor on one
of the wheels. By using the delta of the orientation we got
a value correlating with the speed of the wheel. Playing
the instrument called Bipp-a-chu, this value was mapped
to the frequency of an impulse generator which modulated
continuous sound samples, producing a sort of sonic anal-
ogy to the ticking of spokes in a wheel. With these new
possibilities E started moving the wheelchair a lot more
and with higher speed and with more pirouettes than dur-
ing the first workshop. She also started to explore going up
on the back wheels and balancing there, something which
was eventually included in the final showing before the au-
dience at the end of the workshop.

The extended expressive possibilities of the wheelchair
also spurred an idea to also let T use a chair in her dance,
and then make it into a duet with two chairs; one with legs
and one with wheels. We attached a NGIMU sensor to one
of the legs of the chair, and used it to play the Noizer in-
strument discussed above. T could then play the chair by
moving it around. Often she played the chair by lifting it
into the air, rotating it and swinging it from side to side.
While the chair as an object to sit in normally is a passive
and stationary object, it’s role in this context was radically
changed and estranged. Although this ”Noizer-chair” both
had very different sound and movement affordances than
the wheelchair, the fact that both were objects to sit in, cre-
ated an interesting conceptual link that gave an interesting
artistic perspective, inviting the audience to reflect on what
chairs can be.

5.6 Aesthetic Considerations of the Computer Visuals

The computer visuals were in the end perhaps assigned a
less salient function in the interactive experience than the
audio part, with which the dancers had worked the entire
first workshop. Projected on a black stage carpet cover-
ing one of the walls in the performance area of the sec-
ond workshop, it provided mainly a visual accompaniment
to the dancers, who still from time to time were projected
upon when they approached the wall. The role of the vi-
suals were still considered important, in that it provided
the performance with an additional aesthetic element that
framed and interacted with dancers movements, especially
when they were projected upon.

Mapping a lot of the raw sensor data directly to the com-
puter visuals would create a very direct correlation between
cause and effect, which can in some cases be considered
too ”obvious” and perhaps of limited aesthetic interest. In-
stead, the third author’s approach was based on an analysis
of the different dancers’ movement strategies, especially
the sensor data with slower changes in the values, and this
was combined with manual routing to parameters of the
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graphics software. In this way, the visualizations could
take a more over-arching role in relation to the movements
- sometimes working more in a contrapuntal rather than
mimicking fashion - depending on the third author’s sub-
jective aesthetic preferences and emotional response.

6. DISCUSSION

During the two workshops we had a clear experience that
when working with dancers controlling sensor-based musi-
cal instruments, the sense of clear causality was an impor-
tant factor. Especially when starting to work with a sensor
and a particular instrument, it was important for them to
establish who made what sound. For the computer visuals,
however, it was a point that the relationship between the
projected material and the movement of the dancers was
not too direct, even though the data from the sensors was
actually affecting the output.

This touches a central aesthetic point in interactive dance,
and interactive art in general, namely the experience of cor-
relation, correspondence, similarity or causality between
the input (here: the dancer’s movement) and the output
(here: the computer visuals and the sound) [25]. There
are several terms for this in the writings about interactive
dance: Mullis calls it ”birectionality”, Wilson and Bromwich
uses the term ”awareness”, and Rizzo and colleagues refers
to it as ”feedback” [5, 10, 12]. No matter which term is
used, it is important to focus on the experiential aspects of
this relationship rather than the factual, both from the audi-
ence and performers’ perspectives. On one side, there can
exist a factual coupling between sensor data and the sonic
or visual output even if it can’t be perceived, and on the
other side, the dancer or audience member can experience
a causal relationship out of pure coincidence. One could
see this as translatable to a continuum from very clearly ex-
perienced causality to the complete absence of experienced
causality, e.g. by being random, asynchronous or nonexis-
tent [4]. These poles can also be linked to aesthetic judg-
ments where clear causality might be seen as ”simplistic”,
”banal” or ”naı̈ve”, and the opposite pole as ”opaque” or
”inaccessible”. However, the latter pole can also be seen as
undermining the very idea of interactivity, in that it inhibits
the reciprocity of cause-effect that is implied with interac-
tion. 13 This also mirrors different aesthetic approaches
within choreography, with choreographers like Lopukhov
on one side, arguing for a ”complete union between dance
and music” (Lopukhov 2002, 142, cited in [26]), and Cun-
ningham, who in 1952 argued for the individual autonomy
of dance on one side, and music on the other [27].

Not surprisingly, we could observe in our workshops how
both the type of sensor, its placement on the dancer’s body
and the instruments used affected the dancers’ movements,
and thus that the ”allowance”, ”bidirectionality” or ”feed-
back” definitely was an active and most often observable
component of the interaction. What was interesting, was
that the movements that were directly related to the inter-
action entered into the improvisational movement reper-

13 Admittedly, and often a case in interactive art, providing the audi-
ence with an explication of the causal relationships through liner notes,
programmes, etc. can also affect the experience of correlation.

toire, both for each individual dancer, but also in between
dancers, thus creating a dialogue between the active/ con-
trolling and the passive/contextual movements - what Wil-
son and Bromwich refer to as ”online” and ”offline”, re-
spectively [12].

At times, the separation of the body parts ”playing” and
”dancing” appeared to allow for a more marked division
of ”offline” and ”online” body parts, and this was then
actively used in creative interplay. When we placed the
sensor on the chair that T was playing with, her ”playing”
and ”dancing” could naturally be completely separated if
needed. Conversely, when E danced with a sensor on her
wheelchair, she had to make sound whenever she moved
it. Hence, issues of control, empowerment, freedom and
coercion are all at stake in interactive dance.

7. CONCLUSIONS AND FUTURE WORK

During the two VIBRA workshops, we experienced a pro-
cess in which four dancers familiarized themselves with
interactive technology that eventually enabled them to let
their dance movements affect spatialized musical sound
and computer visuals in a performance. The workshops
highlighted issues related to causality and interactivity, and
how these can be differently expressed along a continuum
from clear to opaque causal relationships. Moreover, we
saw how ”dancing” and ”playing” could function as more
or less independent components in the interactive dance
expression.

Lastly, even if the long term goals have been to develop
artistic productions, the focus so far has been on develop-
ing technological solutions for complex setups and media
mappings with multiple performers. Moreover, rather than
working from preconceived artistic ideas, we have empha-
sized exploration of the artistic possibilities related to the
technical materialities of these setups. Thus, we see the
discussed workshops as stepping stones towards more de-
veloped artistic productions intended for public presenta-
tion in the future.
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ABSTRACT

In this article we explore how the different semantics of
spectrograms’ time and frequency axes can be exploited
for musical tempo and key estimation using Convolu-
tional Neural Networks (CNN). By addressing both tasks
with the same network architectures ranging from shallow,
domain-specific approaches to deep variants with direc-
tional filters, we show that axis-aligned architectures per-
form similarly well as common VGG-style networks de-
veloped for computer vision, while being less vulnerable
to confounding factors and requiring fewer model parame-
ters.

1. INTRODUCTION

In recent years Convolutional Neural Networks (CNN)
have been employed for various Music Information Re-
trieval (MIR) tasks, such as key detection [1, 2], tempo es-
timation [3], beat and rhythm analysis [4–6], genre recog-
nition [7, 8], and general-purpose tagging [9, 10]. Typ-
ically, a spectrogram is fed to the CNN and then clas-
sified in a way appropriate for the task. In contrast to
recent computer vision approaches like Oxford’s Visual
Geometry Group’s (VGG) deep image recognition net-
work [17], some of the employed CNN architectures for
MIR tasks use rectangular instead of square filters. The
underlying idea is that, while for images the axes width
and height have the same meaning, the spectrogram axes
frequency and time have fundamentally different mean-
ing. For MIR tasks mainly concerned with temporal as-
pects of music (e.g., tempo estimation, rhythmic patterns),
rectangular filters aligned with the time axis appear suit-
able [3]. Correspondingly, tasks primarily concerned with
frequency content (e.g., chord or key detection), may be
approached with rectangular filters aligned with the fre-
quency axis [11]. In fact, tempo and key estimation can
be seen as tasks from two different ends of a spectrum
of common MIR tasks, which are addressed by systems
relying more or less on temporal or spectral signal prop-
erties (Figure 1). Systems for other tasks like general-
purpose tagging or genre recognition are found more to-
wards the center of this spectrum as they usually require
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Figure 1: Several MIR tasks and their reliance on spectral
or temporal signal properties.

both spectral and temporal information.
In [12] Pons et al. explored the role of CNN filter shapes

for MIR tasks. In particular, they examined using rectan-
gular filters in shallow CNNs for automatic genre recog-
nition of ballroom tracks. Defining temporal filter shapes
as 1 × n and spectral filter shapes as m × 1, they showed
that using temporal filters alone, 81.8% accuracy can be
reached, which is in line with a Nearest Neighbour clas-
sifier (k-NN) using tempo as feature scoring 82.3% [13].
Using just spectral filters, the test network reached 59.6%
accuracy, and a fusion architecture with both temporal and
spectral filters performed as well as an architecture using
square filters, scoring 87%. The experiments confirmed
that such directional filters can be used to match either
temporal or spectral signal properties and that both may
be useful for genre recognition.

Even though directional filters did not outperform square
filters, there are good arguments for using them: First,
CNNs using specialized, directional filters may use fewer
parameters or match musical concepts using fewer lay-
ers [14]. Second, by limiting what a filter can match,
one can influence what a CNN might learn, thus better
avoid “horses” [15] and improve explainability. The lat-
ter is especially interesting for genre recognition systems,
given their somewhat troubled history with respect to ex-
plicit matching of musical concepts [14,16]. To further ex-
plore how and why directional or square filters contribute
to results achieved by CNN-based classification systems
for MIR tasks, we believe it is beneficial to build on Pons
et al.’s work and experiment with tasks that explicitly aim
to recognize either high-level temporal or spectral prop-
erties, avoiding hard to define concepts like genre. Such
tasks are global key and tempo estimation.

The remainder of this paper is structured as follows: In
Section 2 we describe our experiments by defining both
tasks, the used network variants, the training procedure,
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and evaluation. The results are then presented in Section 3
and discussed in Section 4. Finally, in Section 5 we present
our conclusions.

2. EXPERIMENTS

For the purpose of comparing the effects of using different
filter shapes we train and evaluate different CNN architec-
tures for the key and tempo estimation tasks using several
datasets. In this section, we first describe the two tasks,
then discuss the used network architectures and datasets,
and finally outline the evaluation procedure.

2.1 Key Estimation

Key estimation attempts to predict the correct key for a
given piece of music. Oftentimes, the problem is restricted
to major and minor modes, ignoring other possible modes
like Dorian or Lydian, and to pieces without modulation.
Framed this way, key estimation is a classification problem
with NK = 24 different classes (12 tonics, major/minor).
The current state-of-the-art system is CNN-based using a
VGG-style architecture with square filters [2] and a fully
convolutional classification stage, as opposed to a fully
connected one. This allows training on short and predic-
tion on variable length spectrograms.

In our experiments we follow a similar approach. As in-
put to the network (Section 2.3) we use constant-Q mag-
nitude spectrograms with the dimensions FK × TK =
168× 60; FK being the number of frequency bins and TK
the number of time frames. FK covers the frequency range
of 7 octaves with a frequency resolution of two bins per
semitone. Time resolution is 0.19 s per time frame, i.e.
60 frames correspond to 11.1 s. Since all training samples
are longer than 11.1 s, we choose a random offset for each
sample during each training epoch and crop the spectro-
gram to 60 frames. To account for class imbalances within
the two modes, each spectrogram is randomly shifted along
the frequency axis by {−4,−3, . . . , 6, 7} semitones and
the ground truth labels are adjusted accordingly. We de-
fine no shift to correspond to a spectrogram covering the
7 octaves starting at pitch E1. In practice, we simply crop
an 8 octaves spanning spectrogram that starts at C1 to 7
octaves. After cropping the spectrogram is normalized so
that it has zero mean and unit variance.

2.2 Tempo Estimation

Even though tempo estimation naturally appears to be a
regression task, Schreiber and Müller [3] have shown that
it can also be treated as a classification task by mapping
Beats Per Minute (BPM) values to distinct tempo classes.
Concretely, their system maps the integer tempo values
{30, . . . , 285} to NT = 256 classes. As input to a CNN
with temporal filters and elements from [18] and [14] they
use mel-magnitude-spectrograms. Even though we work
with other network architectures than [3] (Section 2.3), we
use the same general setup. We also treat tempo estimation
as classification into 256 classes and use mel-magnitude-
spectrograms with the dimensions FT × TT = 40 × 256
as input; FT being the number of frequency bins and TT

Module

ShallowMod

ClassMod

(a) Shallow

Module Size

DeepMod ` = 0
DeepMod ` = 1
DeepMod ` = 2
DeepMod ` = 2
DeepMod ` = 3
DeepMod ` = 3

ClassMod

(b) Deep

Table 1: Used network architectures. (a) Shallow archi-
tecture consisting of a variant of the ShallowMod mod-
ule and a ClassMod module. (b) Deep architecture con-
sisting of multiple, DeepModmodules parameterized with
` to influence the filter count and a ClassMod module.

the number of time frames. FT covers the frequency range
20 − 5, 000Hz. The time resolution is 0.46ms per time
frame, i.e., 256 frames correspond to 11.9 s.

Just like the training excerpts for key estimation, the
mel-spectrograms are cropped to the right size using a
different randomly chosen offset during each epoch. To
augment the training dataset, spectrograms are scaled
along the time axis before cropping using the factors
{0.8, 0.84, . . . , 1.16, 1.2}. Ground truth labels are ad-
justed accordingly [3]. After cropping and scaling spec-
trograms are normalized ensuring zero mean and unit vari-
ance per sample.

2.3 Network Architectures

To gain insights into how filter shapes affect performance
of CNN-based key and tempo estimation systems we run
experiments with two very different architectures: a rela-
tively shallow but specialized one, and a commonly used
much deeper one from the field of computer vision. Both
architectures are used for both tasks.

2.3.1 Shallow Architectures

Our Shallow architectures, outlined in Table 1a, consists
of two parts: the feature extraction module ShallowMod
and the classification module ClassMod. ShallowMod,
depicted in Table 2a, is inspired by a classic signal pro-
cessing approach that first attempts to find local spectro-
gram peaks along one axis, averages these peaks over the
other axis, and then attempts to find a global pattern, i.e.,
a periodicity for tempo estimation [19] and a pitch pro-
file for key detection [20]. In terms of CNNs this means
that our first convolutional layer consists of short direc-
tional filters (local peaks), followed by a one-dimensional
average pooling layer that is orthogonal to the short filters,
followed by a layer with long directional filters (global pat-
tern) that stretch in the same direction as the short filters.
We use ReLU as activation function for the convolutional
layers and to avoid overfitting we add a dropout layer [21]
after each ReLU. The parameters k and pD let us scale the
number of convolutional filters and dropout probabilities.
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(a) ShallowMod

Layer Temp Spec Square

Input
Conv, ReLU k, 1× 3 k, 3× 1 n.a.
Dropout pD pD n.a.
AvgPool FT × 1 1× TK n.a.
Conv, ReLU 64k, 1× TT 64k, FK × 1 n.a.
Dropout pD pD n.a.

(b) DeepMod

Layer Temp Spec Square

Input
Conv, ReLU 2`k, 1× 5 2`k, 5× 1 2`k, 5× 5
BatchNorm
Conv, ReLU 2`k, 1× 3 2`k, 3× 1 2`k, 3× 3
BatchNorm
MaxPool 2× 2 2× 2 2× 2
Dropout pD pD pD

(c) ClassMod

Layer Temp Spec Square

Input
Conv, ReLU NT, 1× 1 NK, 1× 1 n.a.
GlobalAvgPool
Softmax

Table 2: Layer definitions for the three modules
ShallowMod, ClassMod, and DeepMod, describing
number of filters (e.g., k or 64k) and their respective
shapes (e.g., 1× 3 or 5× 5).

ShallowMod is followed by a fully convolutional classi-
fication module named ClassMod (Table 2c), which con-
sists of a 1 × 1 bottleneck layer (pointwise convolution)
with as many filters as desired classes (NK orNT), a global
average pooling layer, and the softmax activation func-
tion. Note, that because all directional filters are identically
aligned, the model has an asymmetric, directional capac-
ity, i.e., it has a much larger ability to describe complex
relationships in one direction than in the other.

We use the same general architecture for both key and
tempo estimation. The only differences are the filter
and pooling directions and dimensions. For tempo es-
timation we use temporal filters with pooling along the
frequency axis, and for key estimation spectral filters
with pooling along the time axis. Both architectures are
named after their filter directions, ShallowTemp and
ShallowSpec, respectively. We also adjust the pooling
and the long filters shape to the size of the input spectro-
gram, which is different for the two tasks.

2.3.2 Deep Architectures

The second architecture, Deep (Table 1b), is a common
VGG-style architecture consisting of six parameterized
feature extraction modules DeepMod (Table 2b) followed
by the same classification module that we have already
used in Shallow. Each of the feature extraction modules
contains a convolutional layer with 5×5 filters followed by
a convolutional layer with 3× 3 filters. The convolutional
layers consist of 2`k filters each, with network parameter

Split Key Datasets

Training 80% of LMDKey ∪ 80% of MTGKey
Validation 10% of LMDKey ∪ 20% of MTGKey

Testing GiantStepsKey, GTzanKey,
10% of LMDKey

Split Tempo Datasets

Training 80% of EBall ∪ 80% of MTGTempo
∪ 80% of LMDTempo

Validation 20% of EBall ∪ 20% of MTGTempo
∪ 10% of LMDTempo

Testing GiantStepsTempo, GTzanTempo,
10% of LMDTempo, Ballroom

Table 3: Dataset splits used in key (top) and tempo (bot-
tom) estimation experiments.

k and module parameter `. While ` influences the number
of filters in an instance of DeepMod, k lets us scale the
total number of parameters in the network. As shown in
Table 1b, deeper instances have more filters. The convo-
lutional layers are followed by a 2 × 2 max pooling layer.
Should pooling not be possible along an axis, because the
output from the previous layer is only 1 wide or high, pool-
ing is skipped along that axis. This happens for exam-
ple, when a tempo spectrogram with its 40 bands passes
through more than 5 max pools. Each pooling layer is fol-
lowed by a dropout layer with probability pD. To counter
covariate shift, we add batch normalization [22] layers af-
ter each convolutional layer.

The general structure of the Deep architecture is cus-
tomized neither for the key nor for the tempo task. How-
ever, in order to investigate how different filter shapes af-
fect the network’s performance, we modify the described
architecture by replacing the square convolutional kernels
with directional ones, i.e., 3 × 3 with 1 × 3 or 3 × 1, and
5×5 with 1×5 or 5×1. Analogous to the naming scheme
used for shallow networks, we denote the directional vari-
ants DeepTemp and DeepSpec. The original variant is
named DeepSquare.

2.4 Datasets

We use the following publicly available datasets from dif-
ferent genres for both training and evaluation (listed in al-
phabetical order). The used splits are randomly chosen and
listed in Table 3.

Ballroom (698 samples): 30 s excerpts with tempo an-
notations [23].

EBall (3,826 samples): 30 s excerpts with tempo anno-
tations, excluding tracks also occurring in the regular
Ballroom dataset [3, 23, 24].

GiantStepsKey (604 samples): 2min excerpts of
electronic dance music (EDM) [25].

GiantStepsTempo (661 samples): 2min excerpts of
EDM [25]. Revised tempo annotations from [26].
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GTzanKey (836 samples): 30 s excerpts from 10 differ-
ent genres [27]. Key annotations from [28]. 1 Most
tracks with missing key annotations belong to the gen-
res classical, jazz, and hip-hop.

GTzanTempo (999 samples): 30 s excerpts from 10 dif-
ferent genres [27]. Tempo annotations from [29].

LMDKey (6,981 samples): 30 s excerpts, predominantly
rock and pop [30, 31]. Due to a MIDI peculiarity, this
dataset does not contain any tracks in C major. Some
form of data augmentation as described above is there-
fore necessary.

LMDTempo (3,611 samples): 30 s excerpts, predomi-
nantly rock and pop [3, 30].

MTGTempo / MTGKey (1,158 samples): 2min EDM ex-
cerpts annotated with both key and tempo [3, 32]. We
used only tracks that are still publicly available, have
an unambiguous key, and a high key annotation confi-
dence. 2

2.5 Evaluation

Since the proposed network architectures are fully convo-
lutional, we can choose at prediction time to pass a track
either in one long spectrogram or as multiple shorter win-
dows through the network. In the latter case, predictions
for all windows would have to be aggregated. Informal ex-
periments did not show a remarkable difference. For this
work we choose to predict values for whole spectrograms.

When evaluating key estimation systems either a simple
accuracy or a score is used that assigns additional value to
musically justifiable mistakes, like being off by a perfect
fifth. 3 For this work, we choose to only report the per-
centage of correctly classified keys. Tempo estimation sys-
tems are typically evaluated using the metrics Accuracy1
and Accuracy2. While Accuracy1 reports the percentage
of correctly estimated tempi allowing a 4% tolerance, Ac-
curacy2 additionally permits so-called octave errors, i.e.,
errors by a factor of 2 and 3 [23]. We choose to report only
Accuracy1.

For training we use Adam [33] as optimizer with a learn-
ing rate of 0.001, a batch size of 32, and early stopping
once the validation loss has not decreased any more dur-
ing the last 100 epochs. In this work, one epoch is de-
fined as having shown all training samples to the network
once, regardless of augmentation. We choose k so that we
can compare architectures with similar parameter counts.
Shallow is trained with k ∈ {1, 2, 4, 6, 8, 12} and Deep
with k ∈ {2, 4, 8, 16, 24}. Additionally, DeepSquare is
trained with k = 1. For both architectures we apply vari-
ous dropout probabilities pD ∈ {0.1, 0.3, 0.5}. Each vari-
ant is trained 5 times and mean validation accuracy along
with its standard deviation is recorded for each variant. In
total we train 420 models with 84 different configurations.

1 https://github.com/alexanderlerch/gtzan_key
2 https://github.com/GiantSteps/

giantsteps-mtg-key-dataset
3 https://www.music-ir.org/mirex/wiki/2018:
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Figure 2: Mean validation accuracies for the various net-
work configurations depending on their number of network
parameters. Only the best dropout configuration is shown.
Whiskers represent the standard deviation based on 5 runs.

For testing, we pick the dropout variant of each network
class that performed best on the validation set and evalu-
ate it against the test datasets. Again, we report the mean
accuracies for 5 runs along with their standard deviations.

3. RESULTS

Figure 2 shows mean validation accuracies of 5 runs for
each configuration, using their best performing dropout
probability pD. The dashed black line is the accuracy a
random classifier achieves, and the dotted black line shows
the accuracy of the algorithm that always outputs the class
that most often occurs in the validation set. With accu-
racy values slightly above random, ShallowSpec and
ShallowTemp perform worst of all architectures, when
used for the task they were not meant for. But when used
for the task they were designed for, both perform well. A
higher number of parameters leads to slightly better results.
When training ShallowTemp with k = 1 for the tempo
task, the network performed very poorly in one of the five
runs, which is the cause for the very large standard devi-
ation of 32.2 shown in Figure 2. The mean accuracy for
the 4 successful runs was 85.2%. When comparing with
the Deep architectures, we see that DeepTemp performs
just as well as ShallowTemp with k > 1 on the tempo
task, and DeepSpec clearly outperforms ShallowSpec
on the key task. Surprisingly, the DeepSpec architec-
ture reaches fairly high accuracy values (up to 63%) on
the tempo task when increasing the model capacity via k,
even though it only has convolutional filters aligned with
the frequency axis. We can make a similar observation
for the DeepTemp architecture. It too reaches relatively
high accuracy values on the key task (up to 57%) when in-
creasing k. The unspecialized DeepSquare is by a small
margin the best performing architecture for the tempo task,
and comes in as a close second for key detection with
k > 1. But for k = 1, DeepSquare performs consid-
erably worse than DeepSpec with k = 2 (42% compared
to 64%), even though both have similar parameter counts
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of ca. 5 000.
We selected the dropout variant for each architecture and

parameter setting with the best validation accuracy and ran
predictions on the test sets. Detailed results are shown
in Figure 3. The general picture is very similar to vali-
dation: Deep architectures tend to perform slightly better
than Shallow architectures on the tasks they are meant
for and Shallow architectures perform poorly on the task
they were not meant for. In fact, ShallowTemp performs
no better on GTzanKey and GiantStepsKey than the
random baseline. For both key and tempo DeepSquare
performs as well or better than any other architecture, ex-
cept when drastically reducing the model capacity for the
key task (k = 1). Then accuracy decreases well below
DeepSpec’s performance with similar parameter count:
33% compared to 50% for GTzanKey, and 21% com-
pared to 51% for GiantStepsKey.

To provide an absolute comparison, we chose the best
performing representative from each architecture (based
on validation accuracy, regardless of dropout configura-
tion or capacity), and calculated accuracies for each test
set (Table 4, incl. reference values from the literature). In
5 out of 7 test cases DeepSquare reaches the highest ac-
curacy score among our architectures. The other two are
reached by DeepTemp for GiantStepsTempo and by
DeepSpec for LMDKey. For both tasks we observe that
the margin by which the best performing network is bet-
ter than the second best for a given dataset differs consid-
erably. DeepSquare reaches an accuracy of 92.4% for
the Ballroom tempo dataset, which is 4.2 pp (percentage
points) better than the second best network (DeepTemp,
88.2%). The differences between best and second best
accuracy are considerably lower for the other datasets:
1.7 pp (LMDTempo), 1.6 pp (GTzanTempo), and 0.6 pp
(GiantStepsTempo). For the key task, DeepSquare
reaches an accuracy of 49.9% on GTzanKey, which is
5.1 pp better than the second best network (DeepSpec,
44.8%), while the differences between best and second
best for the other datasets are 3.1 pp (GiantStepsKey),
and 2.4 pp (LMDKey).

4. DISCUSSION

The results show that simple shallow networks with axis-
aligned, directional filters can perform well on both the
key and tempo task. Conceptually, both tasks are simi-
lar enough that virtually the same architecture can be used
for either one, as long as the input representation and the
filter direction are appropriate. Using the wrong filter di-
rection, e.g., ShallowSpec for the tempo task, leads to
very poor results close to the random baseline. Together,
this strongly supports the hypothesis that the Shallow ar-
chitecture indeed learns what we want it to learn, i.e., pitch
patterns for key detection or rhythmic patterns for tempo
detection, but not both.

This stands in contrast to the standard VGG-style net-
work (DeepSquare). Because of its square filters, we
cannot be certain what it learns, just by analyzing its static
architecture. It is designed to pick up on anything that
could provide a hint towards correct classification, be it
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Figure 3: Mean test accuracies for various network con-
figurations and datasets depending on their number of net-
work parameters. Whiskers represent one standard devia-
tion based on 5 runs. Dropout was chosen based on perfor-
mance during validation.

rhythm and pitch patterns, or timbral properties like instru-
mentation. And indeed our experiment shows that without
being specialized for either key or tempo estimation in any
way, DeepSquare works very well for both tasks. In
Section 3 we noted that DeepSquare achieved the great-
est tempo accuracy for Ballroom and the greatest key ac-
curacy for GTzanKey by a considerable margin of 4.2 pp
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Architecture GS GT LMD BR

ShallowTemp 86.5 1.5 60.3 2.7 94.0 1.0 87.9 2.3

DeepTemp 88.7 0.6 63.1 0.6 94.5 0.7 88.2 2.4

ShallowSpec 4.5 1.9 11.5 1.3 9.4 2.1 16.7 5.7

DeepSpec 49.6 2.5 40.2 1.4 73.0 2.4 59.6 9.1

DeepSquare 88.1 1.3 64.7 2.1 96.2 0.4 92.4 1.7

Literature 82.5 [3] 78.3 [29] — 92.0 [3]

(a) Tempo

GS GT LMD

1.7 0.4 4.9 0.7 11.0 3.7

46.8 4.3 38.4 2.4 60.7 0.4

50.8 3.8 43.8 1.4 67.1 0.9

55.4 2.7 44.8 2.0 71.3 0.2

58.5 3.9 49.9 2.0 68.9 2.5

67.9 [2] ~45 [28] —

(b) Key

Table 4: Mean estimation accuracies of 5 runs with standard deviation (small font). Best results per test are set in bold.
Model variants chosen based on validation performance (ignoring parameter count). GS=GiantSteps, GT=GTzan,
LMD=LMD, BR=Ballroom.

and 5.1 pp, respectively. This margin may be a result of
the fact that key and tempo are related to genre [34–37].
Specifically, in Ballroom there is a strong correlation
between genre and tempo, and GTzanKey is the key test
set with the greatest genre diversity and therefore stands
to benefit the most from an architecture that can distin-
guish genres based on both temporal and timbral proper-
ties. Consequently, square filters should improve accuracy
results for these datasets. But this does not conclusively
show that only the network’s ability to measure specifically
key or tempo is reflected by these results, as the system is
by design vulnerable to confounds [15]. By using direc-
tional filters in DeepSpec and DeepTemp we intention-
ally limit the standard VGG-style architecture in a way that
seeks to lessen this vulnerability as well as reduce the num-
ber of required parameters.

The results for DeepSpec and DeepTemp show that
a VGG-style network with directional filters can perform
very well on either task. For networks with a large num-
ber of parameters test results are similar to DeepSquare,
with a tendency towards a slightly worse performance. In-
terestingly, the situation is different for low-capacity net-
works with k = 2 for DeepSpec, and k = 1 for
DeepSquare. Here, DeepSpec clearly outperforms
DeepSquare, even though the parameter count is similar.
Perhaps with ca. 5 000 parameters DeepSquare simply
does not have enough capacity aligned in the right direc-
tion to still perform well on the task.

The fact that DeepSpec and DeepTemp with k = 2
perform very poorly on the tasks they are not meant for,
supports the hypothesis that they only learn the intended
features for the tasks they are meant for. For k > 2 we can-
not be quite as certain, as both architectures reach higher
accuracy scores on the tasks they were not meant for for
greater values of k. We believe this effect may be a result
of the 2× 2 max pooling in the DeepMod modules.

5. CONCLUSIONS

We have shown that shallow, signal processing-inspired
CNN architectures using directional filters can be used suc-
cessfully for both tempo and key detection. By using shal-
low networks designed for key detection on the tempo task
and vice versa, we were able to experimentally support

the hypothesis that these networks are incapable of match-
ing information from the domain they were not meant for,
which would make them less susceptible to confounds.

We further demonstrated that a standard VGG-style ar-
chitecture can be used for tempo estimation, as it has been
shown before for key detection [2]. By replacing square
filters with directional filters, we derived a musically mo-
tivated, directional VGG-variant that performs similarly
well as the original one, but is less vulnerable to con-
founds, especially when used for key detection with low
capacity models. In such scenarios we were also able
to observe efficiency gains, i.e., better performance than
the standard VGG-style network with similar parameter
counts.

Additional Material

Code to recreate models and reproduce the reported
results can be found at https://github.com/
hendriks73/directional_cnns.
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ABSTRACT

This paper describes the Viking HRTF dataset, a collec-

tion of head-related transfer functions (HRTFs) measured

at the University of Iceland. The dataset includes full-

sphere HRTFs measured on a dense spatial grid (1513 po-

sitions) with a KEMAR mannequin with 20 different artifi-

cial left pinnae attached, one at a time. The artificial pinnae

were previously obtained through a custom molding proce-

dure from 20 different lifelike human heads. The analyses

of results reported here suggest that the collected acous-

tical measurements are robust, reproducible, and faithful

to reference KEMAR HRTFs, and that material hardness

has a negligible impact on the measurements compared to

pinna shape. The purpose of the present collection, which

is available for free download, is to provide accurate in-

put data for future investigations on the relation between

HRTFs and anthropometric data through machine learning

techniques or other state-of-the-art methodologies.

1. INTRODUCTION

Binaural sound rendering techniques typically rely on the

use of Head-Related Transfer Functions (HRTFs), i.e. fil-

ters that capture the acoustic effects of the human head [1].

HRTFs allow accurate simulation of the signal that arrives

at the entrance of the ear canal as a function of the spatial

location of the sound source (azimuth, elevation, and dis-

tance). The ideal rendering in terms of accuracy involves

the use of individual HRTFs measured on the listener. By

processing a desired monophonic sound signal with a pair

of individual HRTFs, one per channel, and by adequately

accounting for headphone-induced spectral coloration [2],

authentic 3D sound experiences can take place. Virtual

sound sources created with individual HRTFs can be local-

ized almost as accurately as real sources and externalized,

Copyright: c© 2019 Simone Spagnol et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

provided that head movements can be made [3]. Binaural

technologies have a wide variety of applications, ranging

from personal entertainment [4], through immersive vir-

tual environments [5], to travel aids for the blind [6].

However, obtaining individual HRTF data is only possi-

ble with dedicated research facilities and invasive and/or

strenuous recording procedures [7]. This is the reason why

non-individual HRTFs, acoustically measured on anthro-

pomorphic mannequins or generic human individuals, are

often preferred in practice. Several HRTF sets are avail-

able online, the most popular being those measured on the

KEMAR mannequin [8] or the Neumann KU-100 dummy

head [9]. Alternatively, an HRTF set can be taken from

one of many public databases of individual measurements

(e.g. the CIPIC database [10]); many of these databases

were recently unified in a common HRTF format known

as Spatially Oriented Format for Acoustics (SOFA). 1

The drawback with non-individual HRTFs is that they

obviously refer to a different anthropometry than the lis-

tener’s. In particular, the most relevant differences between

the HRTFs of two subjects are due to different pinna fea-

tures (shape, size, and orientation) that give every individ-

ual a unique pinna shape [11]. When used for binaural

rendering, this HRTF mismatch often results in localiza-

tion errors such as front/back confusion, wrong perception

of elevation, and inside-the-head localization [12].

For the above reasons, studying the relationship between

pinna features and HRTFs is an essential step towards un-

derstanding of the underlying acoustical mechanisms. It is

known, for instance, that the frequency of the first pinna-

related peak depends on the dimensions of the concha [13,

14], and that notch frequencies are related to the distance

between the ear canal and the most prominent pinna edges

[15, 16]. However, previous studies that include applica-

tions of anthropometric regression methods to measured

HRTF data [17–19] have produced mixed results, high-

lighting that many of these relations are not fully under-

stood yet. One of the reasons might rely in the HRTF

data collected on a human population, with issues related

to the relative positioning of the microphones inside the

1 www.sofaconventions.org
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Figure 1. The used HRTF measurement system and room

(left); detail of the KEMAR with custom left pinna (right).

ears, head movements during measurement, and non-ideal

measurement conditions. Still, even measurements on the

same dummy head often result in dissimilar HRTF sets,

depending on the used measurement system [9].

In this paper we present the design, implementation and

preliminary analysis of a novel set of HRTF measurements,

that we refer to as the Viking HRTF dataset. Measurements

were taken on a KEMAR mannequin with various inter-

changeable pinna shapes, with the purpose of providing

accurate input data for determining the individual HRTF

from a 3D representation of the user [20]. We implemented

a procedure for casting artificial pinnae from lifelike hu-

man heads so as to provide a reasonable sample of pinna

shapes for KEMAR from a real human population, hav-

ing all remaining anthropometric parameters of the head,

torso, and opposite pinna fixed. Furthermore, although

limited by the available resources, we designed the auto-

mated measurement setup to be as accurate and stable as

possible, in order to guarantee reproducible measurements.

2. METHODS

2.1 Measurement system

The HRTF measurements were taken automatically with

the system pictured in Figure 1. The measurement system

consisted of a KEMAR mannequin 2 mounted on a 360◦

rotating cylindrical stand and a Genelec 8020CPM-6 loud-

speaker mounted on an L-shaped rotating arm. The con-

figuration for the mannequin was the 45BB-4 with stan-

dard large anthropometric pinnae (35 Shore-OO hardness,

GRAS KB5000/01) as reference and half-inch pressure mi-

crophones (GRAS 40AO) placed at the ear canal entrances.

The two audio channels were fed to an RME Fireface 802

sound card connected to a PC running MATLAB.

The distance between the loudspeaker tweeter and cen-

ter of the mannequin head was designed to be a constant

2 http://kemar.us

Figure 2. The making of a negative ear mold: (a) 1st nega-

tive mold; (b) Jesmonite R©replica; (c) 2nd negative mold.

1 m, independently of the orientation of the mannequin

and arm. This distance value guarantees the collection of

far-field spectral cues with reasonable accuracy [21]. Ab-

solute references for azimuth and elevation were provided

through a fixed marker on the bottom of the mannequin (0◦

azimuth) and a bubble level mounted on the side segment

of the arm (0◦ elevation), respectively. Correct alignment

in all three axes could be attained by targeting laser beams

to the microphones and tip of the nose of the KEMAR.

This experimental choice allows collection of HRTFs on a

full-azimuth range with elevations from −50◦ to 90◦, ac-

cording to a vertical polar coordinate system.

Rotation of the mannequin and arm was managed by two

independent high-torque step motors (JVL MST001A, 1.2

Nm), controlled through two digital step drives (Gecko-

drive G213V) in full-step mode (200 steps per revolution).

In order to increase the torque and angular resolution of the

system, two 100 : 1 gearboxes were installed between the

first motor and the arm and between the second motor and

the mannequin. As a result, the minimum rotation angle of

both the arm and mannequin was 0.018◦. Furthermore, in

order to reduce the needed torque on the arm, a 22 kg coun-

terweight was applied to the shorter appendix so to balance

the weight of the loudspeaker and the longer appendix of

the arm. Communication between the step drives and PC

was also managed in MATLAB.

2.2 Pinna casting

In order to provide a sufficient sample of pinna shapes for

the HRTF measurements, we set up and applied a custom
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Figure 3. The 20 left pinna replicas obtained through the

casting procedure.

procedure to cast silicone replicas of pinnae from dummy

heads to fit the KEMAR as follows.

Step 1: First negative mold. We applied two layers of

silicone mix to the ear, first a thin one with a paintbrush

and then a thick one (1/2 cup) with a spatula, letting each

layer dry for 1 day before the next step. In order to re-

duce leakage onto vertical surfaces, we added a few drops

of thixotropic additive to the silicone for the thick layer.

Then, we applied wet plaster of Paris strips over the nega-

tive silicone mold (Figure 2a) in order to efficiently peel it

from the dummy head and to give it support so it does not

deform in Step 2.

Step 2: Jesmonite R©replica. We poured a quick mix of

1/2 cup of water and two teaspoons of Jesmonite R©into

the negative mold obtained in Step 1 placed above a vi-

bration table (in order to avoid formation of air bubbles),

and let it harden for 1 − 2 days. Then, we removed the

Jesmonite R©ear (Figure 2b) and occasionally filled gaps or

deformations in it with clay. Finally, we drilled a hole in

the back of the concha and sanded the ear base with a belt

sander to accurately fit the size of the KEMAR pinna slot.

Step 3: Second negative mold. We placed the Jesmonite R©

ear replica into a custom-made plastic box with open top

and secured it to the bottom with clay. Then, we poured 2
cups of silicone mix inside the plastic box, placed on the

vibration table, and let it dry for 1 day. We finally removed

the plastic box and Jesmonite R©ear (Figure 2c).

Step 4: Final pinna replica. We first poured car wax into

the inner parts of the negative mold obtained in Step 3 as

a release agent, and let it dry for half a day. Then we

poured 1/3 cup of a different silicone mix from the one

used in Steps 1 and 3 (25 Shore-A hardness) into the neg-

ative mold, and let it dry for 1 day. We finally removed the

silicone pinna replica and cut the excess parts on the base

with a knife.

As pictured in Figure 3, we applied the procedure to a

series of left ears of 20 different subjects. These include

the KEMAR with standard large anthropometric pinnae

and 19 different lifelike dummy heads made out of plas-

ter, borrowed from the Saga Museum in Reykjavík. The

Table 1. HRTF measurement positions.

Elevations [deg] [-45,45] [50,70] [75,85] 90

Step [deg] 5 15 45 360

No. of azimuths 72 24 8 1

heads, manufactured between 2001 and 2003 for artistic

purposes, 3 reproduce with high fidelity the anthropomet-

ric traits of 19 Icelandic humans (7 female), aged between

7 and 77 at the time of manufacturing.

2.3 Measurement procedure

The measurements took place on several days outside of-

fice hours (4PM to 12PM) in a silent office room with

reflecting walls, floor and ceiling inside the Tæknigarður

building of the University of Iceland (see left panel of Fig-

ure 1). Since we did not record the free-field response,

the measurements include the response of the loudspeaker

and microphones as well as some effects of the room (later

minimized by windowing as explained in the next sub-

section). We used the logarithmic sweep method [22] to

record the single acoustical responses. The input sweep

signal, whose level was kept constant throughout the whole

measurement schedule, spanned frequencies between 20
Hz and 20 kHz in 1 s, at a sampling rate fs = 48 kHz.

The average SPL level at 1 kHz for a frontal stimulus as

collected through a Class 1 sound level meter at the center

of the reference system was 82 dB.

Sound source location was specified through the azimuth

angle θ and elevation angle φ in vertical-polar coordinates.

Elevations were uniformly sampled in 5◦ steps from −45◦

to 90◦, while azimuths were sampled in different incre-

ments as shown in Table 1 in order to obtain roughly uni-

form density towards the upper pole of the sphere. The to-

tal number of spatial positions per measurement was 1513.

At each measurement session, and for each elevation, the

mannequin was consecutively rotated of the corresponding

angular step and sweep responses were acquired at each

azimuth angle. After completion of all azimuth angles for

the current elevation, the mannequin was rotated back to its

starting position and the arm moved down to the next ele-

vation angle. In order to maintain the HRTF measurements

as silent as possible, 0.5-ms pauses were introduced be-

tween all motor commands and the previous/next record-

ing. The duration of one single measurement session was

approximately 105 minutes.

Twenty-three measurement sessions (3 control measure-

ments + 20 test measurements) were scheduled in total. A

standard large anthropometric pinna (35 Shore-OO hard-

ness) was installed on the right channel of the KEMAR

throughout the whole measurement schedule, while the left

pinna changed at every measurement session. In the first

and second control sessions (CS1 and CS2) we installed

the corresponding original left KEMAR pinna and its vari-

ant with different hardness (55 Shore-OO), respectively.

These sessions were introduced in order to check for dif-

3 https://sagamuseum.is/sagadesign/
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ferences in materials and to assess the fidelity of our KE-

MAR pinna replica to the original ones. The following 20
sessions were devoted to the 20 custom-made pinnae, in-

cluding the KEMAR pinna replica (right panel of Figure 1)

and the 19 human pinnae (alphabetically labeled A to S,

see Figure 3). The third and last control session (CS3)

was again a measurement with both original 35 Shore-OO

hardness pinnae, and was introduced in order to control

for reproducibility of our measurements. Between each

two measurement sessions, the HRTF measurement system

was manually calibrated to the correct starting position by

tuning each motor to its corresponding absolute reference.

2.4 Post-processing

A post-processing script was written to recover the HRTF

from the corresponding raw sweep response, based on the

following sequential steps. First, we compute the cross-

correlation function Ψ[n] between the raw sweep response

y[m] and the input sweep signal s[m] in order to find the

starting point of the sweep response. In particular, we find

the maximum correlation value ΨM in Ψ[n] and extract the

lag ni of the first sample in Ψ[n] such that Ψ[n] > 0.5ΨM .

Then, the starting point of y[m] corresponds to the lag nj

with maximum correlation value within a 21-sample inter-

val centered in Ψ(ni). This trick was introduced so as to

avoid directly picking ΨM as starting point, that due to the

echoic measurement conditions could correspond to a wall

reflection, especially in the case of contralateral HRTFs.

Then, according to the logarithmic sweep method, we

perform inverse filtering on the measured sweeps in or-

der to obtain the corresponding impulse responses. The

inverse reference spectrum S−1[n] of the excitation sig-

nal is first computed and then low-passed and high-passed

with second-order digital Butterworth filters to compensate

for the original zero sound pressure level below 20 Hz and

above 20 kHz in the sweep signal. Then, the impulse re-

sponse is obtained as

h[n] = ℜ(F−1(F(y[n]) ∗ S−1[n])), (1)

where F and F−1 are the DFT and inverse DFT functions,

respectively.

Subsequently, a 128-sample Hann window is applied to

each impulse response h[n] with the aim of removing un-

wanted early and late reflections occurring later than ap-

proximately 2.5 ms from the onset on the measurement

equipment and inside the room, yielding hw[n]. This value

guarantees an appropriate windowing even for those mea-

surement points where the loudspeaker is close to the floor

or the ceiling. The HRTF is then simply calculated as the

magnitude response of the DFT of hw[n].

3. RESULTS

In this section we show some preliminary results as an

assessment of the trustworthiness of the collected HRTF

dataset. Figure 4 shows an example plot of HRTF mag-

nitudes on the median plane for a custom-made pinna (set

J). Well-known effects can be recognized here, such as
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Figure 4. Median-plane HRTF magnitudes of set J , left

channel.
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Figure 5. ITD measurements of set J (left channel: custom

made pinna, right channel: KEMAR 35 Shore-OO pinna).

the shoulder reflection ridge between 1 and 2 kHz, the om-

nidirectional resonance around 4 kHz, and the elevation-

dependent pattern of peaks and notches [1], with the higher

number of notches at lower elevations [23, 24].

We also computed interaural time differences (ITD) as

the offset between the starting points of the left and right

channel for each sweep response on all sets. Figure 5

shows ITDs for the same example set. In accordance with

previous literature [25], ITD values range between zero

(median plane) and ±0.8 ms for lateral directions. We also

report in general noticeable asymmetries between left and

right channels, resulting in ITD maxima and minima at two

different elevation angles. This is due to the presence of

two different pinnae in most measurements (KEMAR on

the right channel and custom-made on the left one).

In order to evaluate the robustness and reproducibility of

our measurements, we calculated the mean spectral distor-

tion between each pair of HRTF sets Ha and Hb as [26]

SD(a, b) =
1

Nα

∑

i

√√√√ 1

Nf

∑

k

(
20 log10

|Ha(αi, fk)|
|Hb(αi, fk)|

)2

,

(2)

where αi is an available spatial position, fk is an avail-

able frequency, Nα is the number of common spatial po-

sitions, and Ni is the number of frequencies in the con-
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Figure 6. Mean spectral distortion [dB] between all pairs

of HRTF sets (left channels only). For simplicity, values

above the diagonal line are not repeated.

sidered range. For the following computations, in order to

best capture the effect of the pinna, we limit this range be-

tween 3 kHz and 10 kHz. While the right channel is just

affected by measurement noise, as the low mean spectral

distortion (mean 0.26 dB, std 0.07 dB) demonstrates, the

left channel results show considerable differences between

different pinnae. As displayed in Figure 6, mean spectral

distortion between each pair of custom-made human pin-

nae is never less than 2.93 dB (mean 5.25 dB, std 0.87 dB).

On the other hand, the KEMAR pinna replica scores a

lower mean distortion with respect to the reference set mea-

sured in CS1 (0.84 dB), which is interestingly lower than

that of the original KEMAR 55 Shore-OO pinna measured

in CS2 (1.37 dB). This result suggests the accuracy of the

pinna casting procedure and the negligible impact of the

silicone hardness. In other words, although differences in

hardness may slightly influence the spectral similarity of

HRTFs, even the most minimal difference in pinna shape

seems more influential. Furthermore, results of CS3 in-

dicate that although repositioning the KEMAR pinna on

the left channel introduces some additional distortion (0.79
dB), this does not exceed twice the distortion due to mea-

surement noise (right channel, 0.42 dB).

Finally, as an assessment of the fidelity of our KEMAR

measurements, in Figure 7 we show the current measure-

ments of the KEMAR with the reference pinna (35 Shore-

OO hardness, measured in control session 1) on the hor-

izontal plane and compare them to previous high-quality

measurements of the KEMAR mannequin at 1-m distance

by Brungart and Rabinowitz (top right panel of Figure 5

in [27]). If we exclude the low-frequency region, where

differences are clearer because of the different ear-canal

configuration of the KEMAR in the two measurements, we

can recognize the same salient spectral features above 2
kHz, corresponding to the five reference points A-E (spec-

tral peaks and notches). This qualitative result evidences

the effectiveness of our measurement setup in conveying

high-quality reference KEMAR measurements.
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Figure 7. Reference horizontal-plane KEMAR measure-

ments, left channel.

4. CONCLUSIONS

In this paper we presented a dataset of full-sphere HRTFs

of KEMAR with 20 different left pinnae obtained from

molds of lifelike human heads. The measurement setup

and procedure was described in detail, along with the post-

processing operations designed to extract polished HRTFs

from measured responses. Our preliminary results suggest

the accuracy, variety, and reproducibility of the collected

data. On the other hand, the hardness finding warrants

quantified replications with a measure of central tendency

and dispersion. These results will hopefully encourage in-

vestigations on the relation between HRTFs and anthropo-

metric data through machine learning techniques or other

state-of-the-art methodologies [28]. Full HRTF and ITD

data, together with detailed scans of the used pinnae, are

available for free download at the dataset web page 4 that

will constantly be updated with new data and information.
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gestures to extend traditional piano fingering 

techniques. 

CONCEPTS FOR DESIGNING SOUND 

Piamenca is conceived with fragments of Andalousian 

culture – Buleria and Tarento dances. Music patterns 

are arranged as identifiable elements looped in sessions 

of specific content, chords, melodies, rhythms to 

convey “audible design” [5]. Time structures depends 

upon (re)cycling modes of repetition using or not 

available transformations - inversion, reverse, 

transposition … Piamenca uses diverse technics to filter 

sound spectrum, either from Max-MSP software or 

Ableton effect module in realtime. 

Besides a quest for renewing acoustical sources - 

operating on traditional instrument while performing 

samples, such experiment concerns enhancing 

traditional gestures in order to recover empathy and 

produce emotional feedback in acting the sound with 

the help of visual representation. 

INSTRUMENTAL CONTEXT 

Piamenca, such as Transpiano, makes use of the piano 

as it concretizes in the written classical heritage the 

“king of the instrument” for accompaniment. Not to 

mention its leadership over the Romantic composers 

which even made piano music sound dictatorial, piano 

remains the perfect visual, plastic tool to conceptualize 

all types of music. Nonetheless, it is not the original 

musical instrument of the flamenco technique. But 

today each instrument may easily be replaced by any 

other instrument through digital sampling technics [6]. 

While a totally autonomous piano does not really 

connect with the acting body - although it does in blind 

MIDI performance since we can see the key performing 

activity7, and while the glove techniques might still 

limit any emotional response, sampling techniques can 

really apply to music production with specific theatrical 

embodiment when prerecorded by the performer 

himself as a re-appropriation of the initial feeling at a 

second stage.  

5 https://mimugloves.com/ 
6 https://www.leapmotion.com/ 
7 We would mention here the expressive os Trond Reinholdsten piano 

concerto (2016) named « The theory of the subject.» 

ABSTRACT 

Interacting with media: The TransTeamProject (T3P) 

works on developing interactive gloves techniques - and 

other materials, with sound and/or visual samples. 

Piamenca continues the work developed in Transpiano1 

with a specific emphasis on visual content such as 

transforming sound into lights, in this case together with 

a strong vernacular inspiration (Flamenco). The T3P 

creative project is involved with art music - as opposed 

to commercial music - together with technical 

perspectives. After contextualizing the state of the art in 

the specific field of “body gesture technology”, this 

paper will explain how Piamenca relates to computers 

in a practical sense – methods and processes to produce 

media transformations (both audio and visual) - and will 

comment on their integration in terms of sound, music 

and audio-visual performance. It will finally 

demonstrate some ideas such as trans-music 

orientations with regard to enhancement theories in 

relation with the transhumanism movement [1].  

INTRODUCTION 

Although the so-called “interactive glove technology” 

has already a long history, as such in the interactive 

design research, whether or not related to music at first2 

(even though initially experimented with sound3) but 

more generally concerned with designing performance 

protocol for controlling trans-media data [2] [3], T3P 

develops normative procedures within the public 

domain by its own, making use of available cost-

efficient hardware (Arduino board, Flex-Sensor) and 

software (Arduino-Uno, Max-MSP, Ableton Live). 

Once different technologies were originally mentioned 

as earlier as 1986 [4], but more recently redesigned such 

as for making music controlled by hand gestures, 

“Musical glove”4, Mi.MU glove technology5, Leap 

motion technology6, such experimentations were so far 

never thought of as for making art music but rather and 

more or less for pop sound productions. Within new 

technological processes, T3P team is developing typical 

formal ideas such as enhancing music performance 

1 Premiered last year at Limassol, Cyprus - XV SMC Conference 
(2018) 

2 Power Glove from Nintendo for Video Controls (2005) 
3 MODO Music Technology 
4 https://interactiondesign.sva.edu/projects/musical-glove 

Copyright: 2019 Justin Pecquet et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 Unported License, 
which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited.
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WHY PIAMENCA IS ANOTHER TRANS-

PIECE ? 

While transpiano was the initiated version of such a 

starter “chain” of more works to come, as a first 

experimented fragment for designing different 

performing technics in art music, including videos, 

Piamenca uses extended conceptual technics with 

lights. Two basic ideas are proposed in the piece: first 

to develop sample patterns that structure listening; 

second, to produce a related visual matter - light, beams 

and video in relationship with the patterns. The overall 

form depends upon mixed media with a strong 

vernacular flamenco identity for the sake of this specific 

event. 

TECHNOLOGICAL CONTEXT : SOUND 

CONTROL 

It logically happens that the basic idea behind the 

technological part of the T3P project is roughly the 

same as that of a MIDI keyboard. The performer has ten 

sensors (one on each finger). The sensors send raw data 

to the Arduino [7]. Then the Arduino sends the data via 

Bluetooth to the computer, more precisely to the Max-

MSP. Max-MSP recognizes and separates this data 

from the Arduino (which have a range of 0-1023) and 
converts them directly to MIDI (range 0-127). A 

general setting of the performance is shown on fig. 1. 

 

Figure 1. Elements for the setting 

FORMALIZING ELECTRONIC SOUND 

DATA 

With such an interactive situation one may first resolve 

the fact that the performer has only ten fingers but might 

use more parameters to control (over 150 parameters). 

The following list mentions some of the technical issues 

to be resolved in such a project, from a sound point of 

view: 

• Trigger the correct samples; 

• Control the score;  

• Enable/disable different effects; 

                                                      
8 A sample refers here to recorded precomposed sounds to be modified 

during the performance, never mind they be pitch sequences or 
“sonorities”. 

• Control the correct parameters of all effects 

(some lists more than 50 parameters), etc. 

MAPPING: MAXMSP TO ABLETON LIVE 

On a real piano, the performer controls pitches by 

pressing keys with fingers. In this project pitches (or 

sounds in extended technics) are sampled8. In this 

environment, fingers do not produce pitches but rather 

trigger samples and control different effects that would 

apply to them. Moreover, the performing activity is as 

follows: first, the performer selects a preset number 

with a foot controller - each preset already matches one 

or more samples; second, he triggers them with his 

thumbs to activate the sound(s) - at the same time, the 

other eight fingers are associated with the correct effect 

parameters already designed; third, he performs music 

with his fingers - instead of controlling pitches, the 

performer controls and transforms samples according to 

preconceived order impacting their own structural 

composition. A detailed score provides information for 

changes, starting over by selecting a new preset number 

and so on (Fig. 2).  

 

Figure 2. Diagram of the Preset subpatch 

PRESETS SOLUTION  

In order to divide the piece into sessions in Ableton Live 

we used the “master session” command in Ableton with 

subsequent sessions to be triggered linearly. Each 

master session would correspond to a unique line in the 

program, a unique sample, a unique effect and in some 

cases, pages in the score. So, this particular display 

allowed to create one preset (or more if needed) for each 

session. The performer would select the correct preset 

with a foot controller. Each preset has ten MIDI CC, 

one for each finger. The MIDI protocol has 16 channels 

and each channel has 127 MIDI CC, so one may use up 

to 2032 MIDI CC or 2032 controllable parameters! 

(Fig. 3). 
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Figure 3. Preset structure 

LIMITATION OF MIDI CC 

Although Ableton is perhaps the software with the 

easiest MIDI mapping system - we would have however 

some recommendations for improvement -, it is 

impossible to have two different MIDI CC connected to 

the same parameter. In other words, it was impossible 

to connect the same effect, let’s say a basic Reverb, with 

two or even more different samples because each 

sample has a distinct preset – MIDI CC. This obstacle 

was resolved somehow in an unorthodox way. Instead 

of having one effect for all the samples, the same effect 

was used as many times as needed for the samples. For 

example, in the case of using three samples with a 

reverb, the same reverb was used three times. With such 

a setting it is therefore possible to assign one MIDI CC 

for each sample and each effect.  

IDENTIFYING EFFECT PARAMETERS 

Beyond the number of effect parameters, the performer 

challenge is also to master their efficiency [8]. To this 

extent, one needs to change and provide a unique name 

for each effect, which is also combined with the 

dedicated score to easily identify sound properties as 

well as fingering functional settings. Instead of naming 

the followings “reverb1”, “reverb2”, “reverb3”, better 
use such codes T2E4S7, T3E1S8, T3E1S9 where T 

stands for Track, E for Effect and S for Session (Fig. 4) 

 

Figure 4. Ableton Live Effects accessible from a single 

track (T1) 

In the above example, the effect T1E1S2 means Track 

1, Effect 1 and Session 2. With such a technique the 

performer knows exactly which effect was related to 

which sample. At the same time, the same preset 

enables only the correct effect(s) and selects them so 

that whenever the performer triggers a sample, he only 

sees the related effects in Ableton’s window. 

                                                      
9 To this regard, let’s mention the PIGS (Percussive Image Gestural 

System) prototype from Amy Alexander.  
10 Reference to be made here to the seminal work of Waisvisz M from 

STEIM. http://www.crackle.org/TheHands.htm 

To resume this section, such a project raised technical 

obstacles related to the interface design but not with the 

glove and its shelf, neither with the Arduino board and 

the connecting system. Composing with such 

environment brings to the fore weaknesses in the design 

of predefined software (Ableton’s GUI), due to its 

original conception, in this case processing samples in 

realtime. Technically, it might be unorthodox to have 

an exact same effect multiple times (calling for more 

RAM memory, resulting in lower compiler 

performance), with all 150 parameters, but it was the 

only solution available to be able to identify and control 

them with ten lively fingers! 

LIGHT CONTROL USING ARM SENSORS  

In order to make a full mediation between different 

types of media, Piamenca also explores the relationship 

between sound and light, emphasizing performance 

strategies for the musician, such as mixing light 

properties with regard to acoustic correspondence 

controlled by specific body movements9. Using light 

intensities, color spectrum, shadows and interaction 

between glowing features and objects are part of 

demonstrating sound matter in this interactive 

process10. 

As colors may change the way one perceives sound [9], 

we face this issue in three different perspectives: 

• Sound analysis 

• Musician interaction. 

• Music composition. 

As sound and light are waves stimulating our senses in 

distinctive frequency spectra, Piamenca explores this 

relationship using some previous studies on the subject. 

Amidst several stimulating data found and longtime 

analyzed is the impressive concordance that 

“synesthetic people” have in relationship with colors 

and musical notes [10].  

In order to translate sound spectrum into light spectrum 

we are considering the sound produced by the musician 

to have the frequencies that compose the sound. By 

using the Fourier transform we analyze the sound 

spectrum in real time and use that information as input 

to the software which controls the lighting system. 

While the performance is taking place, the musician is 

“touching” the music with his fingers - or according to 

arm gestures - by sending information to the system 

with absolute position. This project also allows fingers 

and arm positions to control the way light is projected 

and how the sound spectrum is transformed into lights 

and colors. As every performance would depend upon 

specific objectives due to artistic motivation, there are 

numerous ways for sound to be converted into light. 

Each composition requires its own choices. For the 

Piamenca project, we chose a light spectrum close to 
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the red tonality in order to represent the distinctive red 

dress of the flamenco dancers.  

TECHNICAL VISUAL INSTALLATION 

The light system used for this performance requires one 

led strip of five meters and four led light spots. The 

whole system is controlled by an Arduino card which 

receives the information coming from the software by 

the USB port.  As the led strip shape can be modified, 

we use it to interact with the space to generate shadows 

and light movements. The four directional led lights are 

placed behind the musician in order to play with the 

space perceived by the audience. 

PERFORMANCE MEDIA CONTROLLED 

BY BODY GESTURES 

At the root of digital composition, and in our peculiar 

context, sampling techniques for performance means 

expressing the self with “automated content”. The 

performer has some cues, since he is working on 

prerecorded sequences that he performed himself. 

However, questions on performing arise such as 

automated transforming samples and/or how looping 

patterns may influence decision making? While 

automation describes musical material depending upon 

audio data streaming, processes develop sound material 

and generate self-determination choices besides a more 

confined frame. In effect one cannot say it is pure 

improvisation while data lies on a score [11]. However, 

within a time frame process launched by gestures, it 

covers a wide range of body interaction that links to 

connected control. A set of constraints allows this type 

of musical processing [12].  

CONCLUSIONS  

Although the T3P team’s philosophy isn’t limited to 

traditional musical instruments but would extend to 

other types including non-musical “objects” and media, 

Piamenca uses a piano sound without a physical body. 

The digital move of this century opens the way to 

further technological involvements with efficient 

materials such as sensors, microcontrollers, software, 

controlling systems, all easily affordable (and usable) 

outside institutions, freeing somehow creation from 

normative cultural appreciations. Not only such an 

opportunity saves the instrument, it also modifies the 

sound perception - processing, listening and 

visualizing, by creating a virtual gap between 

performing and producing sound in relation to other 

media, innerving space with lights and finally 

interacting all together. As transhumanism is also, 

amongst other theories, a way to consider technics in 

relationship to human, the so-called “anthropological 

technicity”, in art culture - where music is thought of as 

a voice to express ideas, it is also a matter of “trans” 

actions related to different contexts - socio-economic, 

ethical & political, neuro-bio-GIA-scientific, esthetic & 

artistic -.  From these different angles performing art 

allows different positions, fundamentally based on 

mediating strategies for multimodal awareness. 
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ABSTRACT

Melody identification is an important early step in mu-
sic analysis. This paper presents a tool to identify the 
melody in each measure of a Standard MIDI File. We 
also share an open dataset of manually labeled music for 
researchers. We use a Bayesian maximum-likelihood ap-
proach and dynamic programming as the basis of our work. 
We have trained parameters on data sampled from the mil-
lion song dataset [1, 2] and tested on a dataset including 
1703 measures of music from different genres. Our al-
gorithm achieves an overall accuracy of 89% in the test 
dataset. We compare our results to previous work.

1. INTRODUCTION

When we listen to a piece of music, the melody is usually 
the first thing that catches our attention. Therefore, the 
identification of melody is one of the most important ele-
ments of music analysis. Melody is commonly understood 
to be a prominent linear sequence of pitches, usually higher 
than harmonizing and bass pitches. The concept of melody 
resists formalization, making melody identification an in-
teresting music analysis task. Melody is used to identify 
songs. Often, other elements such as harmony and rhythm 
are best understood in relation to melody.

Many music applications depend on melody, including 
Query-by-Humming systems, music cover song identifi-
cation, emotion detection [3], and expressive performance 
rendering. Many efforts in automatic composition could 
benefit from training data consisting of isolated melodies.

There has been a lot of research on extracting melody 
from audio [4]. The problem is generally easier for MIDI 
than audio because at least notes are already identified and 
separated. However, compared to audio, there seems to be 
less research on melody extraction. Most of the research on 
MIDI melody is on channel-level identification. This paper 
will propose an algorithm combining Bayesian probability 
models and dynamic programming to extract melody at the 
measure level.

2. RELATED WORK

In the field of symbolic files, Skyline is a very simple al-
gorithm proposed by Uitdenbogerd [5]. In brief, the idea

Copyright: c© 2019 Zheng Jiang et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

of this method is to pick the highest pitch at any moment
as belonging to the melody. Chai and Vercoe offer an en-
hanced version of this approach [6]. In pop music, we ob-
serve that there are often accompaniment notes above the
melody line, leading to failure of the Skyline algorithms.
Uitdenbogerd presents three more methods [4]: 1) Top
Channel (choose the channel with the highest mean pitch),
2) Entropy Channel (choose the channel with the highest
entropy), and 3) Entropy Part (segment first, then use En-
tropy Channel). Shan [7] proposed using greatest volume
(MIDI velocity) because melody is typically emphasized
through dynamics. Li et al. identify melodies by finding
common sequences in multiple MIDI files, but this obvi-
ously requires multiple versions of songs [8]. Li, Yang,
and Chen [9] use a Neural Network and features such as
chord rate, pronunciation rate, average note pitch, instru-
ment, etc., trained on 800 songs to estimate the likelihood
that a channel is the melody channel. Velusamy, et al. [10]
use a similar approach, but prune notes that do not satisfy
certain heuristics and use a hand-crafted linear model for
ranking channels [9]. Rizo, et al [11] introduces an algo-
rithm to identify the track that contains the melody using
statistical properties of the musical content and machine
learning techniques.

All of these algorithms assume that the melody appears
on one and only one channel, so the problem is always to
select one of up to 16 channels as the melody channel. De-
pending on the data, this can be a frequent cause of failure,
since the melody can be expressed by different instruments
in different channels at different times. An interesting ap-
proach is Tunerank [12], which groups and labels notes ac-
cording to harmony and dissonance with other notes, pitch
intervals between consecutive notes, and instrumentation,
without assuming the melody is in only one channel.

Previous work is hard to evaluate based on publications,
with accuracy reports ranging from 60% to 97%, no la-
beled public datasets, and few shared implementations.
The properties of music arrangements and orchestrations
in MIDI files can cause many problems. The simplest case,
often assumed in the literature, is that the melody appears
in one and only one channel. At least four more com-
plex conditions are often found: 1) The melody is some-
times played in unison or octaves in another channel, 2) the
melody switches from one instrument (channel) to another
from one phrase or repetition to another, 3) the melody is
fragmented across channels even within a single measure
(this happens but seems to be rare), and 4) there are multi-
ple overlapping melodies as in counterpoint, rounds, etc.
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3. DATASET

In most related work, published links to datasets have ex-
pired, so we collected and manually labeled a new dataset
which contains the training data of 5823 measures in 51
songs and test data of 1703 measures in 22 songs. For
each song in the training data, the melody is mostly all on
one channel, which is labeled as such. (This made labeling
much easier, but we had to reject files where the melody
appeared significantly in multiple channels or there is no
melody at all.) In the test data, the melody is not con-
strained to a single channel, and each measure of the song
is labeled with the channel that contains the melody. Mea-
sure boundaries are based on tempo and time signature
information in the MIDI file. The MIDI files are drawn
from songs in the Lakh dataset [1]. This collection con-
tains MIDI files that are matched to a subset of files in the
million song dataset [2]. We used tags there to limit our
selection to pop songs.

The test data is collecting from Chinese, Japanese, and
American pop songs. We specifically chose popular music
because melody is usually present and there is usually a
single melody. In addition, we hope to use this research in
learning about melody structure in popular music.

It might be noted that there are many high quality MIDI
files of piano music. Since all piano notes are typically
on one channel, this can make the melody identification
or separation a more challenging problem, and different
techniques are required. We assume that in our data, once
the channel containing the melody is identified, it is fairly
easy to obtain the melody. Either the melody is the only
thing present in the channel, or the melody is harmonized,
and the melody is obtained by removing the lower notes
using the Skyline algorithm.

4. ALGORITHM

Our problem consists of labeling each measure of a song
with the channel that contains the melody. (It would be
useful also to allow non-labels, or nil, indicating there is
no melody, but our study ignores this option.) The algo-
rithm begins with a Bayesian model to estimate Mm,c,
the probability that channel c in measure m contains the
melody. The estimation uses features that are assumed to
be jointly normally distributed and independent. Features
are calculated from the content of each channel, consid-
ering the measure itself and N previous and subsequent
measures, with N ∈ 0, 1, .... In all of our experiments, we
assume that melody never appears on channel 10, which is
used for drums in General MIDI.

Although we could stop there and report the most likely
channel in each measure,

cm = argmax
c

Mm,c (1)

this does not work well in practice. There are many
cases where a measure of accompaniment, counter-melody
or bass appears to be more “melody-like” than the true
melody. (For example, the melody could simply be a
whole note in some measures.) However, it is rare for

the melody to switch from one channel to another because
typically the melody is played by one instrument on one
channel. Channel switches are only likely to occur when
the melody is repeated or on major phrase boundaries.

We can consider the melody channel for each measure,
cm, as a sequence of hidden states and per-measure prob-
abilities as observations. We wish to find the most likely
overall sequence cm according to the per-measure prob-
abilities, and taking into account a penalty for switching
channels from one measure to the next. We model the
probability of the hidden state sequence cm as:

P (cm) =
∏

m

Mm,cmScm−1,cm (2)

where Scm−1,cm = 1 if there is no change in the channel
(cm−1 = cm), and Scm−1,cm is some penalty less than one
if there is a channel change (cm−1 6= cm). Thus, chan-
nel switches are allowed from any measure to the next, but
channel switches are considered unlikely, and any label-
ing that switches channels frequently is considered highly
unlikely.

The parameters of this model must be learned, including:
statistics for features used to estimate Mm,c, the best fea-
ture set, the number of neighboring measures N to use in
computing features, and the penalty S for changing chan-
nels. We select the feature set and compute feature statis-
tics using our training dataset, and we evaluate their per-
formance and sensitivity to N and S using the test dataset.

4.1 Bayesian Probability Model

The probability of melody given a set of features is repre-
sented by Equation 3, where C0 is the condition that the
melody is present, C1 indicates the melody is not present,
xi are feature values, and n is the number of real-valued
features. The details of features will be discussed in a later
paragraph.

P (C0|x1, . . . , xn) (3)

By Bayes’ theorem, this conditional probability can be
rewritten as Equation 4.

P (C0|x1, . . . , xn) =
P (C0)P (x1, . . . , xn|C0)

P (x1, . . . , xn)
(4)

With the assumption of independence for each feature, we
can rewrite this as Equation 5:

P (C0|x1, . . . , xn) =
1

Z
P (C0)

n∏

i=1

P (xi|C0) (5)

where Z is:

Z = P (x1, . . . , xn) =
1∑

k=0

(P (Ck)
n∏

i=1

P (xi|Ck)) (6)

Our features xi are continuous values. Because we have
limited training data, we adopt a Naive Bayes approach
and assume they are independent and distributed according
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to a Gaussian distribution as in Equation 7. Under this as-
sumption, we can simply collect feature statistics µi,k and
σi,k from training data to estimate the probability model.

P (xi = v|Ck) =
1√

2πσ2
i,k

e
− (v−µi,k)2

2σ2
i,k (7)

We now describe the details of features, which
are note density, vel mean, vel std, pitch mean,
pitch std, IOI mean, and IOI std:

4.1.1 Note Density

The note density is the sum of all note durations divided
by the total length of the music (Equation 8). A melody
without rests has a note density of 1, a rest has note density
of 0, a sequence of triads without rests has a note density
of 3, etc.

note density =
Σnotenote.dur
total length

(8)

4.1.2 Velocity

We take the mean and standard deviation of velocity
(Equations 9 and 10).

vel mean =
ΣNi=1notei.vel

N
(9)

vel std =

√
1

N − 1
ΣNi=1(notei.vel− vel mean)2 (10)

4.1.3 Pitch

We take the mean and standard deviation of pitch (Equa-
tions 11 and 12).

pitch mean =
ΣNi=1notei.pitch

N
(11)

pitch std =

√
1

N − 1
ΣNi=1(pitchi.vel− pitch mean)2

(12)

4.1.4 Inter-Onset Interval

The Inter-Onset Interval, or IOI, means the interval be-
tween onsets of successive notes. Considering that orna-
ments and chords may introduce a very short IOIs, we set
a window of 75 ms, and when two note onsets are within
that window, we treat them as a single onset [13]. IOI cal-
culation is described in detail in Algorithm 1.

4.2 Training data

We compute features for each measure and channel of
the training data. For feature selection, we use cross-
validation, dividing the training songs into 5 groups, hold-
ing out each group and estimating µi,k and σi,k from the
remaining training data, and evaluating the resulting model
by counting the number of measures where the melody
channel is judged most likely by the model. We take the
average result over all five groups.

Result: The mean and standard deviation of a list of
notes in onset-time order

stats is an object that implements the calculation of
mean and standard deviation;

note[i] is the ith note;
N is the number of notes;
i← 0;
while i < N do

j ← i+ 1;
while (j < N) ∧ (note[j].on time− note[j −
1].on time) < 0.075 do
j ← j + 1;

end
if j < N then

IOI ← note[j].on time− note[i].on time;
stats.add point(IOI);

end
i← j;

end
IOI mean← stats.get mean();
IOI std← stats.get std();

Algorithm 1: IOI Feature Calculation

After doing this for every combination of features (7 fea-
tures, thus 127 combinations), for various values of N (the
maximum distance to neighboring measures to use in fea-
ture calculation), we determine the features that produce
the best result for each value of N .

We then re-estimate the probability model using all of the
training data. In principle, we should also use the training
data to learn the best window size N and the best penalty
S, but in our training data, melodies are all in one chan-
nel, so the ideal value of N for this data should be large,
and the ideal S should be zero (highest penalty) to prevent
the melody from changing channels. Instead, we will de-
termine N and S from our test data, where every measure
is labeled as melody or not, and we will report how these
parameters effect accuracy using the test dataset.

4.3 Melodic probability

To prepare for the dynamic programming step, we com-
pute Mm,c, which is the natural log of the probability of
melody in channel c at measure m. (The feature values are
different for each combination of m and c.) In the next
step, note that if we find the labels with the greatest sum of
log probabilities, it is equivalent to finding the labels with
the greatest product of probabilities. Logarithms are used
to avoid numerical underflow.

4.4 Dynamic Programming

We use dynamic programming to select the channel con-
taining the melody in each measure. Algorithm 2 shows
how the assignment of channels maximizes the sum of
Mm,c values adjusted by subtracting SP = − log(S)
each time the melody changes channels. The backtrack-
ing step is not shown since it is standard. 1

1 https://en.wikipedia.org/wiki/Viterbi algorithm
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Result: For each measure, determine the channel
containing the melody.

N is the number of measures, indexed from 0 to N − 1;
C is the number of channels, indexed from 0 to C − 1;
SP is channel switch penalty, a parameter; SP = -ln(S);
Am,c is the accumulated score for measure m and

channel c;
Bm,c stores the optimal channel number of previous

measure;
Mm,c tells how melodic is channel c in measure m;
for i in [0 . . . C) do

A0,i ←M0,i;
end
for m in [0 . . . N) do

for c in [0 . . . C) do
x← Am−1,c + Mm,c;
Bm,c = c;
for i in [0 . . . C) do

y ← Am−1,i + Mm,c − SP ;
if c 6= i ∧ y > x then

x← y;
Bm,c ← i;

end
end
Am,c ← x;

end
end

Algorithm 2: Dynamic Programming

5. EXPERIMENTS AND RESULTS

5.1 Training

We tried different combinations of features, and the re-
sults are shown in Table 1 for windows with 5 measures
(N = 2). The top 5 feature sets are shown along with
the mean and standard deviation of accuracy across 5-fold
cross-validation. Differences among the top feature sets
are minimal. We use all features except velocity standard
deviation.

Table 2 shows the results using each feature individually
for 5-measure windows. This shows that all features offer
some information (random guessing would be 1/15 or less
than 7% correct), but no single feature works nearly as well
as the best combination.

If we assume the melody appears in only one channel,
which is mostly the case for this training dataset, we can
consider the measure-by-measure melody channel results
as votes, picking the channel with the majority of votes as
the melody channel. Our best feature set (all but veloc-
ity standard deviation) gives an accuracy of 96% (2 errors
out of 51 songs), using 5-fold cross-validation. In the next
section, we relax the assumption that the melody appears
in only one channel.

5.2 Testing

Our test dataset labels each measure with a set of channels
containing melody. In measures with no melody, this is
the empty set. In some measures, the melody is duplicated

nd pm ps im is vm vs mean std
1 1 1 1 1 1 0 72.40% 7.20%
1 1 0 1 1 1 0 71.60% 7.06%
1 1 1 1 1 1 1 71.40% 8.26%
1 1 1 1 0 1 0 71.40% 7.70%
1 1 1 1 0 1 1 71.00% 8.83%

Table 1. Mean and standard deviation of accuracy in 5-
fold cross validation using the top 5 feature sets, win-
dow size = 5. Here, nd means note density, pm means
pitch mean, ps means pitch std, im means IOI mean,
is means IOI std, vm means vel mean, and vs means
vel std.

nd pm ps im is vm vs mean std
1 0 0 0 0 0 0 45.80% 7.22%
0 1 0 0 0 0 0 44.60% 8.11%
0 0 1 0 0 0 0 35.80% 6.50%
0 0 0 1 0 0 0 31.00% 2.55%
0 0 0 0 1 0 0 30.40% 5.64%
0 0 0 0 0 1 0 32.00% 5.87%
0 0 0 0 0 0 1 20.60% 4.10%

Table 2. Mean and standard deviation of accuracy in 5-fold
cross validation using individual features, window size = 5

in different channels, so the label can can contain more
than one channel. Note that if we can identify one channel
containing the melody, it is simple to search for copies in
the other melodies. Our algorithm labels every measure
with exactly one melody channel. We consider the output
to be correct either if it is in the set of true melody channels
according to our manual labels, or if the label is the empty
set. Typically, the empty set (no melody label) appears
in introductions, endings, and measures where the melody
channel rests. In these cases (approximately 12% of all
measures), there is no clearly correct answer, so we will
not include that in the test.

We evaluated accuracy on the test dataset with many val-
ues of N and SP . For each value of N , we used the best
feature set as determined from the training data and then
evaluated the system with different values of SP . The re-
sults are shown in Figure 1.

Since N and SP are optimized on the test dataset to ob-
tain a best accuracy of 89.15%, there is some risk of over-
fitting parameters to the test data. Given more labeled data,
we would have used a different dataset to select N and
SP , and then we could evaluate the entire system on the
test dataset. Instead, we argue that the system is not very
sensitive to N or SP , so overfitting is unlikely. Figure
2 shows how accuracy is affected by varying the window
size using an optimal value of SP = 36 (again, the win-
dow includes the measure ±N measures, so the window
size is 2N+1). This figure shows that 5-measure windows
worked the best, but windows up to about 15 measures also
work well, with just a few percent variation in accuracy.

Figure 3 shows how the accuracy is affected by varying
SP , the switch penalty, using the optimal value of N = 2.
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Figure 1. Accuracy for different values of window size and
switch penalty.

Figure 2. Accuracy on the test dataset vs. Window Size
(= 1 + 2N ) for Switch Penalty = 36.

The best performance is obtained with SP between 30 and
38, but any value from 2 to 38 will achieve performance
within a few percent of the best. Since both graphs are
fairly flat around the best values of N and SP , the exact
values of these parameters are not critical for good per-
formance. In fact, we would expect the best values may
depend upon style, genre, and other factors.

From the results, we can observe that the increase of win-
dow size helps the performance. The highest accuracy goes
from 58.00% to 89.15% when the window size grows from
1 to 5. However, accuracy does not continue to increase for
even larger windows. We believe the size of 5 measures is
large enough to obtain some meaningful statistical features
yet small enough to register when the melody has switched
channels. In the next section, we analyze some specific ex-
amples of success and failure. We also see that the switch

Figure 3. Accuracy on the test dataset vs. Switch Penalty
with Window Size = 5. The highest accuracy is 89.15%
using any Switch Penalty ∈ {30, 32, . . . 38}.

penalty matters. When we set the penalty to zero, we get
the locally best choice of melody channel at each measure,
independent of other measures, but it seems clear that this
“locally best, indepenent” policy is not particularly good,
and this is why we introduced the Viterbi step to our algo-
rithm. On the other hand, when the penalty is very large,
we force all measures to be labeled with the same channel.
This is not a good policy either, with at best 71.24% accu-
racy. The results show that our Viterbi step is effective in
using context to improve melody identification.

6. ANALYSIS

To better understand our approach, we analyzed some
songs in our test dataset.

6.1 A Successful Sample

In most of the cases, this algorithm works well. For exam-
ple, the figure 4 shows a clip from the popular song “Hotel
California.” In the figure, the melody is labeled by our al-
gorithm in red (at the top) and other notes are shown in yel-
low. Notice that this melody is not particularly “melodic”
in that it only uses two pitches and there is a lot of repeti-
tion. This is one illustration of the need for multiple fea-
tures and statistical methods. The features for the melody
channel have a higher likelihood according to our learned
probabilistic model, and the melody is correctly identified.

6.2 Failed Samples

A failure case is shown in Figure 5. Here, the detected
melody is shown in red at the top of the figure. The same
(red) channel actually contained the melody in the imme-
diately preceding channels, but at this point the melody
switched to another channel, shown below in yellow. (In
the figure, the lower melody is visually separated for clar-
ity, but both channels actually occupy the same pitch
range.) Evidently, the algorithm continued to label the top
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Figure 4. The melody detected in the song “Hotel Califor-
nia.”

(red) channel as melody to avoid the switch penalty that
would be required to label the melody correctly. In fact,
the true (yellow) melody appeared earlier in the top (red)
channel, so perhaps a higher-level analysis of music struc-
ture would also be useful for melody identification and dis-
ambiguation.

Figure 5. The algorithm identified the top (red) channel
as melody of “Being,” but the correct melody is shown in
yellow at the bottom.

Another song in our dataset is “Ali Mountain.” In this
piece, at measure 12, the melody is split across two dif-
ferent channels, represented in red (darker) and yellow
(lighter) in Figure 6. Taken together, the combined chan-
nels would be judged to be very melodic. However, when
we consider the channels separately, it is hard to hear
whether either is part of a melody, and our algorithm does
not rate either channel highly. Since we assume that the
melody will be played by one and only one channel within
a measure, the melody is not identified in this test case.

Figure 6. Two channels ensemble the melody

7. CONCLUSION

In this paper, we contributed a novel algorithm to detect
the melody channel for each measure in a MIDI file. We
utilize a Bayesian probability model to estimate the prob-
ability that the melody is on a particular channel in each
measure. We then use dynamic programming to find the
most likely channel for melody in each measure consider-
ing that switching channels from measure to measure is un-
likely. We obtained an overall accuracy of 89% on our test
dataset, which seems to compare favorably to most other
results in the literature. The lack of a large shared dataset
prohibits a detailed comparison.

Our dataset, including Standard MIDI Files, melody la-
bels, associated software, and documentation are available
at the following website:
http://www.cs.cmu.edu/∼music/data/melody-
identification.

8. FUTURE WORK

We believe further improvements could be made by study-
ing failures. With bootstrapping techniques, it might be
possible to obtain much more training data and learn
note-by-note melody identification, which would solve the
problem of melodic phrases split across two or more chan-
nels. Our current dataset is relatively small, so collecting a
larger dataset could be beneficial for tuning this algorithm
and developing others. With larger datasets, deep learn-
ing and other techniques might be enabled. Perhaps boot-
strapping (or semi-supervised learning) techniques could
be used starting with the present algorithm to label a larger
dataset automatically. We also believe that music struc-
ture can play an important role in melody identification.
Melodies are likely to be longer sequences that are re-
peated and/or transposed, and these non-local properties
might help to distinguish “true” melodies as perceived by
human listeners, even when the melodies are not particu-
larly “melodic” in terms of local features.
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ABSTRACT

This study focuses on the application of different compu-
tational methods to carry out a ”modal harmonic analysis” 
for Jazz improvisation performances by modeling the con-
cept of chord-scales. The Chord-Scale Theory is a theoret-
ical concept that explains the relationship between the har-
monic context of a musical piece and possible scale types 
to be used for improvisation. This work proposes different 
computational approaches for the recognition of the chord-
scale type in an improvised phrase given the harmonic con-
text. We have curated a dataset to evaluate different chord-
scale recognition approaches proposed in this study, where 
the dataset consists of around 40 minutes of improvised 
monophonic Jazz solo performances. The dataset is made 
publicly available and shared on freesound.org. To achieve 
the task of chord-scale type recognition, we propose one 
rule-based, one probabilistic and one supervised learning 
method. All proposed methods use Harmonic Pitch Class 
Profile (HPCP) features for classification. We observed 
an increase in the classification score when learned chord-
scale models are filtered with predefined scale templates 
indicating that incorporating prior domain knowledge to 
learned models is beneficial. This study has its novelty in 
presenting a first computational analysis on chord-scales in 
the context of Jazz improvisation.

1. INTRODUCTION

In this work, we perform an automatic analysis of the tonal 
harmonic context in monophonic improvisation performances 
specifically in the context of Jazz tradition. As proposed 
in [1], the cultural context in music should be considered 
when conducting computational musicological research. Here, 
we employ chord-scales as the unit for computational anal-
ysis of Jazz improvisation. This paper proposes a new ap-
proach for the retrieval of chord-scale information from 
Jazz improvisation performances. In our study, various 
methods are compared for the classification of chord-scale 
types based on Harmonic Pitch Class Profiles (HPCP) ex-
tracted from audio signals. Due to the lack of a dataset 
with monophonic improvised performances that has tem-
poral labels for the chord-scale that is played, we have 
curated a new dataset, which is called The Chord-scale

Copyright: c© 2019 Emir Demirel et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided the 

original author and source are credited.

Dataset. The performance of the proposed methods were
tested on this dataset alongside with a baseline score. This
work proposes a novel approach for the analysis of the
harmonic content in Jazz improvisation, targeting chord-
scales as their use in a specific Jazz style is an essential
skill [2].

In musical context, a scale is a step-wise arrangement of
pitch classes contained within an octave [3]. A Jazz player
is expected to draw on everything he or she knows con-
cerning these scales and their relationships with chords [4].
Clearly, the choice of chord-scales to be played within a
certain harmonic context is very subjective and dependent
on performers artistic decisions. For practical reasons, a
limitation on the list of chord-scales to detect or estimate
is considered in this work. The readers are encouraged to
refer to the Scale Syllabus by Jamey Aebersold [5] for an
extended set of chord-scales used in Jazz improvisation.

Intuitively, audio features that represent pitch or pitch
class information of the musical content would be ideal
for the classification of chord-scales. One approach could
be performing chord-scale classification based on (musi-
cal) note tracks. However, this approach would require a
highly accurate transcription of the improvised content to
achieve a robust classifier and predicting accurate results.
To skip the automatic transcription step, we employ Har-
monic Pitch Class Profiles (HPCP) as features for classifi-
cation and the estimation of the chord-scale type.

Three methods are proposed for the classification stage.
First, a set of predefined binary chord-scale templates are
used in a pattern matching strategy based on likelihoods.
The second approach is an automatic classification pipeline
using Support Vector Machines (SVM). Finally, we apply
a similar pattern matching strategy with that of the first
method, but replacing predefined templates with chord-
scale models learned from labeled data using Gaussian Mix-
ture Models (GMM). Alongside the performance of the
proposed chord-scale recognition methods, the choice of
different statistical features for classification is tested dur-
ing experiments.

This paper is structured as follows. First, a big picture
of this work is introduced. Then relevant domain knowl-
edge and a review of the previous attemps for musical scale
estimation are provided. Then, we introduce the Chord-
Scale dataset. Fourth and fifth sections explain the feature
preprocessing stages. Later the automatic classification of
chord-scale types are explained. The experiments compar-
ing the performances of the proposed classification algo-
rithms and varying statistical features are given in Section
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7. Then we conclude with discussions regarding the re-
sults of the experiments and possible future directions of
this study.

2. BACKGROUND INFORMATION

Due to the high degree of multidisciplinarity of the re-
search area of Music Information Retrieval (MIR), it is
essential to have a comprehensive outlook that comprises
both music theoretical (or domain) knowledge and the ad-
vanced computational methods for music modeling when
doing research for solving an MIR task. Our study for
chord-scale recognition proposes combining methodolog-
ical approaches from both musical and machine learning
domains. In this section, we examine the musical theoret-
ical concepts that motivated this work and computational
methods to analyze certain musical concepts that are re-
lated to chord-scales.

2.1 The Chord-Scale Theory

The chord-scale theory is a method of mapping a list of
scales to a list of chords and the theory aims to explain the
inter-relationships between the chords and scale in the con-
text of Jazz improvisation. For last few decades, jazz mu-
sicians use the approach of chord-scales when improvising
over chord progressions. The essence of the chord-scale
approach is if a chord is diatonic to a certain scale, than
that scale can be used as a resource for creating melodic
lines.

In traditional approach for tonal harmony, chords are built
in three tones or triads. In Jazz tradition though, seventh
degrees and additional color tones are commonly used, de-
scribing a chord or a chord progression with all its potential
tonal possibilities. Chords are vertical structures of notes
where the chord tones are separated by leaps while scales
form a step-wise arrangement of notes [2]. Playing consec-
utive steps is much easier for playing fast and accurately
which makes the chord-scale theory a preferable approach
for improvisation among jazz musicians.

The list of chord-scales involved in this study for analy-
sis are determined according to the content of Gary Bur-
ton’s on-line course of Jazz Improvisation. In addition to
the scales involved in the course, we consider other mother
scales included in [6] that are commonly used in Jazz per-
formances. The complete list of chord-scale mapping to be
considered in this study can be seen from Table 1.

2.2 Chord-Scale Type Recognition

The task of automatic chord-scale recognition (or detec-
tion) from musical audio is relatively a new field of re-
search in Sound and Music Computing (SMC) and has not
been investigated as deeply as other MIR tasks like auto-
matic music transcription, chord recognition, musical sim-
ilarity, style identification, etc. However the retrieval of
chord-scale related information has a potential to be ben-
eficial for many MIR tasks and applications including the
aforementioned titles.

Even though there is no well developed literature specif-
ically focusing on the automatic chord-scale recognition

task, there are relevant research that study related musico-
logical concepts to chord-scales. In [7], Weiss and Habryka
proposes an algorithm for visualizing the tonal character-
istics of classical audio recording through the concept of
scales. In the second approach presented in the paper,
the authors apply maximum likelihood estimation on audio
frames using chroma features to estimate the scale-type.

Conceptually, chords and chord-scales are theoretically
and practically related concepts in musical practice. The
same may hold true for the recognition of both musical
concepts as separate Music Information Retrieval (MIR)
tasks. Both chords and chord-scales are musical harmonic
structures that are defined in terms of pitch classes. This
relevance of these concepts inspired our study to employ
some of the common probabilistic approaches used for chord
recognition. In [8], the authors study the effects of employ-
ing binary chord templates and probabilistic chord mod-
els, where they do not report a significant performance im-
provement of using learned chord models as opposed to
predefined binary templates. In [9], the authors use chro-
mas extracted in various ways with the goal of establish-
ing timbre invariant feature vectors. For chord recognition,
Gaussian Mixture Models are used as the pattern matching
strategy.

3. DATASET

We have curated a new dataset for the context of the study
presented in this paper. The Chord-Scale Dataset con-
sists of 39 monophonic improvisation performances in 12
chord-scale types (Table 1) commonly used in Jazz impro-
visation. The recording device used during the data col-
lection sessions is Zoom H-6. The total duration of the
dataset is around 40 minutes and the recordings belong to
either tenor saxophone or trumpet performances. Through-
out each recording the tonic and the tonal harmonic context
is kept constant. The musical phrases (or motif s) in each
recording are annotated with their start and end times. In
order to maintain a balanced dataset in terms of number
of phrases per chord-scale type, we have included 4 addi-
tional tracks from Jamey Aebersold Jazz, Volume 26: The
”Scale Syllabus” [5]. In total, there are 43 tracks and 236
data points, each representing a musical phrase. Hence,
the chord scale recognition in our study is performed on
the phrase level

The dataset is shared publicly on freesound.org 1 . The
phrase onset and offset annotations can be found in the
same repository with the code to generate and reproduce
the experiments 2 . The annotation format in this dataset
is similiar to the chord progression annotation format pro-
posed in [10]. For reproducibility purposes, we have made
the frame-level HPCP features extracted from the record-
ings available in the github repository. Moreover, this dataset
also includes instrument labels for each recording.

1 https://freesound.org/people/emirdemirel/packs/24075/
Pack ID: 24075

2 https://github.com/emirdemirel/Chord-ScaleDetection
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4. FEATURE EXTRACTION

pitch class Profiles (PCP) [11] or chroma features [12] [13]
have been a popular tonal representation of musical sig-
nals since their introduction around two decades ago. In
our system, we have used Harmonic Pitch Class Profile
(HPCP) features for the recognition of the chord-scale type
from a musical phrase. HPCP features are a specific type of
chroma features which are extracted via weighted mapping
of harmonic peaks in the frame spectrum onto 12 pitch
classes [14].

One may argue that monophonic musical signals can be
conveniently transcribed and analyzed in symbolic domain
for more precision and explainability. Such automatic tran-
scription can be achieved in two steps: First, pitch-tracking
would be applied on the improvised performance. Then,
the pitch track would be transcribed into musical note level.
The automatic music transcription procedure introduces much
more complex level of computation. Thus, we propose to
use Harmonic Pitch Class Profile features for the simplic-
ity in conducting a subbranch of automatic harmonic anal-
ysis that our study focuses on. Given the chord-scale types
included in this study being octave invariant sets of pitch
classes, meaning that the relative octave differences be-
tween pitches that belong to the same pitch class does not
influence the chord-scale type estimation proposed in this
study. According to this consideration, using HPCP fea-
tures does not introduce inefficacy for achieving the chord-
scale recognition task.

4.1 Preprocessing

First, the audio signal is filtered with inverted approxima-
tion of equal loudness curves in order to account for the
non-linear perception of the spectra in the human audi-
tory system [15]. The sampled and filtered audio signal
is divided into series of analysis frames of size Nframe
and hop size of Nhop. Then, each analysis frame x(n +
l ·Nhop) is multiplied with a ”Hanning” window function
w(n), to obtain the windowed audio signal xw(n), where
n = 0, 1, ..., Nframe − 1 and l indicates the number of the
frame that is analyzed.

4.2 Harmonic Pitch Class Profiles

Chromagrams or Pitch Class Profiles (PCPs) are widely
used in many applications that aim to extract mid-level
musical information from the audio signal, like automatic
chord recognition key extraction [16], cover song identifi-
cation [17] and such, since they were introduced in [11].

In principle, Harmonic Pitch Class Profiles [14] are mod-
ified versions of Pitch Class Distributions (PCDs) which
are introduced in [11]. In principle, the HPCP extraction
procedure applies a weighted mapping on spectral peaks
detected on frame-based spectra to a finite number of pitch
classes. In our context, we use 12 pitch classes as there are
12 pitch classes defined within one octave in equally the
tempered tuning system.

In order to maintain tonic invariant HPCP features, the
frame level HPCP vectors are constructed with respect to
the tonic frequency of the improvised phrase, so that the

reference frequency fref (HPCP bin # 0) corresponds to
the tonic frequency. The tonic frequency is computed using
the following formula:

fref = ftuning .2
δk .100
1200 (1)

where ftuning is the global tuning frequency of the per-
formance, δk is the distance in semitones between the keys
of the tuning frequency Ktuning and the target key K.

4.3 Post-Processing

The goal of the post-processing steps explained in this sec-
tion is to prepare the feature data for the classification stage.
In order to establish dynamic invariance in the feature vec-
tors, each of the frame-based HPCP vectors are normalized
with respect to a suitable norm. In our methodology, we
employ unitSum (l − 1) norm. By applying unitSum
norm, we obtain relative weights of pitch classes in the
frame-based HPCP vectors.

The pitch class mapping of spectral harmonic peaks causes
artifacts on frame-level HPCP vectors. In order to mini-
mize these artifacts, we only consider HPCP bin with the
maximum value in the frame-level HPCP vectors and set
the rest of the bins to zero (Equation 2). The resulting
feature vectors are denoted as HPCP ′(i) This process is
valid for our case since the analysis audio files are mono-
phonic / one-instrument performances and it is expected to
have only one dominant pitch class in the feature frames.

HPCP ′(i) =

{
HPCP (i), if i = maxi HPCP (i)

0, otherwise
(2)

We apply further processing on the frame-based chroma
features in order to reduce the influence of noise and ar-
tifacts in the summarized features for classification. The
logic of our noise removal method is as below:

if argmax(HPCP ′(n)) 6= argmax(HPCP ′(n± 1) :

HPCP ′(n) = 0

k = 0, 1, 2, ..., 11
(3)

The recordings in the data set are monophonic and the
post-processed feature vectors have only one non-zero com-
ponent that is the pitch class with maximum energy in the
unprocessed vectors. The non-maximum pitch classes are
discarded on frame level targeting to obtain an overall pitch
class profile distribution that has less influence from the
harmonic artifacts and noise.

5. FEATURE SELECTION

The chord-scale recognition approaches proposed in this
paper are performed on phrase-wise summarized HPCP
features. Frame-level features are summarized into 2 sta-
tistical aspects: the mean and the standard deviation. For
each pitch class (or bins in HPCP vectors), the mean and
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standard deviations are calculated over the manually anno-
tated phrase segments. Then, the summarized features are
normalized on l-2 norm.

In Figure 1, the summarized feature histograms are shown
for both of mean and standard deviation features.

Figure 1: pitch class distributions of statistically sum-
marized features. Mean features (left) and std features
(right). Sample : ’Improvisation on Minor Scale - Trumpet
- Phrase # 2’

It can be seen from the plots in Figure 1 that the his-
tograms have non-identical but similar distributions over
pitch classes, which indicates both features contain rele-
vant information. Since these histograms represent statis-
tical summarization of tonal features, it can be maintained
that as both statistical features capture similar tonal aspects
from the acoustic signal.

6. CLASSIFICATION

In this study, we propose 3 distinct chord-scale recogni-
tion algorithms, The first approach applies pattern match-
ing using Maximum Likeliest Estimation (MLE) based on
predefined binary chord-scale templates. In the second ap-
proach, we use Support Vector Machines (SVM) for clas-
sification of chord-scale types. Finally, we propose to re-
place binary templates in the first approach with chord-
scale models that are learned using Gaussian Mixture Mod-
els (GMM).

6.1 Binary Template Matching

The first chord-scale recognition method we have devel-
oped follows a Binary-Template Matching (BTM) strategy,
which is inspired by the scale matching method proposed
in [7]. The method proposed is essentially a maximum
likelihood estimation procedure where the likelihoods are
computed as the product of pitch classes in the chroma vec-
tors. We propose to compute the likelihoods as the sum of
the pitch classes, due to the methodological and contextual
differences explained in Section 4.3.

The chord-scale type likelihoods S are obtained by com-
puting the inner products of the statistically summarized
chroma vectors HPCP with each of the chord-scale tem-
plates Ts:

S(s) =
11∑

i=0

HPCP (i) · Ts(i) (4)

Table 1: Scale Dictionary

Scale Types s Binary Templates Ts
Ionian (Major) ( 1 0 1 0 1 1 0 1 0 1 0 1 )

Dorian ( 1 0 1 1 0 1 0 1 0 1 1 0 )
Phrygian ( 1 1 0 1 0 1 0 1 1 0 1 0 )
Lydian ( 1 0 1 0 1 0 1 1 0 1 0 1 )

Mixolydian ( 1 0 1 0 1 1 0 1 0 1 1 0 )
Aeolian (Natural Minor) ( 1 0 1 1 0 1 0 1 1 0 1 0 )

Locrian ( 1 1 0 1 0 1 1 0 1 0 1 0 )
Melodic Minor ( 1 0 1 1 0 1 0 1 0 1 0 1 )

Lydian b7 ( 1 0 1 0 1 0 1 1 0 1 1 0 )
Harmonic Minor ( 1 0 1 1 0 1 0 1 1 0 0 1 )

Altered (Super Locrian) ( 1 1 0 1 1 0 1 0 1 0 1 0 )
Whole Tone ( 1 0 1 0 1 0 1 0 1 0 1 0 )

Half-Whole Step ( 1 1 0 1 1 0 1 1 0 1 1 0 )
Diminished

Finally, the chord-scale type s with the maximum likeli-
hood would be determined as the estimated or detected
scale type.

S′ = max
s
S(s) (5)

where S′ denotes the final estimated chord-scale type.

6.2 Support Vector Machines

Support Vector Machine (SVM), first introduced in [18], is
a classification and regression tool that uses a hypothesis
space with linear functions in a high dimensional feature
space, trained using a learning algorithm from optimiza-
tion theory that implements a learning bias from statistical
learning theory [19].

In our SVM classification model, we use statistically sum-
marized feature vectors as the feature data for the classifier.
The SVM classifier holds Radial Basis Function (RBF)
kernels which provide more flexible mapping of feature
spaces. The penalty parameter C and the kernel coefficient
γ of the classifiers are optimized using Grid Search / Cross
Validation as in [20]. The following parameter grids are
iterated over to choose the best pair of hyperparameters:

C :
{
0.001, 0.01, 0.1, 1, 10, 100, 1000

}

γ :
{
0.001, 0.01, 0.1, 1

}

6.3 Gaussian Mixture Models

Finally, we propose a probabilistic approach that resembles
the binary-template based likelihood strategy in Section
6.1 but applies pattern matching on learned chord-scale
models from labeled data. In this approach, each chord-
scale model is constructed using Gaussian Mixture Models
(GMM) defined in terms of mean µ and a covariance ma-
trix. A GMM is a weighted sum of multivariate Gaussian
distributions [21], which is defined as :
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Figure 2: Chord-Scale Models learned using GMM, x axis = HPCP index, y axis = weights assigned by GMMs
Top row: major, dorian, phrygian, lydian, mixolydian, minor

Bottom row: locrian, melodic minor, lydian b7, altered, harmonic minor, half-whole step diminished
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(6)
where K is the number of mixture components in the

Gaussian distribution. In the case ofK = 1, the distribution
employs the maximum likeliest estimate of parameters. In
our approach, we construct a GMM with one component
(K = 1) for each chord-scale type Then the estimation of
the likeliest chord-scale in Equation 4 is applied by replac-
ing the binary templates Ts by µ.

S(s) =
11∑

i=0

HPCP (i) · µs(i) (7)

Finally, the chord-scale type with the maximum likeli-
hood is determined (as in Equation 5) as the chord-scale
estimate.

7. EXPERIMENTS

The experiments are conducted to test the choice of sta-
tistical summarization of features and the performance of
the proposed algorithms for chord-scale recognition. The
method introduced in [7] is also tested on the Chord-Scale
Dataset as comparison with the proposed classification al-
gorithms during evaluation.

The pattern matching algorithms (BTM and GMM) em-
ploy MLE for classification. MLE is applied on the mean
vectors for each chord-scale model. Note that the out-scale
pitch classes in GMM models have non-zero values. Since
the MLE procedure in this study does not give penalty to
out-scale pitch classes, these features potentially decrease
the classification performance. In order to overcome this
and obtain a higher performance, we apply element-wise
multiplication on the binary-templates and the learned mod-
els, which filters out the out-scale pitch classes (setting
them to zero) and eliminating the effect of these features on

MLE-based classification. The resulting chord-scale mod-
els are shown in Figure 2. The performances of both the
filtered and unfiltered GMM models are tested during the
experiments.

The implementations of machine learning algorithms used
in this study are obtained from scikit-learn, which is a
Python module that integrates a broad range of state-of-
the-art machine learning algorithms for medium scaled prob-
lems [22].

8. RESULTS

As explained in Section 6.2, the hyperparameters of the
SVM classifier are optimized using Grid Search. First, the
dataset is split into two balanced subsets: train and test
sets. 10-fold cross validation is applied on the train set
for optimizing the hyperparameters of the SVM classifier.
More explicitly, the train set is split in 10 folds and one
fold is chosen as the validation set at each iteration. The
validated hyperparameter pair is then used to evaluate the
performance of the classifier on the test set. In order to in-
crease the generalization power of this procedure, we clas-
sification scores are obtained 10 times on pseudo random-
ized development and test splits. Then, the average per-
formance scores of all iterations are reported as the final
SVM classifier score. The other classifiers included in our
experiments do not hold hyperparameters for optimization.
For the GMM based methods, the chord-scale models are
trained on the same development set as in the SVM classifi-
cation procedure and tested on the test split. Similarly, 10
iterations on the pseudo randomized splits are performed
and the average is reported. Since the BTM method does
not require training, the classifier is directly tested on the
same test sets.

Table 2 shows the classification performances of the al-
gorithms presented in this paper alongside the comparison
ofHPCP.mean andHPCP.std features. The results are
provided in terms of accuracy scores (%). HPCP.std fea-
tures outperforms HPCP.mean for almost all methods
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which implies standard deviation is a more suitable choice
of statistical summarization of features for this task.

For MLE based classification, additive method performs
better than multiplicative likelihood estimation method. This
may be due to how the features are processed, as men-
tioned in Section 4.3. The unfiltered learned GMM models
perform worse than predefined binary template matching
(BTM) algorithm. More so, multiplicative MLE performs
poorly ( around 20% ). It appears that GMM models learn
parameters that assign more weight on the out-scale pitch
classes in the overall pitch class distribution of chord-scale
models. These weights on out-scale pitch classes cause an
expected decrease in accuracy score for MLE based clas-
sification as the method relies on the weights assigned to
each pitch class by the mixture model.

Table 2: Results - Accuracy Scores

Method HPCP.mean (%) HPCP.std (%)
BTM-MLE (Mult.) 72.03 68.64
BTM-MLE (Add.) 79.23 79.66

SVM 76.25 80.83
GMM-MLE (Mult.) 19.92 21.18
GMM-MLE (Add.) 69.92 79.23

GMM-MLE-filt (Mult.) 71.19 71.61
GMM-MLE-filt (Add.) 76.69 84.32

The accuracy scores increase evidently when MLE is ap-
plied on GMMs that are filtered using the predefined bi-
nary chord-scale templates. These filtered GMMs show a
performance increase between 6 − 60% depending on the
chord-scale recognition method and the feature set used for
classification. Leveraging domain knowledge appears to
be effective for our task. Overall, Additive MLE on filtered
GMMs using HPCP.std features perform the best among
all the proposed algorithms. For comparison with the base-
line, aforementioned algorithm outperforms the method pro-
posed in [7] applied in this context by around 15%.

SVMs have comparable performance with filtered GMM-
MLE. Note that using HPCP.std features perform better
than using theHPCP.mean feature, supporting our claim
that std features are a better fit as features for the classifi-
cation tasks included in this study.

In Figure 3, the confusion matrix of the best perform-
ing algorithm and the feature set is provided. The chord-
scale type with highest error rate is the minor and altered
chord-scale types. The misclassified instances for minor
scale are classified as either phrygian, which differs from
minor scale by only one pitch-class. Most misclassified in-
stances for altered scale are estimated as half-whole dimin-
ished scale. Even though these scales have different func-
tionalities in tonal harmony, they are similar to each other
in terms of diatonic pitch classes or scale degrees, which
seem to be the major source error in classification. To over-
come this problem, tonal harmonic constratints may be
further applied to increase the classification performance.
In general, this algorithm shows a reasonable performance
and makes musically reasonable mistakes.

Figure 3: Confusion Matrix for the best performing
method (GMM-MLE (filtered) with HPCP.std features)

9. CONCLUSION

We have tackled a relatively new domain of analysis in Mu-
sic Information Retrieval research, which focuses on the
retrieval of chord-scale information from improvised Jazz
solos. The automatic recognition of chord-scale would
be of use for various musical applications including style
recognition or transfer, automatic harmonic analysis, per-
former identification and educational purposes. Our study
applies a comparative study between a rule-based and two
conventional machine learning approaches. The proposed
methods were also used in a task specific manner for other
related MIR tasks like chord recognition [13] [8], key de-
tection [23] [24] [16]. The results of our study show a
similar trend with the prior study on these related tasks.
GMMs alone do not perform any better than the prede-
fined binary template (BT) matching method. However,
filtering the GMM scale models with these predefined tem-
plates is shown to be beneficial for the proposed chord-
scale recognition pipeline. This result reveals the advan-
tage of incorporating prior domain knowledge with learned
models. Moreover, summarization of frame-based HPCP
features over phrase-wise audio segments for chord-scale
classification using their standard deviations perform more
robustly compared to summarizing in terms of the mean
of frame-based features, which agrees with the prior study
in [20]. We have conducted the experiments on the Chord-
Scale dataset, which is introduced in this work and shared
publicly for reproducible and open science. The code to
reproduce the experiment results and scale annotations can
be found in the github repository. There are numerous pos-
sible future directions that the study presented here can
take. Chord-scale recognition can be performed on MIDI
notes (features) transcribed with an advanced AMT algo-
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rithm. For skipping the automatic transcription step, there
are several chroma extraction methods that provide fea-
tures that are more robust to noise or the variance of the
instrument type [13] [25]. The application of more ad-
vanced machine learning methods like neural networks re-
quire big-scale datasets. Hence, new strategies for obtain-
ing more data in the context of Jazz improvisation need to
be explored.
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ABSTRACT

This demo presents an acoustic interface 1 which allows to
directly excite digital resonators (digital waveguides, lumped
models, modal synthesis and sample convolution). Param-
eters are simultaneously controlled by the touch position
on the same surface. The experience is an intimate and in-
tuitive interaction with sound for percussive and melodic
play.

1. INTRODUCTION

Motivation for the development of the instrument Tickle
was a more intimate [2] and musical interaction with dig-
ital waveguides, lumped models, modal synthesis, sam-
ple convolution, as well as feedback-delay lines and fil-
ters. Aforementioned synthesis models can be subsumed
as digital resonators. The instrument and questions about
its driver architecture are discussed in [3] 2 .

2. THE TICKLE INSTRUMENT

2.1 Excitation, Material and Texture

To create an acoustic excitation signal we rely on a hard
material that captures the spectra of different gestures. In
addition to the rigidity of the material, a textured surface is
essential to create enough noise when rubbed and wiped.
Silicone surfaces are not suitable for our application since
they absorb too much of the subtle interaction. A hard
surface allows different spectra to propagate towards the
piezoelectric sensor, creating vastly different responses in
the digital resonators whether it is hit by a thumb, nail,
ring or bowed with a violin bow on its edge. Percussive
gestures like hits, knocks, flicks and continuous interac-
tions like rubbing, scratching, or bowing can equally be
captured.

2.2 Residual and Resonance

We want the interface to resonate as little as possible, so
that we can feed this dry residual signal of the touch ges-

1 In the literature the term hybrid controller [1] is found
2 See this earlier publication for further references to related literature

as they can’t be included in this two-page demo paper
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ture as excitation signal into a digital resonator (See also
[4]). This way the full power of physical modeling syn-
thesis algorithms may be accessed. The practice of send-
ing generated noise-bursts or clicks into digital resonators
which can be found in literature for physical modeling and
which is still the standard in many soft- and hardware im-
plementations is crippling the true potential of such algo-
rithms.

2.3 Synthesis

Our synthesis algorithms are implemented as Pure Data
patches and are available through our Git repository. 3

For the sound synthesis we employ techniques of digital
reverbrators. They can be understood as modeled simula-
tions (waveguides and mass-spring models) of the physics
happening in real instruments as described by Smith [5].
These models can be generated with Berdahl and Smith’s
Synth-A-Modeler Compiler [6]. Synth-A-Modeler gener-
ates FAUST code which can be compiled in a variety of
other formats such as a Pure Data external. With the Pure
Data object pmpd˜ from Henry’s PMPD [7] library which
can create static mass and spring models we achieved nice
sounding string, plate and gong topologies. Drawback of
PMPD is that the topographies and properties of the model
can’t be interactively modified while sound is processed.

We are not aiming for perfect recreations of orchestral in-
struments, our interest lies in the exploration of synthetic
sounds with an acoustic and intimate level of control. Al-
gorithms like a nested comb filter delay as described by
Ahn and Dudas [8] prove interesting and fun to interpret
with our instrument while being surprisingly cheap to com-
pute. We can employ our acoustic interface to excite ex-
tended, hybrid and abstract cyberinstruments as described
by Kojs et al. [9]. Convolution methods with samples can
be useful to digital Foley artists to articulate a sample in a
plenitude of variations.

2.4 Gestural Augmentation

To augment the excitation signal from the piezoelectric
contact microphone, we gather the X and Y position of
the touch event. A touch event lasts from the beginning
of a touch until the release. We may also refer to it as a
gesture. It can be translated to a note on and off with the
note depending on in which hexagon the touch happened.
While the gesture is lasting we can derive the X and the Y
offset from the beginning of the touch event to the current

3 gitlab.chair.audio mirror: github.com/chairaudio
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touch position. It is a useful modulation parameter for the
synthesis. Naturally this coordinate offset can also be ex-
pressed in triangulated distance and angle between current
position and origin of the gesture. Another useful modula-
tion parameter is the speed of the movement.

When moving across the surface of the instrument, it may
either be desired to trigger all notes like chimes or only
allow the first note (or pitch) to be activated and thus allow
for larger gestures extending to the whole surface while
still playing the initial note.

Figure 1. The Tickle instrument

3. CONCLUSIONS

We believe only a hands-on experience with our instrument
can convey the qualitative leap in intuitive control and in-
timate interaction with a musical instrument.

Testers reported that being able to discern a touch by the
finger tip and the nail alone brings the interaction to a new
level, that is new to melodic digital interfaces. The spectral
and overall loudness response feels very natural and can be
compared to that of an acoustic instrument.

Even though our instrument Tickle combines several well-
known technologies which on their own may not be no-
table, in their combination they synergize to a powerful
intuitive instrument which allows for a natural and inti-
mate interaction with precise and reproducible control over
sound. The existing technologies are touch pad, contact-
microphone and physical modeling synthesis.

Feeding an analogue excitation signal into a (digital) res-
onator can create familiar as well as alien sounds. Sounds
which either behave like instruments we know: Violin, gui-
tar, snare drum, cymbal, gong, marimba, etc. or sounds
which are distinctly synthetic but have an analogue touch
to it. In a post-digital environment where “the paradigms
analogue and the digital [...] exist simultaneously” [10,
P.13] we believe that many new instruments will be seen in
this new category of acoustic excitation instruments with
digital resonators.
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ABSTRACT 
This paper describes our interactive music system called 
the “Melody Slot Machine,” which enables control of a 
holographic performer. Although many interactive music 
systems have been proposed, manipulating performances 
in real time is difficult for musical novices because melo-
dy manipulation requires expert knowledge. Therefore, 
we developed the Melody Slot Machine to provide an 
experience of manipulating melodies by enabling users to 
freely switch between two original melodies and morph-
ing melodies.  

1. INTRODUCTION 
Our Melody Slot Machine provides a unique experience, 
enabling the control of a virtual performer. The Melody 
Slot Machine has these three features. 

User-Friendly Interface: To enable anyone to easily 
control his or her virtual performer, we used a dial-type 
interface that enables replacing a part of the melody seg-
ment that the virtual performer will play (Figure 1a, 1b). 
The score is sandwiched between an acrylic board and a 
tablet. The dial interface on the tablet can be operated 
with fingers through a rectangular hole in the acrylic 
board . When the red lever on the right side of the score is 
pulled down, all the dials rotate, and one of the melody 
segments on the dial is randomly selected. Variations in 
melody segments are composed on the basis of the melo-
dy morphing method, so switching the melody segments 
maintains the overall structure of the melody and only 
changes the ornamentation [1]. 

Easy-to-understand Control Results: We prepared a 
display showing a performer so that the results of the control 
can be confirmed visually as well as aurally. A holographic 
display is used to show the performer so as to increase the 
feeling of presence (Figure 1c). The users can feel like they 
are controlling a performer by operating a melody. 

Improving the Feeling of Presence: We recorded all 
the performance sounds to increase the feeling of presence. 
For the recording, we used a studio with very little reverber-
ation; only the reverberation of the preceding sound enters 
the beginning of the melody segment because of the melody 
splitting into segments. Reverberation is added when the 
melody is played. Three pairs of speakers were installed, 
and the pan pot and reverb were set for each direction so 
that the hologram seemed to be a real performer (Figure 
1d). By placing one’s head between two pairs of speakers, 
both the sound and video enhance the feeling of presence. 

2. MELODY MORPHING METHOD 
The Melody Slot Machine is a system that enables novic-
es to experiment with melody manipulation on the basis 
of the melody morphing method [1]. 
    Figure 2 shows an example of abstracting a melody by 
using a time-span tree. There is a time-span tree from mel-
ody D, which embodies the results of the Generative Theo-
ry of Tonal Music (GTTM) analyses. The structurally im-
portant notes are connected to a branch close to the root of 
the tree. In contrast, ornamentation notes are connected to 
the leaves of the tree. We can obtain an abstracted melody 
E by slicing the tree in the middle and omitting notes that 
are connected to branches under line E. 

In melody morphing, we use the primitive operations 
of subsumption relation (written as ⊑), meet (written as 
⊓), and join (written as ⊔), as proposed by Hirata [2]. 
Subsumption represents the relation by which “an instan-
tiated object” ⊑ “an abstract object.” The meet operator 
extracts the largest common part or the most common 
information of the time-span trees of two melodies in a 
top-down manner. The join operator joins two time-span 
trees in the top-down manner as long as the structures of 
two time-span trees are consistent. 
(a) Slot dials 

 
(b) Slot lever                                      (d)Tree pairs of speakers 

         
Front side view  (c) Holographic display          Right side view 

 
Figure 1. Melody Slot Machine components 

 
Figure 2. Abstraction of melody 
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By using the time-span trees TA and TB from melodies 
A and B, respectively, we can calculate the most common 
information, TA ⊓ TB, which are the essential parts of mel-
ody A, as well as those of melody B. The meet operations 
TA ⊓ TB are abstracted from TA and TB, and those discarded 
notes are regarded as the difference information of TA and 
TB (Figure 3a). We consider that there are features without 
the other melody in the difference information of TA and 
TB. Therefore, we need a method for smoothly increasing 
or decreasing these features. The melody divisional re-
duction method can abstract the notes of the melody in 
the differential branch of the time-span tree (Figure 3b). 
We use the join operator to combine melodies C and D, 
which are the results of the divisional reduction or aug-
mentation using the time-span tree of melodies A and B 
(Figure 3c). 

 
Figure 3. Melody morphing method 

3. IMPLEMENTATION 
The holographic display (Dremoc HD3) can be viewed 
from three directions by using three glass panes with 
semitransparent film and reflecting the display installed 
on the top of the device. Figure 4 shows the hardware 
implementation of the Melody Slot Machine. 
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Figure 4. Implementation 

The video signal is connected to the holographic dis-
play with an HDMI cable via the graphics card. The vid-
eo data have been taken in advance from three directions 
for all melody tracks. When the user sets the dial num-
bers on the tablet, the system plays in accordance with 
those numbers. The video is large in size compared to that 
of the audio, and it takes more time to start playing the 
file, making it more complicated than sound processing. 

First, all the video files are concatenated into one file, 
and two copies of that file are written to a disk as file 1 and 
file 2. Then, during the playback of video A in file 1, if the 
next video to be played back is B, file 2 seeks the playback 
posi-tion of video B, and playback occurs immediately. At 
the moment video A ends, it releases the connection of 
the renderer connected to file 1, connects to file 2, and 
plays video B. The switching of this renderer ends within 
one frame, which is within 33.3 milliseconds, so a 
smooth connection without dropped frames is apparent.  

We implemented this algorithm by using the VID-
DULL video engine in MAX/MSP and Apple ProRes 422 
video co-dec with a frame rate of 30 fps.   

4. EXPERIMENTAL RESULTS 
With VIDDULL, we can set the cache size of the buffer 
to be read ahead when seeking the play back position. 
Table 1 shows the frame rate of the video when cache 
size changes. We used a cache size of 0.5 gigabyte, where 
the frame rate did not decrease much. The seeking of the 
playback position starts 0.5 seconds before playback. 
This is because with a cache size of 0.5 gigabytes, the 
time to seek is within 0.5 seconds. If the seeking time is 
less than 0.5 seconds, frame dropping occurs. 

Table 1. Maximum and minimum frame rates 

Cache size Maximum frame rate Minimum frame rate 

0.01 gigabyte 27 fps 24 fps 

0.05 gigabyte 27 fps 24 fps 

0.08 gigabyte 28 fps 24 fps 

0.15 gigabyte 28 fps 25 fps 

0.50 gigabyte 30 fps 28 fps 

5. CONCLUSION 
In this paper, we described the Melody Slot Machine, 
which enables control of virtual performers on a holo-
graphic display. We plan to create various contents for 
the Melody Slot Machine in future works. 

6. REFERENCES 
[1] M. Hamanaka, K. Hirata, and S. Tojo, “Melody 

Morphing Method Based on GTTM,” ICMC2008, 
pp. 155–158, 2008. 

[2] K. Hirata and T. Aoyagi, “Computational Music 
Representation Based on the Generative Theory of 
Tonal Music and the Deductive Object-Oriented 
Database,” CMJ, Vol. 27, No. 3, pp. 73–89, 2003. 

83

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



OM-AI: A TOOLKIT TO SUPPORT AI-BASED COMPUTER-ASSISTED
COMPOSITION WORKFLOWS IN OPENMUSIC

Anders Vinjar
Composer Researcher

Oslo, Norway
anders@avinjar.no

Jean Bresson
STMS lab: IRCAM – CNRS – Sorbone Université
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ABSTRACT

We present ongoing works exploring the use of artificial in-
telligence and machine learning in computer-assisted mu-
sic composition. The OM-AI library for OpenMusic im-
plements well-known techniques for data classification and
prediction, in order to integrate them in composition work-
flows. We give examples using simple musical structures,
highlighting possible extensions and applications.

1. INTRODUCTION

The idea of making programs capable of composing ap-
peared early in the history of computer music [1]. To-
day artificial intelligence and machine learning are com-
monly used for research on computational creativity [2],
“autonomous” generative and/or improvisation systems [3–
5], or real-time performance monitoring and interaction
[6]. However, apart from a few examples [7, 8], machine
learning and AI are rarely exploited by composers as a
means for writing music.

Computer-assisted composition systems develop explicit
computational approaches through the use of end-user pro-
gramming languages [9]. At the forefront of this approach,
OpenMusic is a popular visual programming environment
allowing users to process and generate scores, sounds and
many other kinds of musical structures [10].

We present ongoing works exploring the use of AI and
machine learning techniques in this environment. In con-
trast to approaches aimed at autonomous creative systems,
our aim is to apply these techniques as composition assis-
tance in the classification and processing of musical struc-
tures and parameters. Therefore we target a “composer-
centered” machine learning approach [11] allowing users
of computer-assisted composition systems to implement
experimental cycles including preprocessing, training, and
setting the parameters of machine learning models for the
data generation, decision support or solving other generic
problems.

Copyright: c© 2019 Anders Vinjar and Jean Bresson. This is an open-access ar-

ticle distributed under the terms of the Creative Commons Attribution 3.0 Unported

License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

2. TOOLS AND ALGORITHMS

The OM-AI library for OpenMusic provides basic tools from
the domain, with elementary algorithms to classify vectors
in a multidimensional feature space [12].

2.1 Vector Space

A generic data structure called VECTOR-SPACE is used to
store vectorized data and information necessary to train
and run machine learning and classification models. The
structure is simple and generic; it is initialized with a list
of entries (key, value) for a hash-table of vectors, where
keys can be strings or any other unique identifiers for the
different vectors.

Feature-vectors are also stored as hash-tables using de-
scriptor names as keys. It is assumed that each feature-
vector contains the same set of descriptors. Descriptor
names can also be input to the VECTOR-SPACE initializa-
tion for facilitating visualization and query operations. A
graphical interface allows the 2D and 3D visualization of
vectors in the feature space, selecting two or three descrip-
tors as projection axes (see Figure 1).

Figure 1. 2-D vector space visualization.

2.2 Clustering and Classification

Within the VECTOR-SPACE, built-in or user-defined dis-
tance-functions are used to compute measurements of sim-
ilarity between feature-vectors (i.e. distance within the fea-
ture space) and centroids for any set of vectors. These
operations are applied in various algorithms for automatic
clustering and classification.

The k-means algorithm performs “unsupervised” cluster-
ing by grouping feature-vectors around a given number of
centroids. This process can be done in a visual program
(see Figure 2) or interactively from within the VECTOR-
SPACE graphical interface (as in Figure 1).
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Figure 2. A simple example of clustering applied to a se-
quence of notes. Feature-vectors are formatted and input
to the VECTOR-SPACE object. From there, the k-means al-
gorithm clusters the data based on the specified features
(pitch, duration, velocity). Vectors are output and split by
clusters to generate four separate voices.

Supervised classification approaches (based on prelimi-
nary labelling information) are also available. In our generic
model, a class is represented by a unique label and a list of
IDs corresponding to known members of this class (this is
typically determined during a preliminary training stage).
Based on this information (which implicitly labels all known
class members), it is possible to compare any unlabelled
vector with centroid feature-vectors of the different classes,
or its similarity with an established neighbourhood in the
multidimensional feature space (k-NN). Such comparison
allow to determine a measure of likelihood for this vector
belonging to a certain class.

3. MUSICAL DESCRIPTORS

An extensible set of description algorithms allows to ex-
tract features from musical objects (harmonies, chord se-
quences, temporal attributes etc.). These features can be
combined freely to constitute the vectors representing mu-
sical data in the different OM-AI algorithms.

Currently available descriptors include pitch statistics:
most common pitch or pitch class, pitch histograms, mean
pitch, pitch variety, interval between prevalent pitches, rel-
ative pitch prevalence, importance of different registers,
tonal centers, etc., and melodic features: intervals, arpeg-
gios and repetitions, melodic motions and arcs, etc.

We are currently working on extending the set of pro-
vided feature extraction algorithms and experimenting with
more advanced musical examples.

4. RESOURCES AND DOWNLOAD

The sources of OM-AI are open and available along with
documentation and examples at:
https://github.com/openmusic-project/OMAI
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program an audio synthesis  dedicated  environment  like
the ones mentioned above. 

Natively, inside Unity, there are no istruments that can
produce sound and that can be driven by an algorithm, in-
struments that are a must to carry out an evolving and un-
predictable sonification; instead, there is a base where to
start to build a sound synthesis chain, a very interesting
and useful native function  called OnAuioFilterRead. It is
called from a separate thread and it aims to fill a buffer
with  samples  that  are  going  to  represent  sounds  when
played  by the  speakers.  However,  there  are  no  classes
providing  objects  with  which  easily  synthesize  basic
waves or carry out other types of sound synthesis; plus,
creating a synthesis chain within OnAuioFilterRead is not
so immediate and can easily lead to confused code, as
well as a loss of performance. From here, the decision to
built some personal instruments in order to obtain an al-
gorithmic sonification, ended in building from scratch a
solid and optimized library containing instruments for the
so called “academic” audio synthesis.

2. GENESIS

The first project of URALi was a simple sinusoidal oscil-
lators class meant to carry out a precise and specific task,
that was providing sinusoidal waves's data ready to use in
various  synthesis  processes  (ring  modulation,  additive
and FM), to create the algorithmic, real-time and visual-
s-related  sonification of  Life,  an  audiovisual  generative
software based on a custom version of the famous J. Con-
way's Life algorithm. 

However, the project grew up very quickly, eventually
becoming the base where to start the building of a bigger
library to be used for the procedural  and academic-like
sonification of any Unity project using it, bringing also an
added value that comes from the proven extreme simplic-
ity to integrate and correlate, in this fully multimedial en-
vironment,  audio data with visual  ouputs   and/or  algo-
rithms, and vice-versa.

3. INSIDE URALI

URALi  is,  at  the moment,  a  full-working audio library
that offers basic objects for the audio synthesis.  In  this
paragraph is proposed an overview of the actual state of
completion of the library,  as well as the main improve-
ments scheduled to be implememented as soon as possi-
ble, since there is still a lot of work to do in order to make
URALi a really powerful instrument.

ABSTRACT

This  paper  aims  to  give  a  basic  overview  about  the 
URALi  (Unity Real-time Audio Library) project, that is 
currently  under  development.  URALi  is  a  library  that 
aims to provide a collection of software tools to realize 
real-time sound synthesis  in  applications  and softwares 
developed with Unity.

1. INTRODUCTION

Unity is a developing environment used for the creation 
of software applications,  in particular  videogamens and 
mobile apps. Today is well recognized due to the amount 
of instruments it offers within its environment, as well as 
for the great quality of the final product in general, and of 
the graphic in particular. It has, also, a huge community 
of users all over the world, made of people helping each 
other in a collaborative atmosphere. 

Unity is well known for the visuals quality, also if ev-
eryone knows that an app -and also more a game- needs 
not only high level graphic, but also a great audio to re-
sult very effective and addictive. Pre-made audio clips are 
very well  supported within Unity,  with a variety of ef-
fects to manipulate it, and a virual mixer where to mix to-
gether various sources. 

However,  there is  no only the case  where  scenes  are 
built by the developer and there is a story to follow. In 
fact, there is also the case of the generative and algorith-
mic art1, today quite popular, as well as the sonification 
one, where there are little or no rules, and the application 
evolves autonomously during time, based on algorithms 
and random events, as well as on rules. For those cases, a 
developer will likely not use a premade clip, but baybe 
will search for something mor organic and maybe uncom-
mon, and, most of all, that can evolve during time related 
to the application's visuals. 

Of course there are way to control synthesis-dedicated 
softwares like Supercollider and Max/MSP via OSC pro-
tocol, but going that way means the use of external tools 
that can work (interpret and send/receive) OSC data, and, 
more  important,  knowledge  about  how to  operate  and
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3.1 Actual state of completion

At the moment,  URALi provides an implementation of
the following object and features:

 sinusoidal, triangular, sawthooth and square os-
cillators;

 lookup oscillator;

 PolyBLEP  algorithm  to  antialiase  harmonic
waveforms;

 multi-segment (not limited to) ADSR envelope;

 granulator;

 white noise source;

 convenience objects (enveloped oscillator, addi-
tive module);

 multithreading.

3.2 Scheduled features

Among other minor features, and improvements, the pri-
oritay ones are:

 wavetable to play user's own waveforms;

 GUI to tweak the parameters inside Unity editor
and not only inside the code;

 extension  of  the  convenience  objects  section,
adding,  among  the  others,  modules  for  other
types of synthesis;

 miscellaneous utility features, like the possibility
to record to a wav file and to view the spectro-
gram and the waveform generated.

4. THE LOGIC OF URALI

It is worth to distinguish between how URALi works in
the background and how is meant to be used on the final
user side, to have at last an idea of the whole process.

4.1 Internal synthesis logic and design

The idea benind URALi is to avoid the saturation of the
OnAudioFilterRead function with any kind of wave cal-
culation or wavetable's sample interpolation. So it leaves
all  the  calculation  tasks  to  a  separate  and  much  more
faster background thread, that eventually returns the re-
sult of all operations, allowing OnAudioFilterRead to car-
ry out minor tasks, like amplitude or frequency control,
without any performance loss, that would mean disconti-
nuities in the waveform.

4.2 User side design

On the user side, URALi needs the user to write its own
audio  synthesis  chain  inside  a  function  that  has  to  be
passed as the argument for another function that starts the
audio engine. Then, various parameters -such as frequen-

cy or amplitude- of the objects can be modified in run-
time thanks  to  public  properties,  changing  the  acoustic
characteristics of the final output. To achieve an audible
result, then, one have to recall inside of OnAudioFilter-
Read the function of the library that returns the samples,
making possible to hear a sonic result at last.

5. CONCLUSIONS

URALi is still in development and that leads to having,
right now, an instrument that provides only the very es-
sential tools for the audio synthesis, also if those works
perfectly. The hope is that the project (as well as the gen-
erative art as discipline) can interest more artists and Uni-
ty  developers  everyday,  supported  by  a  very  powerful
and friendly development environment.

Last note is that URALi, first of all, is my personal ap-
proach and solution to the lack of instruments for genera-
tive audio that I found in Unity. That means that it may
not be ther perfect  solution, nor the only one. It  works
very well but, as the title says, it is a proposal.
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ABSTRACT

Sequencers almost exclusively share the trait of a single
master clock. Each track is laid out on an isochronously
spaced sequence of beat positions. Vertically aligned po-
sitions are expected to be in synchrony as all tracks refer
to the same clock. In this work we present an experimen-
tal implementation of a decoupled sequencer with different
underlying clocks. Each track is sequenced by the peaks of
a designated oscillator. These oscillators are connected in
a network and influence each other’s periodicities. A fa-
miliar grid-type graphical user interface is used to place
notes on beat positions of each of the interdependent but
asynchronous tracks. Each track clock can be looped and
node points specify the synchronisation of multiple tracks
by tying together specific beat positions. This setup en-
ables simple global control of microtiming and polyrhyth-
mic patterns.

1. INTRODUCTION

Sequencer user interfaces usually have a grid-like structure
with musical time in the x-axis and the number of tracks in
the y-axis. All values in the horizontal refer to the same
discretisation of musical time, often sixteenth notes. As
users place notes on this grid, they expect vertically aligned
points to play in synchrony. This setup is virtually univer-
sal but also notoriously unintuitive for polyrhythmic and
microtiming pattern generation. Modern sequencers offer
several workarounds, such as the possibility to place notes
on a much finer subgrid or the possibility to have repeat-
ing sequences of different length for each track. In this
demonstration we decouple the tracks by using microtim-
ing patterns generated by coupled oscillator networks as
beat positions for each track individually.

2. THE OSCILLATOR NETWORK

A simple oscillator network is modelled as two connected
ordinary differential equations with reset mechanism. The
oscillators peak when their respective values reach a thresh-
old level upeak. A modifying oscillator u2 influences the

Copyright: c© 2019 Silvan David Peter, Gerhard Widmer et al.
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time derivative of a salient oscillator u1 at peaks:

τ1
du1
dt

= u1 + c12δ(upeak − u2) (1)

τ2
du2
dt

= u2 (2)

Each ui is reset to ureset when passing a threshold upeak.
We implement an expanded network of eight oscillators
with modifiable interdependencies cij , initial values, and
frequencies τi. Each oscillator’s peak times are recorded
as sequence of anisochronous beat times.

3. THE SEQUENCER

The sequencer consists of eight tracks, each sequenced by
an assignable oscillator. Each track consists of a definable
number of beat positions visually arranged in the usual grid
structure. The timing of the positions is computed by the
sequence of peaks of its oscillator. A segment of the os-
cillator output can also be looped. To reduce the chaos
of completely independently repeating patterns of differ-
ent length, two looped tracks can be tied together at node
points in the sequence of beat positions. Two tracks that
share a node point will play the respective positions simul-
taneously. The track higher on the y-axis defines the abso-
lute length of the loop, the other loop gets dilated or shrunk
to fit. In the same way subsequences can be distorted by
setting multiple node points. The sequencer will be made
available as web-based tool for experimentation.

4. SUMMARY

By multiplying, connecting, and decoupling the underly-
ing beat oscillations from the familiar grid interface we
are able to implement a simple sequencer with expanded
microtiming and polyrhythm capabilities. A few changes
of the parameters generate for instance quintuplets over a
wonky four on the floor and a continuously evolving com-
pletely distorted timing pattern on top. High-level control
of the whole sequence offers a musically intuitive approach
to timing pattern generation. It is our hope that this se-
quencer architecture facilitates experimentation where edit-
ing single notes becomes too tedious.
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ABSTRACT 

An Android application has been developed to encrypt 

messages using musical notes that can be automatically 

played from the smartphone and/or stored in a midi file to 

be transmitted over any available connection. The app 

has been designed to recover the original message on-the-

fly detecting the notes played by a different device. The 

main objective of this project is to make known the rela-

tionship between cryptography and music showing old 

systems (XVII century) implemented in modern devices, 

the smartphones, using the tools they provide us, such as 

the microphone, the speakers, and the internal storage. 

1. INTRODUCTION 

The encryption of information has always been a matter 

that the human being has been developing over the years 

[7], whether for war purposes or as in the present, for 

example, for privacy of sensitive data in the network [8]. 

One of the most used techniques since the first attempts 

to hide the information has been the substitution of the 

message’s characters by other symbols, such as letters of 

the same or another language, numbers or symbols in-

vented for the occasion.  

 

One of the best treatises in Cryptography of all time, 

written by Lieutenant Carmona in 1894 [6], includes the 

cryptosystem proposed by Guyot, based on the idea of 

Gaspar Schott (1667), of using musical notes to encrypt 

messages. Although this is not the first cryptosystem  

using music as a vehicle to encrypt or hide the  

information, it can be considered as the most representa-

tive one. 

 

Musicypher is an Android application that brings to the 

present this ancient cryptosystem with several objectives 

in mind: on the one hand, highlight the existing relation-

ship between music and cryptography since many years; 

on the other hand, bring cryptography closer to the gen-

eral public through the music, and conversely, promote 

the musical learning through games using (in this case) 

the message encryption. 

 

 

Section 2 describes the Guyot cryptosystem with more 

detail. Section 3 presents the more relevant aspects of the 

software developed. Finally, several conclusions are 

provided in section 4. 

2. THE GUYOT CRYPTOSYSTEM 

There have been various types of encryption, some quite 

original such as Guyot in the seventeenth century, which 

uses music as a way to hide the original text. Using an 

artifact, a musical note or chord was assigned to each 

letter and, with this same device, the sender and receiver 

of the message could encrypt and decipher the infor-

mation. 

Guyot's device consists of two concentric circles. In one 

of them the 26 letters of the alphabet are represented, and 

in the other the note or musical chord with which it will 

be encrypted. With this device, the notes would be writ-

ten in a score. Of course, the final result had no musical 

sense, but it went unnoticed among people without musi-

cal knowledge. When the recipient receives the score, the 

message could be obtained with the same device that was 

used to encrypt the original.  

3. THE ANDROID APPLICATION 

Musicypher is an application that consists of the imple-

mentation of the Guyot crypto-system adapted to current 

technology using a very common device: the 

Smartphone. The main objective is this adaptation, but 

not the improvement of its security. 

 

Musicypher is a program for Android systems, developed 

in Java using the Android Studio programming environ-

ment, in which the encryption of a text string is carried 

out transforming it in a sequence of musical notes. Simi-

larly, the corresponding deciphering is implemented. 

 

The transmission of encrypted messages can be carried 

out in two ways: by means of sound, by playing a coded 

music message in order to be captured by the microphone 

of a receiver smartphone, and by means of an audio MIDI 

[1] file, without the need for reproduction. Therefore, the 

decryption has been implemented such that the message 

is recovered from the MIDI file, or detected in real-time 

while the sound is being played by the transmitter device. 
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3.1 Encryption of the message 

In order to provide more options to the final user, before 

the musical part he will be offered different types of en-

cryption systems to be applied to the text, basically based 

on substitution or transposition, which require of a key 

that the receiver must also know in order to decode the 

information. After this part the text-to-music conversion 

takes place in which, as in the Guyot system, musical 

notes are assigned to the alphabet. 

 

Once the encrypted file is generated, it can be stored to be 

later shared with other users, and played, within the same 

application. 

3.2 Decryption of the message 

The deciphering of a text can be done through the micro-

phone of the device. It starts to catch the melody and each 

time a note change occurs, deciphers the fundamental 

frequency [4] [5] and concatenates the corresponding 

letter to the unique text string. The process will end when 

a note that means the end is recorded. 

 

After that, the encrypted text message is obtained and 

through the substitution or transposition method and the 

source key it is decrypted, and the original message is 

obtained. 

 

Figure 1. Real-time decoding of the musical message 

3.3 Considerations 

Text to music conversion is done using the MIDI stand-

ard, in which each musical note is identified by a number. 

Taking it into account, and assigning a duration time to 

each note, a ".MID" file is generated. This file can be 

reproduced by Musicypher or by any device that supports 

the standard. 

 

In order to capture the sound, the technical limitations of 

mobile microphones [2] [3] have been taken into account, 

and we have chosen to use the frequency range of the 

telephone channel band (300Hz to 3kHz), since this is 

where the frequency response is flatter in most devices 

and, therefore, the capture is more reliable. 

4. CONCLUSIONS 

The Guyot [6] encryption system has been adapted to an  

Android application, using the current technology availa-

ble at usual smartphones, in order to deploy a complete 

communication system (transmission, encryption, decryp-

tion, reception). The current prototype is focused on the 

musical part. Further developments will take into consid-

eration the improvement of the security part, allowing us 

to provide a more robust app. 
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ABSTRACT 

Imaging when reading sheet music on computing devices, 

users could listen audio synchronizing with the sheet. To 

this end, the sheet music must be acquired, analyzed and 

transformed into digitized information of melody, rhythm, 

duration, chord, expressiveness and physical location of 

scores. As we know, the optical music recognition (OMR) 

is an appropriate technology to approach the purpose. 

However, the commercial OMR system of numbered 

music notation is not available as best as our knowledge. 

In the paper, we demonstrate our proprietary OMR system 

and show three human-interactive applications: sheet 

music browser and multimodal accompanying and games 

for sight-reading of sheet music. With the illustration, we 

hope to foster the usage and obtain the valuable opinions 

of the OMR system and the applications. 

1. INTRODUCTION 

There are commercial products of optical music 

recognition (OMR) for sheet music in staff notation, for 

example Sharpeye, Photoscore in Sibelius, Smartscore, 

and Midiscan in Finale. But, for the sheet music, as shown 

in Figure 1, of numbered music notation [1] called ‘jiănpῠ’ 

in pinyin for Mandarin, the functions of commercial 

product, it seems that the visibility of the OMR system is 

low. In our previous research [2], we design an eco-system 

of OMR for numbered music notation. The eco-system 

majorly includes the methods and utilities to generating 

groundtruth, recognition, and rendering of sheet music, 

and evaluation metrics of OMR system. 

Such a notation has been used extensively in Asia for 

music practitioners to distribute their musical works 

because of well acceptance by the consumers. The 

notations include digits, alphabet, and characters as the 

same shape as ASCII symbols, and other glyphs such as 

ties, slurs, tuples, etc., as those of staff notation.  An 

exemplar music sheet, traditional Chinese song, is shown 

in Figure 1. 

Setting up the goal to improve the experience and ability 

of sheet music sight-reading, we develop the multimodal 

and multimedia applications. There are three major 

functions: sheet music browser, singing accompaniment 
and games for pitch and note length error detection. 

2. OMR ECO-SYSTEM 

Because the lack of public dataset, we build up the 

ecosystem for OMR system from the scratch. Figure 2 (a) 

shows the flow to construct the building blocks of the 

ecosystem. The system comprises of the four major 

processing blocks: 1) preprocessing of document image; 2) 

musical glyph definition and recognition; 3) music 

notation assembly by graphical and musical sematic; 4) 

symbolic representation and musical output. Besides, 

groundtruth construction and performance evaluation are 

also included. 

3. MULTIMODAL AND 

MULTIMEDIA APPLICATION 

In sheet music browser, the sheet music is located by 

different indexing methods and displays in a window with 

title on the top. Three kinds of indexing methods are 

provided: 1) by the “keywords” of song title; 2) by number 

of “strokes” of the first character of song title; 3) by “table 

of contents”. This is the usage convention for a paper 

songbook. For multimodal accompaniment for sight-

reading, the interface is similar to that of music player. The 

audio play back is synchronized with sheet music reading, 

in which the current location is highlighted with the cyan 

‘^’ sign. Besides, the playing position could be changed by 

double clicking on sheet music. In the game mode, the 

melody is playing as the multimodal accompaniment do 

but with randomly generated note pitch and length errors 

waiting to be detected by the players. 

The screen shot of the sheet music browser in Figure 1 

(a) is shown with indexing method labels at left hand side. 

After indexing, the list menu will show all the candidate 

songs with the index method indicated at the left. When 

some item is clicked, the sheet music will appear for 

preview with scroll bar in the panel with title “Sheet Music 

Preview”. 

In the singing accompaniment as the screen shot of the 

Figure 1 (b), the application synthesizes the note audio of 

sheet music with the specific tempo value indicated in the 
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slider. When playing, the “^” sign will indicate the current 

note as the melody is going. User could double click on the 

screen to change the playing position or change the playing 

tempo by the slider. Beside of playing, the play button also 

has the function to replay the song from the beginning of 

the sheet music.  

In the game as the Figure 1 (c), some of notes are 

generated erroneously and randomly. The game player 

clicks on the screen of sheet music to indicate the location 

of the erroneous notes. The background scoring agent will 

evaluate the clicking results and indicate the results on the 

sheet with “v” and “x” sign for correct and wrong ones, 

respectively. The agent also makes scoring on the top and 

central area. The scoring includes score(F-measure), hit 

and miss. The hit item has two numbers separated by slash 

“/”. The number at left is hit number, and the number at 

right is the count of the generated errors.   

4. CONCLUSIONS AND 

FUTUREWORK 

In the demo, we introduce our OMR ecosystem and 

demonstrate the application of multimodal and multimedia 

songbook. In order to have the automatic OMR tool, we 

empirically define the process flow and implement the 

prototype. Moreover, we took on the results of OMR to 

implement the multimodal interactive and multimedia 

application of songbook. To summarize, the research 

provides a promising approach to produce, distribute, and 

use sheet music joyfully. 

In the future work, we could add the MIR functions, such 

as singing assessment, synchronization of audio source, 

score following based on some fundamental research 

achievement. 

Acknowledgments 

The authors thank to the reviewer for the appreciation of 

the demo. 

5. REFERENCES 

[1] Numbered musical notation, 

http://en.wikipedia.org/wiki/Numbered_musical_not

ation 

[2] Fu-Hai Frank Wu, ”Applying Machine Learning in 

Optical Music Recognition of Numbered Music 

Notation,” International Journal of Multimedia Data 

Engineering and Management (IJMDEM) 8.3, pp 21-

41, 2017. 

(a) 

 
(b) 

 

Figure 2. (a) OMR system flowchart with 

evaluation metrics in brown, (b) two-stage 

classification and learning for classes and 

instances 

(a)                                                               (b)                                                               (c) 

                

Figure 1. (a) Sheet music browser (b) multimodal accompanying (c) game for pitch and length error detection 
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ABSTRACT

Reaction times (RTs) are an important source of informa-
tion in experimental psychology and EEG data analysis.
While simple auditory RT has been widely studied, re-
sponse time when discriminating between two different au-
ditory stimuli have not been determined yet. The purpose
of this experiment is to measure the RT for the discrimi-
nation between two different auditory stimuli: speech and
instrumental music.

1. INTRODUCTION

Reaction time (RT) is defined as the elapsed time between
the presentation of a sensory stimulus and the subsequent
behavioral response [1]. Simple auditory RT is one of the
fastest RTs and is thought to be rarely less than 100 ms [2].
On the other hand, other studies show that the RT, when
discriminating between two different stimuli, gets faster as
the difference between the stimuli decreases [3].

The experiment considered in this demonstration consist
of a go / no-go test where participants are asked to press
a button when either a music piece or a speech excerpt is
played.

As the stimuli are fairly different in this specific scenario,
the RT for the recognition task is expected to be fast but, on
the other hand, slower than known simple RTs for auditory
stimuli. However, said RT is also expected to increase for
speech excerpts presented in a language different from the
participant’s mother tongue.

2. STIMULI

The stimuli consist of a set of 50 instrumental music and 50
speech excerpts with duration of up to 4 seconds. The mu-
sic excerpts are randomly cropped from the music tracks
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Track name Author
The Magic Flute Wolfgang Amadeus Mozart
Emperor Waltz Johann Strauss
Universal Mind Liquid Tension Experiment
Adios Nonino Astor Piazzola

Table 1. List of music pieces where the excerpts are taken
from.

shown in Table 1. The presented pieces of speech consists
of unconnected sentences recorded in a varied set of lan-
guages: Spanish, English, German, French and Danish. In
order to keep the variance of volume at the minimum, all
the excerpts are compressed and normalized. Each excerpt
will be identified by means of pulse width modulation of a
trigger/synchronization signal.

3. EQUIPMENT

Stimuli will be presented to the subjects through head-
phones (Sennheiser HD 219) using a system with Presen-
tation software from Neurobehavioral Systems. The re-
sponse action is recorded by pressing a single USB button
connected to the system.

4. METHODOLOGY

In this section, the basis of the methodology employed in
the experiments is presented.

4.1 Prior to the experiment

Attendants from the Sound and Music Computing Con-
ference 2019 will be encouraged to participate as experi-
mental subjects. The attendants who will volunteer will be
asked to fill in a form with questions about parameters that
can have an effect on the response time, such as their gen-
der, age, mother tongue, known languages and conditional
factors like fatigue and arousal [4].

Before the experiment begins, a royalty-free track called
”Casual Friday” which is unrelated to the experiment will
be played, with the objective of setting a comfortable hear-
ing threshold for each participant.
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4.2 During the experiment

Once the subject is totally set up, four known test trials
will be prompted in order to train the participant. Follow-
ing these test trials, the music and speech excerpts will be
presented to the subject in random order with a pause of 2
seconds between each excerpt.

The experiment, for each subject, will be carried out in 2
separate blocks of trials: in the first block, the subject will
be asked to press the button only when a musical piece is
played; in the second one, the button should be pressed by
the subject only when a speech is played. Both blocks have
the same amount of excerpts.

The estimated time for the experiment is 20 minutes plus
the explaining and testing time.

5. CONCLUSIONS

The current community lacks of a proper set measurements
of the RT when recognizing between speech and music.
Also, since the speech excerpts are presented in different
languages to a variety of nationalities, the results of this
study are not constrained to a certain population with a
common mother tongue but expected to be widely valid.

A large set of RTs, like the one described in this demon-
stration, will not only benefit future EEG studies but will
also be helpful to the experimental psychology community
or to any researcher interested in understanding how the
music and speech is processed in the brain.
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ABSTRACT

In this demonstration we present novel physical models
controlled by the Sensel Morph interface.

1. INTRODUCTION

The Sensel Morph is a highly accurate touch controller that
senses position and force of objects [1]. Figure 1 shows
one player interacting with two Sensel Morph devices to
interact with the developed physical models. We use the
Sensel as an expressive interface for interacting with dif-
ferent physical models described in a companion paper ac-
cepted to SMC 2019. Right above the touch-sensitive area,
the Sensel contains an array of 24 LEDs that can be con-
trolled from the application.

Strings are shown as coloured paths (see Figure 2 for a
descriptive visualisation). The state of the string is visu-
alised using the vertical displacement of the paths. Bowed
strings are shown in cyan on the top left. The bow is
shown as a yellow rectangle and moves while interacting.
The fretting position is shown as a yellow circle. Plucked
strings are shown in purple in the top right, underneath
which the sympathetic strings are shown in light green.
The plate is shown in the bottom using a grid of rectangles
(clamped grid points are not shown). Its state is visualised
using a grey-scale. Furthermore, connections are shown
using orange circles/squares for the points of connection
and dotted lines between these points. Lastly, all parame-
ters that are controlled by the mouse such as output-level
and plate-stiffness are located in a column on the right side
of the application.

2. IMPLEMENTED INSTRUMENTS

We subdivide string-elements into three types: bowed, plucked
and sympathetic strings. All strings will be connected to
one plate acting as an instrument body of which the user
can control the plate-stiffness. Furthermore, the user can
change the output-level of each element type. Apart from
these parameters, which are controlled by the mouse, the
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Figure 1. Player using the Sensel Morphs to interact with
one of the instruments.

instruments are fully controlled by two Sensels. The in-
struments we have chosen as our inspiration are the sitar,
the hammered dulcimer and the hurdy gurdy.

2.1 Bowed Sitar

The sitar is originally an Indian string instrument that has
both fretted strings and sympathetic strings. Instead of
plucking the fretted strings, we extended the model to bow
them. Our implementation consists of 2 bowed strings
(tuned to A3 and E4), 13 sympathetic strings (tuned ac-
cording to [2]) and 5 plucked strings (tuned A3-E4 fol-
lowing an A-major scale) as it is also possible to strum
the sympathetic strings. Figure 2 shows the visual inter-
face of the implementation. One Sensel is vertically sub-
divided into two sections; one for each bowed string. The
first finger registered by the Sensel is mapped to a bow and
the second is mapped to a fretting finger controlling pitch.
The horizontal position of both fingers is visualised using
the Sensel’s LED array. The frets are not implemented as
such (the pitch is continuous), but they are visualised for
reference.

2.2 Hammered Dulcimer

The hammered dulcimer is an instrument that can be seen
as an ‘open piano’ where the musician has the hammers in
their hand. Just like the piano, the strings are grouped in
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Figure 2. The bowed sitar application. The descriptions of the different elements and other objects are shown in the image,
but will (naturally) not be visible in the application.

pairs or triplets that are played simultaneously. The inter-
face for the hammered dulcimer can be seen in Figure 3. In
our implementation, we have 20 pairs of plucked strings.
Even though most hammered dulcimers have more strings,
we decided that this configuration has the highest number
of strings while maintaining playability. One of each pair
is connected to a plate which slightly detunes it, creating
a desired ‘chorusing’ effect. Two Sensel boards are placed
vertically next to each other (see Figure 1). The pair with
the lowest frequency is located in the bottom right and the
highest in the top left, as in the real instrument. As with the
plucked strings of the bowed sitar, the LED array is used
to visualise the way that the Sensel is subdivided, which
is especially useful here as one Sensel controls 10 string-
pairs.

The mass ratio is set relatively high (M = 100) to am-
plify the non-linear interaction between the strings and the
detuning of the strings connected to the plate.

Figure 3. The hammered dulcimer application.

2.3 Hurdy Gurdy

The hurdy gurdy is an instrument that consists of bowed
and sympathetic strings. The bowing happens through a
rosined wheel attached to a crank and bows these strings
as the crank is turned. It is possible to change the pitch

of a few bowed strings - the melody strings - using but-
tons that press tangent pins on the strings at different po-
sitions. The other strings, referred to as drone strings, are
mostly tuned lower than the melody strings and provide the
bass frequencies of the instrument. The musician can place
the bowed strings on rests that keep the wheel from inter-
acting with it. The visual interface can be seen in Figure
4. Our implementation consists of 5 bowed strings subdi-
vided into 2 drone strings tuned to A2, E3 and 3 melody
strings tuned to A3, E4 and A4 and 13 sympathetic strings
tuned the same way as the sympathetic strings in bowed
sitar. Furthermore, the mass ratios have been set the same
as in the bowed sitar application.

The Sensel is vertically subdivided into 5 rows that con-
trol whether the strings are placed on the wheel.

Figure 4. The hurdy gurdy application.
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creative applications, which are core components of sonic 

interaction studies. However, these platforms deliver poor 

sampling rates and latency with a large number of sen-

sors, not to mention the incapability of simultaneous 

sampling of signals. The detrimental consequences can 

significantly deteriorate the resulting sonic feedback and 

the overall user experience. 

High-end data acquisition systems that can provide suf-

ficient performances are available on the market, but 

these are costly and cannot be customized. Moreover, 

their latency is often undocumented or excessive as they 

are not designed for sonic interactive applications. The 

development of such data acquisition system requires a 

significant engineering effort which is not suitable in re-

source-constrained projects, or when rapid prototyping is 

needed. The platform we describe here enables fast-

prototyping of interfaces for demanding sonic interaction 

systems. We selected a cost-effective, yet powerful plat-

form based on a System on Chip (SoC) Field Program-

mable Gate Array (FPGA) which can be customized by 

designers without modifying the internal architecture. 

2. EXISTING PLATFORMS

In the last decade we assisted to the proliferation of mi-

crocontroller-based boards and single-board computers 

that made prototyping of interactive systems accessible to 

everyone. The cost of these boards is significantly lower 

than those produced by silicon manufacturers. In addi-

tion, integrated development tools, rich sets of libraries, 

online user communities, and the open-source nature 

have drastically simplified the development workflow. 

2.1 Microcontroller-based Platforms 

The concept of accessible development boards was pio-

neered by Arduino. Introduced in 2005, this platform 

aimed at reducing cost of student’s projects at the Interac-

tion Design Institute Ivrea, and providing an easy-to-use 

Integrated Development Environment (IDE) [3]. The 

popularity and pedagogical value of Arduino was also 

determined by the simplified approach to introduce com-

plex hardware and software concepts in their tutorial and 

example projects [4]. This enabled novices to implement 

embedded systems for physical computing in a relatively 

short amount of time. Most Arduino boards are based on 

8-bit AVR microcontrollers. The popular Arduino Uno,

released in 2010, is equipped with an ATmega328P run-

ning at 16 MHz. Thereafter, a variety of compatible ex-

pansion boards (or shields), and clone or compatible

ABSTRACT 

In this paper we introduce a hardware platform to proto-

type interfaces of demanding sonic interactive systems. 

We target applications featuring a large array of analog 

sensors requiring data acquisition and transmission to 

computers at fast rates, with low latency, and high band-

width. This work is part of an ongoing project which 

aims to provide designers with a cost effective and acces-

sible platform for fast prototyping of complex interfaces 

for sonic interactive systems or musical instruments. The 

high performances are guaranteed by a SoC FPGA. The 

functionality of the platform can be customized without 

requiring significant technical expertise. In this paper, we 

discuss the principles, the current design, and the prelim-

inary evaluation against common microcontroller-based 

platforms. The proposed platform can sample up to 96 

analog channels at rates up to 24 kHz and stream the data 

via UDP to computers with a sub millisecond latency. 

1. INTRODUCTION

The user interface is an essential component in sonic in-

teractive systems. The manipulation of such an interface 

determines aspects of the sound generation process that in 

turn affects the user’s manipulation [1]. The closed-loop 

architecture requires tight coupling, or low latency, be-

tween action and auditory feedback. This requirement 

holds across a large spectrum of applications, including 

interactive sonic installations, electronic musical instru-

ments, Virtual Reality (VR) and videogames. 

Independent of the input modality, these interfaces in-

tegrate sensors to transduce the user’s gesture into elec-

tric signals. Features extracted from these signals control 

parameters of the sound synthesis by explicit or genera-

tive mapping techniques [2]. However, before extracting 

features, the analog signals must be sampled, digitized, 

and then transferred to a computational system. The plat-

form we introduce in this paper is designed to carry out 

these tasks in context to requiring large number of chan-

nels, a high sampling rate, low latency and a large band-

width towards the sound synthesis module. 

When prototyping sonic interactive systems, the hard-

ware for acquisition of analog signals is often taken off-

the-shelf due to a lack of time or expertise. Moreover, 

choices are often oriented towards platforms that are easy 

to customize and integrate, even if it is not specifically 

designed for this application domain. This allows focus-

ing on gesture-capturing, mapping, sound synthesis and 

Copyright: 2019 Stefano Fasciano et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 Unported License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.
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boards have been commercialized. These support the 

same Application Programming Interface (API), Hard-

ware Abstraction Library (HAL), libraries and IDE of the 

original Arduino boards, making programs easier to port 

across platforms. Interaction designers can choose among 

a wide spectrum of easy-to-use boards with different size, 

computational power, interfacing capabilities, and price. 

An increasing number of Arduino compatible boards fea-

ture an ARM Cortex-M 32-bit microcontroller. These run 

at higher clock rates than the AVR, provide native 32-bit 

computation, a nested vector interrupt controller and a 

richer set of I/O. 

Despite the relatively high-level API, programming in 

Arduino IDE is generally bare-metal. Libraries support-

ing threads and simple real-time Operating Systems (OS) 

that do not require Memory Management Units (MMU), 

such as FreeRTOS [5], are available for both AVR and 

ARM Cortex-M architectures. Easy-to-use libraries for 

sound synthesis, such as Mozzi [6] are available to de-

signers. Firmata [7] further minimizes the programming 

burden for designers using Arduino compatible boards 

only to capture sensors data and transfer it to a computer. 

Firmata bundles a microcontroller program, a communi-

cation protocol, and clients for programming environ-

ments including a Graphical User Interface (GUI) to con-

figure the physical I/O. 

A more recent platform that is gaining popularity 

among interaction designers is ARM Mbed, a collabora-

tive project managed by ARM Holdings. ARM Mbed 

boards are cost effective and produced by several manu-

facturers, including major semiconductor companies. 

These boards are based on the ARM Cortex-M architec-

ture (a few boards mount a Cortex-A), sharing the same 

API, HAL and IDE. Compared to the Arduino, ARM 

Mbed provides a more sophisticated OS and software 

libraries, along with powerful microcontrollers (clock 

rates between 30 and 200 MHz) and a richer set of pe-

ripherals. In terms of programming complexity, ARM 

Mbed is as accessible and well supported as Arduino. C 

libraries for sound synthesis can be easily ported to Mbed 

platforms, such as OOPS [8]. 

Although Arduino and ARM Mbed are relatively easy-

to-use platforms, but the development of a complete son-

ic interactive system on these platforms is challenging 

due to a lack of high-level programming languages and 

OS. Indeed, these are generally used to capture sensor 

data and transfer it to computers, where feature extrac-

tion, mapping and synthesis can be easily implemented 

using high-level programming environments. Critical 

information such as maximum sampling rate on multiple 

analog inputs, synchronicity, bandwidth, and latency of 

communication channels are not available nor can be 

estimated from the documentation. Hence it is difficult to 

select a platform matching the design requirements. 

2.2 Single-board Computers 

To date, a large variety of single-board computers are 

available in the market [9]. The majority are equipped 

with a single or multi-core 32-bit ARM Cortex-A with 

MMU and clock rates typically within 1 to 2 GHz. Re-

cent boards are switching to 64-bit ARM Cortex-A archi-

tectures. Most boards support at least one Linux distribu-

tion, whereas Android, Windows CE and BSD are other 

common OSs. The most popular are the Raspberry Pi and 

the Beagleboard. Both are affordable, well supported and 

relatively simple to use. Both support Debian OS and 

provide an HDMI video output, hence the development 

workflow on these platforms is much alike to general-

purpose computers. For instance, it is possible to use 

high-level audio programming environment such as Pure 

Data, FAUST and Csound. 

The computational power of these single-board com-

puters is suitable to implement simple end-to-end sonic 

interactive system, from gestural signal acquisition to 

sound synthesis, although only a minority of these pro-

vides on-board Analog to Digital Converter (ADC). Also, 

response latency and jitter of these platforms do not meet 

the minimum requirement of most sonic interactive sys-

tems. These issues were addressed by Satellite CCRMA 

[10], and particularly by Bela [11]. Bela integrates an 

expansion board with multiple analog I/O, a customized 

real-time operating system, and an audio driver delivering 

a sub-millisecond gesture-to-sound latency. It provides a 

stereo audio input and output with a sampling rate of 44.1 

kHz and 16-bit resolution, 8 analog inputs and 8 analog 

outputs for sensors and actuators with a sampling rate of 

22.05 kHz and 16-bit. Using a dedicated multiplexer 

board, the number of analog inputs can be expanded to 64 

with 2.75 kHz sampling rate. 

Single-board computers provide only a fraction of the 

computational power and memory available on general-

purpose computers, hence the implementation of de-

manding sonic interactive applications may not be possi-

ble. Using these boards only to capture sensor data and 

transmit it to a computer is wasteful in term of computa-

tional resources, while latency and jitter are higher than 

microcontroller-based boards due to the OS. 

2.3 FPGA-based Platforms 

FPGAs can meet demanding requirements with respect to 

throughput and latency. Recent technological advance-

ments have enabled the manufacturing of powerful but 

relatively low-cost and low-power FPGA chips [12]. The 

Xilinx 7th Series FPGAs are featured on Digilent boards 

and are available for approximately 100 USD, including 

Spartan, Artix and Zynq FPGAs [13], [14]. Tools and 

languages for FPGA development have significantly im-

proved, but the workflow to design and implement an 

FPGA-based system still requires significant engineering 

expertise. Platforms such as Mojo, Papilo (both featuring 

an old Spartan 6), and Alchitry provided developers with 

a low-cost, small-size, and developer-friendly boards, 

including an Arduino-compatible connector. However, 

tools are still far from being accessible when compared to 

platforms discussed in the previous sections. Hardware 

Description Language (HDL) still represents as an entry 

barrier for most designers. Arduino has recently launched 

the MKR Vidor 4000, a board featuring a 32-bit ARM 

Cortex-M and a small Intel (formerly Altera) Cyclone 10 

FPGA. The company has announced, but not yet dis-

closed, a promising and easy-to-use online visual pro-

gramming tool to program the chip. 
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To date, only a handful of sonic interactive systems or 

New Interfaces for Musical Expression (NIME) feature 

an FPGA-based platform, such as Overholt’s Matrix [15], 

the continuous keyboard by Freed and Avizienis, the 

SLABS by Wessel, Freed and Avizienis [16], a physical 

modeling drum controller by Chuchaz, O’Modhrain and 

Woods [17], a controller for physical modeling synthesis 

by Pfeifle and Bader [18], and the Arcontinuo by Cadiz 

and Sylleros [19]. Freed, Avizienis, Wessel and Wright 

underlined necessity for high-performance interfaces (in 

terms of bandwidth and latency) between an array of sen-

sors and computers almost two decades ago [20], [21]. A 

few FPGA-based platforms to capture gestural data from 

sensors have been proposed, such as SensorLab from 

Steim, the Connectivity Processor from CNMAT [22], 

and the Gluion [23]. Bandwidth and latency benchmark 

for the SensorLab and the Gluion are not available, but 

analyzing their technical features is evident how these 

cannot match the performances of the Connectivity Pro-

cessor, that features 10 channels of 24-bit audio sampled 

at 48 kHz, 64 channels of sample-synchronous control-

rate gesture data sampled at 6 kHz, and overall latency of 

7 milliseconds with Max/MSP. None of these systems is 

on the market nor details for their fabrication are availa-

ble. 

2.3.1 The SLABS 

The SLABS is among the most complex and expressive 

musical interfaces ever built. The elegant and effective 

design is the result of almost a decade of development by 

Avizienis, Freed and Wessel at CNMAT. It features a 

matrix of touch-sensitive pads that can be mapped to 

computer software in a variety of ways. The SLABS 

“was designed to engage the body, to be both musically 

expressive and inspiring, to be easy to play at the entry 

level, and to be accepting of a lifelong development of 

virtuosity” [16]. Each pressure-sensitive touchpad pro-

duces three analog signals related to the touch coordi-

nates and pressure. These are sampled at a high rate and 

sent to the computer via Ethernet as audio streams, ena-

bling a tight coupling between gesture and data. Gestural 

data can be used directly as a signal within the synthesis 

algorithm or processed for the fast detection gestures. 

Wessel developed various Max/MSP patches interacting 

with the SLABS, including demos with simple oscilla-

tors, granular synthesis, and control of percussive loops. 

Two versions of the SLABS have been fabricated, fea-

turing respectively 24 and 32 VersaPad pressure-sensitive 

touchpads by Interlinks. The VersaPad signal acquisition 

hardware was modified to enable simultaneous sampling 

at high rate [24], [25]. In particular, the 96 analog signals 

(three from each touchpad) are first sampled at 6 kHz, 

then up-sampled to match the audio rate of 48 kHz and 

sent to the computer running Max/MSP as multichannel 

UDP audio stream. The SLABS can also transmit sensor 

data via Open Sound Control but at a much lower rate.  

The core of the SLABS is the Xilinx Virtex-4 FX12 

Evaluation Kit manufactured by Avnet. The module fea-

tures an SXC4VFX12-FF668 SoC FPGA with an embed-

ded PowerPC core running at 300 MHz, 64 MB of DDR 

SRAM, 8 MB of flash memory, and a Gigabit Ethernet 

interface. The module is installed on a custom mother-

board, as visible at the top of Figure 1, that includes other 

I/O such as ADAT and MIDI, and the ADC chips sam-

pling the signals from the touchpads. Samples are con-

verted to 32-bit floating point before UDP transmission, 

therefore the bandwidth of the payload between the 

SLABS and the computer (excluding UDP framing) is 

approximately 147.5 Mbit/s. The cost of the FPGA mod-

ule is approximately 450 USD. Details on the mother-

board are not available, such as the model and resolution 

of the ADC chips, however, the layout of the board re-

veals 8 ADC chips sampling 12 signals each. We esti-

mate the cost of the ADC chips to be about 150 USD. 

 

 

Figure 1. The SLABS32, with motherboard and FPGA 

module visible on the top of the matrix of touchpads. 

3. BENCHMARK OF MICROCONTROL-

LER-BASED PLATFORMS 

As discussed in Section 2, microcontroller-based plat-

forms are suitable and easy-to-use to acquire and transfer 

a small number of analog signals to a computer. From 

their documentation, it is not possible to determine the 

resulting latency and maximum sampling rate when ac-

quiring a given number of analog signals. This is due to 

the complex interdependency between the software and 

hardware architectures. McPherson, Jack and Moro pro-

posed a setup to measure latency and jitter on these plat-

forms [26]. Their latency measurements include comput-

er-based sound generation, showing how popular boards 

such as Arduino Uno and Teensy 2.0 struggle to achieve 

end-to-end latency below 10ms. These measurements 

were based on the acquisition of a single channel. The 

latency can increase with a larger number of inputs. 

The benchmarks we present here focus on bandwidth 

and the measurement setup does not include a computer-

based sound generation unit. In particular, we investigate 

the maximum rate at which multiple signals can be ac-

quired and transferred to computers. We selected three 

boards: the Arduino Uno, the Teensy 3.6 by PJRC, and 

NUCLEO-F746ZG by ST Microelectronics. The Teensy 

3.6 and the NUCLEO-F746ZG are respectively top-of-
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the-line among Arduino and Cortex-M ARM Mbed 

boards. According to the specifications, the on-chip USB 

of the Teensy 3.6 microcontroller outperforms the one in 

the NUCLEO-F746ZG, while the on-chip Ethernet of the 

NUCLEO-F746ZG microcontroller outperform any 

Ethernet expansion module for the Teensy 3.6. For this 

reason, we did not carry out Ethernet-based benchmarks 

on the Teensy 3.6 and USB-based benchmarks on the 

NUCLEO-F746ZG. Links based on IEEE 802.11 wire-

less LAN standards were not considered due to their ex-

cessive latency. The benchmark programs use only stand-

ard libraries and API for Arduino and Mbed IDE availa-

ble to average developers. Where possible, the programs 

configure the link and ADC to run at the maximum speed 

using simple instructions only. We did not use Direct 

Memory Access (DMA) to improve performances as this 

option is not available through standard API, but it re-

quires microcontroller-specific expertise. 

The Arduino Uno features an 8-bit AVR ATmega328P 

running at 16 MHz. We measured data transmission to 

the computer via USB through the onboard ATmega8U2 

acting as a USB-to-Serial with a baud rate of 2 Mb/s, and 

via the 10/100 Ethernet through the W5500 Ethernet con-

troller on the Ethernet Shield 2. We increased ADC con-

version clock from the default 125 kHz to 8 MHz. The 

Uno can acquire up to 6 analog inputs multiplexed to a 

single bit 10-bit ADC, and up to 11 digital inputs (serial 

transceiver and LED lines are excluded).  

The Teensy 3.6 features a 32-bit Freescale ARM Cor-

tex-M4 processor with the Floating-Point Unit (FPU) 

running at 180 MHz. We measured data transmission to 

the computer through the on-chip USB peripheral config-

ured as a USB-to-Serial with a baud rate of 4.608 Mb/s. 

We overclocked the Cortex-M4 to 240 MHz, and com-

piled the code using the Fastest optimization option. The 

Teensy 3.6 can acquire up to 24 analog inputs multi-

plexed to two 12-bit ADCs, and up to 55 digital inputs. 

Simultaneous sampling of two channels at a time is pos-

sible, but the available libraries provided worst perfor-

mances than sequential sampling used in the benchmark.  

The NUCLEO-F746ZG features a 32-bit ST Microelec-

tronics ARM Cortex-M7 with FPU running at 216 MHz. 

We measured data transmission to a computer via User 

Datagram Protocol (UDP) through the on-chip 10/100 

Ethernet Media Access Controller (MAC) with dedicated 

DMA. The NUCLEO-F746ZG can acquire up to 24 ana-

log inputs multiplexed to three 12-bit ADCs, and up to 90 

digital inputs. Simultaneous sampling of three channels at 

a time is possible only by complex low-level register 

programming and DMA. The simple Mbed API for se-

quential sampling was used within the benchmarks.  

The benchmark programs repeatedly acquire a set of 

analog and/or digital inputs and sent a packet of data to 

the computer via USB or Ethernet, without any synchro-

nization mechanism. The computer measures the average 

inter-arrival time between packets, reflecting the highest 

rate at which the board can sample and transmit the ana-

log signals. The result of the ADC conversion (10 or 12-

bits) is stored in a 16-bit integer, requiring the transmis-

sion of 2 bytes. The inter arrival time of packets was 

measured in Pure Data for USB link (Virtual COM Port), 

and in Wireshark for the Ethernet link. Details of the 

benchmarks and results are summarized in Table 1, 

which shows the maximum rates when acquiring differ-

ent set of analog and/or digital inputs. We evaluated the 

performances ranging from a single input to as many in-

puts as supported by the specific platform. Certain set 

were selected to facilitate comparison across platforms. 
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1 0 1 1 740 

11 0 2 2 378 

11 0 11 11 96.8 

36 0 5 5 222 

55 0 7 7 154 

0 1 2 2 127 

0 6 12 12 22.9 

0 24 48 48 5.8 

11 6 14 14 22 

36 24 53 53 5.6 

55 24 55 55 5.4 
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1 0 1 60 17.5 

11 0 2 60 17.5 

11 0 11 60 17.5 

36 0 5 60 16.3 

55 0 7 60 15.8 

90 0 12 60 14.9 

0 1 2 60 15 

0 6 12 60 9.2 

0 24 48 90 3.8 

11 6 14 60 9.1 

36 24 53 95 3.8 

55 24 55 97 3.7 

90 24 59 101 3.6 

Table 1. Benchmark details and results on maximum data 

acquisition rate for microcontroller-based platforms. 

As expected, the maximum rates drop with the increase 

of the number of inputs. CPUs perform instructions se-

quentially, and the number of operations to perform in-

creases linearly with the number of inputs. Further analy-

sis demonstrated that the data transfer represents the bot-

tleneck of these system, which keeps the CPU busy for a 

dominant fraction of the execution time. Getting the data 

from the ADC requires only a small fraction of the execu-

tion time. The aggregate sampling rates are significantly 

below the nominal maximum sampling rate of the ADCs 

of the platforms. Packing the data, especially for the digi-

tal inputs, present an overall advantage, as demonstrated 

in the tests with 11 digital inputs. When sending data via 
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Ethernet, we obtain poor performances with a small 

number of inputs due to the minimum payload of 18 data 

bytes in UDP packets, which requires additional 42 fram-

ing bytes. Buffering more samples per channel provide 

slightly higher rates but increase the latency.  

For Arduino-compatible platforms, we also measured 

the maximum reading rates of Firmata [7] using the same 

baud rates and clock settings described above. Compared 

to previous benchmarks, Firmata presents a larger over-

head when transmitting data over serial, since data is 

transmitted with an additional integer channel identifier, 

and samples from analog inputs are sent as 32-bit float 

numbers. By default, inputs are sampled approximately 

every 20 ms (50 Hz sampling rate), and this interval can 

be changed within the source code. Analog and digital 

data is transmitted to the computer only if the values are 

different from previously sent data. Therefore, the dura-

tion of one iteration of the loop can vary significantly, 

and signal sampling at regular interval cannot be guaran-

teed. On the Arduino Uno, Firmata supports up to 11 

digital inputs and 6 analog inputs. Whereas on the Teensy 

3.6, we have up to 36 digital inputs and 16 analog inputs. 

To benchmark the maximum rate of change that Firmata 

can handle on digital inputs, we drove these pins with a 

square wave and disabled analog input data acquisition. 

We measured the respective rate of change in the Firmata 

client for Pure Data. We increased the frequency of the 

square wave until measurement mismatching was above 

1%. We repeated this measurement driving respectively 

1, 11, and one 36 digital inputs (Teensy 3.6 only). In a 

separate benchmark we measured the maximum rate at 

which Firmata can acquire analog inputs, which were 

connected to a white noise source, while digital input 

acquisition was disabled. The inter-arrival time of packet 

of samples was still measured in the Firmata client for 

Pure Data. In both benchmarks, the sampling interval was 

set to 0 ms, forcing the data acquisition loop to run as fast 

as possible. Results are summarized in Table 2, where 

rates are rounded down to the nearest integer. For the 

digital inputs, the maximum rate is twice as the highest 

frequency of the square wave that the platform can ac-

quire, taking one reading on both low and high levels. For 

the analog inputs, we can sample signals with spectral 

components up to half of maximum rates. 

 
Platform Inputs Max Rate 

Arduino Uno 

1 digital 24 kHz 

11 digital 14 kHz 

6 analog 4 kHz 

Teensy 3.6 

1 digital 108 kHz 

11 digital 78 kHz 

36 digital 28 kHz 

6 analog 18 kHz 

16 analog 7 kHz 

Table 2. Benchmarks on maximum data acquisition rate 

for analog and digital inputs using Firmata. 

All considered platforms feature Successive Approxi-

mation Register (SAR) ADCs, which contributes to min-

imize the latency from acquiring the electrical signal to 

completing the associated data transmission. The latency 

from signal acquisition to data transmission was not ex-

plicitly measured. However, since the CPU iterates on a 

branch-free sequential loop that includes acquisition, data 

packing and transmission, the latency is at most one sam-

pling period. This is significantly less than 1 ms and can 

be further reduced by interleaving data acquisition and 

data transfer when acquiring multiple channels. However, 

this can slightly worsen the maximum acquisition rate. 

4. HIGH-PERFORMANCE PLATFORM 

PRINCIPLES AND DESIGN 

The systems we reviewed in Section 2 can sample multi-

ple gestural signals with high temporal resolution. Ges-

tural samples are locked to the audio sampling clock. 

This synchronous approach provides jitter free encoding 

of the gestures resulting in more control intimacy. Indeed, 

Wessel argues that “the high-bandwidth approach is the 

future when it comes to ultra-expressive electronic in-

struments because it allows so much performance data to 

be captured”. McPherson and Zappi state that using high 

sampling rates enables “capturing subtle details like au-

dio-rate vibrations or detailed temporal profiles within 

sensor signals” [27]. The development of customized data 

acquisition systems with such characteristics is time con-

suming and requires significant expertise. Hardware cost, 

especially with flagship FPGAs from the Virtex family, 

are likely to exceed 1000 USD. Maintaining and preserv-

ing these complex artifacts is also a challenge, due to the 

rapid obsolescence of hardware and software [28]. 

The aim of this work is to provide designers with a 

ready-to-use platform, which is cost effective and simple 

to customize to meet specific application requirements. 

The platform supports a common design pattern where 

the hardware gesture controller is attached by a high-

speed link to a computer running a media programming 

language such as Max/MSP or Pure Data. The principles 

we followed in our design include: 

• FPGA-based platform with core functionalities im-

plemented in hardware minimizing latency and jitter. 

• Number of analog inputs and sampling rate at least 

matching the data acquisition system of the SLABS. 

• Performances independent of the number of inputs. 

• Set of acquisition expansion board supporting simul-

taneous or sequential sampling of the analog inputs. 

• Filter bank for fast signal processing on board. 

• Flexible and easy-to-configure number of inputs, 

sampling rate, buffer size, and filter coefficients. 

• Cost in the range of 150 to 250 USD. 

 

The simultaneous sampling of a large group of analog 

signals is costly because it requires one ADC per input 

(or at least one sample and hold circuit per input). Simul-

taneous sampling is necessary when phase information 

exists between different signals. Otherwise, it’s possible 

to use a fast ADC and analog multiplexers to sample se-

quentially all inputs but losing the phase information be-

tween signals. As platform designers, we cannot predict if 

preserving the phase relationship between signals would 

be required in the final application. However, this has a 

significant impact on the acquisition hardware and cost. 

Therefore, as detailed in Section 4.2, we propose three 
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acquisition subsystems: fully simultaneous, fully sequen-

tial, and a tradeoff between the two. For instance, in pres-

ence of multiple pressure-sensitive touchpads, sampling 

simultaneously three signals at a time is a tradeoff be-

tween cost and performance. 

4.1 System Architecture 

The platform we selected to implement the system is the 

Digilent Cora Z7-07S [29], which features an Zynq-7000 

SoC including an FPGA and an ARM Cortex-A9 proces-

sor running at 667 MHz, on board 1 Gbps Ethernet PHY 

and USB-UART bridge, priced at 99 USD. The proposed 

system architecture is illustrated in Figure 2. 

 

 

Figure 2. Architecture of the proposed platform, with 

FPGA-based board and dedicated data acquisition board. 

The platform communicates with one or more comput-

ers using Ethernet and USB (Virtual COM Port). These 

interfaces are handled by a bare metal program running 

the Cortex-A9, providing a predictable timed execution. 

The Ethernet only transmits packets of acquired data to a 

client. Control and configuration messages are exchanged 

with the computer asynchronously via USB. Configura-

tion is allowed only when the data acquisition is not run-

ning. This approach maximizes the packet rate and mini-

mize the jitter. Control and configuration messages in-

clude enabling/disabling data acquisition and transmis-

sion, destination IP address and port, selection of ac-

quired inputs to be transmitted, sampling rate, buffer size 

and filter coefficients. The ADC and/or multiplexer chips 

on the acquisition board are handled by an array of dedi-

cated serial interfaces. The data pass through a bank of 

biquad filters, and finally gets packed into buffers of 

samples. An optional stage can convert the sampled 16-

bit integer to 32-bit floating point within the unitary 

range, aligned with representation of most computer-

based applications. The conversion to float will double 

the required Ethernet bandwidth, but it reduces the work-

load on the computer side. Serial interfaces, filters, and 

buffering are implemented in the FPGA fabric. On the 

Cora Z7-07S board, there are up to 74 FPGA pins ex-

posed through stackable connectors, and 14 of these can 

be internally routed to the on-chip ADC. These are used 

in different configurations to interface in parallel the 

chips on the acquisition boards. This aspect is the bottle-

neck when using microcontrollers, as the number of serial 

interfaces cannot be expanded, and their control is usual-

ly sequential. Instead, the FPGA fabric allows imple-

menting a large number of serial interfaces running in 

parallel. 

4.2 Acquisition Boards 

When simultaneous sampling of a large set of analog 

signals is not necessary, we can use the XADC of the 

Zynq-7000 FPGA, which is a dual channel 1 Mega Sam-

ple Per Second (MSPS) SAR ADC with 12-bit resolution. 

Generally, this is accurate enough to sample non-audio 

analog signals from sensors. The Cora z7-07S connectors 

allow connecting 6 single ended and 4 differential inputs 

to the on-chip multiplexer of the XADC. These 14 lines 

are connected to the acquisition board and configured to 

10 single ended analog inputs with reference voltage of 

3.3 V. Each single ended input is connected to a high-

speed analog multiplexer such as the MAX4617 from 

Maxim Integrated, obtaining a total of 80 analog inputs 

combining internal and external multiplexers. The 8 ex-

ternal multiplexers are controlled by 4 lines from the 

FPGA. The XADC and the multiplexer are controlled in 

hardware. When a single channel of the XADC is used, 

we achieved almost 200 kHz sampling rate on 10 inputs. 

The performance scales down almost linearly when using 

the external multiplexers, obtaining up to 24 kHz on 80 

analog inputs. If using both converted of the XADC, the 

resulting rate does not improve significantly, but pairs of 

signals can be acquired in parallel. The remaining 56 

FPGA pins can be used as digital inputs. The total cost of 

the components for this board is approximately 20 USD. 

The second acquisition board we propose is based on 

the AD7991 from Analog Device, which is a non-

simultaneous 4-channel single-ended 12-bit SAR ADC 

with an I2C interface. The AD7991 is also featured on 

the Digilent Pmod AD2, that we used for our measure-

ments. When using the maximum serial clock of 3.4 

MHz, it is possible to acquire one sample per channel at a 

rate slightly above 24 kHz. With 24 AD7991 we can ob-

tain a total of 96 analog input, where groups of 24 inputs 

are sampled simultaneously. This requires 24 I2C con-

trollers implemented on the FPGA fabric and a total of 48 

FPGA pins. This configuration allows using the remain-

ing 26 FPGA pins as digital inputs. The total cost of the 

components for this board is approximately 150 USD. 

Alternatively, we can use 12 AD7699 sampling simulta-

neously only 12 inputs but increasing the resolution to 

16-bit. The number of used FPGA pins used is unchanged 

while the cost of the components increases to 180 USD. 

Finally, to sample all 96 analog inputs simultaneously, 

the acquisition board can be based on the LTC2320-16 
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from Linear Technology, which is a 1.5 MSPS single-

ended 8 channels simultaneous sampling SAR ADC with 

16-bit resolution. To acquire 96 analog inputs, we require 

12 LTC2320-16 interfaced using 32 FPGA pins, and 8 

fast SPI interfaces implemented in the FPGA fabric. 

These chips enable sampling all channels simultaneously 

at 24 kHz, but also at the audio rate of 48 kHz. This con-

figuration allows using the remaining 42 FPGA pins as 

digital inputs. The total cost of the components to imple-

ment this high-end board is approximately 240 USD. 

4.3 Current Prototype and Performances 

With multiple serial interfaces communicating with the 

ADC chips, the bottleneck of the architecture in Figure 2 

is the Ethernet link communicating with the computer. In 

preliminary tests, we measured the bandwidth of the 

Ethernet link driven by a bare metal program based on 

the Xilinx porting of the LightWeight IP library and run-

ning on the Cortex-A9. The benchmarks are representa-

tive of different scenarios varying the number of analog 

inputs and the size of the sample buffer. Settings and re-

sults are summarized in Table 3.  
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1 36 84.5 84.5 

2 72 81.5 163.1 

4 144 72.4 289.8 

8 288 70.3 562.4 

16 576 61.1 977.5 

32 1152 49.4 1582.6 

64 2304 31.5 2017.5 

34 

1 68 81.1 81.1 

2 136 85.1 170.1 

4 272 63.6 254.4 

8 544 72.9 583.3 

16 1088 50.2 803.9 

32 2176 35.5 1138.1 

64 4352 15.3 985.5 

96 

1 192 68.7 68.7 

2 384 74.1 148.3 

4 768 60.1 240.5 

8 1536 34.6 277.1 

16 3072 27.1 434.9 

32 6144 12.9 413.0 

64 12288 6.4 410.4 

Table 3. Benchmarks on Ethernet link bandwidth. 

In the benchmarks of Table 3, independent of the ADC 

resolution, each sample is transmitted using 2 bytes. The 

payload of UDP packets does not include 4 bytes used to 

communicate with the client on the computer, and up to 5 

additional bytes to transmit the data from digital inputs. 

When the payload is above 512 bytes, the data is split 

over multiple UDP packets. The results in Table 3 shows 

that the Ethernet PHY of Cora Z7-07S driven by the Cor-

tex-A9 can easily accommodate the target sampling rates 

of 24 kHz or 48 kHz. Moreover, it is also possible to ac-

commodate double payloads we obtain when performing 

the integer to float conversion in the FPGA, transmitting 

4 bytes per sample. With no buffering, we observed that 

the inter arrival packet time of UDP packets on the com-

puter was affected by a jitter of up to 4 sampling periods 

due to the computer OS controlling the Ethernet. 

All components in the architecture of Figure 2 have 

been individually tested and were verified that they meet 

the required performances. Moreover, we estimate that 

the FPGA on the Cora Z7-07S board has sufficient re-

sources to implement the filter bank and array of serial 

controllers. Currently, we developed two complete proto-

types of the system. The first is representative of the ac-

quisition board with multiplexers. The board has been 

fabricated but most functionalities are still implemented 

on the Cortex-A9, which can deliver a maximum sam-

pling rate of 16 kHz on 80 analog inputs. In the second 

prototype, we have two AD7991 controlled via two I2C 

with a serial clock of only 1 MHz. Additionally, we also 

take the samples from the XADC for a total of 18 analog 

inputs. The prototype uses four Pmod AD2 modules, as 

visible in Figure 3. Most functionalities are integrated in 

the Cortex-A9 and we obtained a maximum sampling rate 

of approximately 4 kHz. Settings such as the buffer size 

and enabling/disabling the data acquisition are available 

through on-board buttons or the serial monitor. In both 

prototypes, the filter bank has not yet been integrated. On 

the computer side, we used Wireshark to monitor timeli-

ness and correctness of the received UDP packets. The 

worst-case latency from the acquisition of the analog sig-

nal to the transmission of the UDP packet is equal to the 

sampling period multiplied by the buffer size. 

 

 

Figure 3. Platform prototype based on Digilent Cora Z7-

07S and two Pmod AD2 modules. 

5. FUTURE WORK 

In this paper, we presented a platform to implement a 

complex interface for sonic interactive systems or musi-

cal instruments. The platform is capable of acquiring and 

transmitting a large number of analog signals from sen-

sors to a computer, at rates significantly higher than mi-

crocontroller-based platforms. We designed the platform 

keeping in mind prototyping time and cost. Users can 

customize the functionality through simple commands 

without the need of developing any hardware or software 

components. The preliminary result of this ongoing pro-
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ject shows that the it is possible to achieve the target per-

formance with the proposed architecture and acquisition 

boards, outperforming all microcontroller-based boards. 

In the immediate future, we will complete the schematics 

and the fabrication of the second and third acquisition 

board. Thereafter we will integrate the filter bank and 

complete the software for the computer, such as clients to 

receive the data and configure the platform will be devel-

oped as well. Sending a subset of the acquired analog 

signals to separate IP addresses via UDP is a possibility 

we will further explore. Moreover, we will consider ex-

ploiting unused FPGA resources to drive a DAC or gen-

erate Pulse Width Modulated (PWM) signals to drive 

actuators, hence enabling duplex communication between 

the platform and the computer. 
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ABSTRACT

In the design of new musical instruments, from acoustic 
to digital, merging conventional methods with new tech-
nologies has been one of the most commonly adopted ap-
proaches. Incorporation of prior design expertise with ex-
perimental or sometimes industrial methods suggests new 
directions in both design for musical expression and devel-
opment of new manufacturing tools.

This paper describes key concepts of digital manufactur-
ing processes in musical instrument design. It provides 
a review of current manufacturing techniques which are 
commonly used to create new musical interfaces and dis-
cusses future directions of digital fabrication which are 
applicable to numerous areas in music research, such as 
digital musical instrument (DMI) design, interaction de-
sign, acoustics, performance studies, and education. Addi-
tionally, the increasing availability of digital manufactur-
ing tools and fabrication labs all around the world make 
these processes an integral part of the design and music 
classes. Examples of digital fabrication labs and manu-
facturing techniques used in education for student groups 
whose age ranges from elementary to university level are 
presented. In the context of this paper, it is important to 
consider how the growing fabrication technology will in-
fluence the design and fabrication of musical instruments, 
as well as what forms of new interaction methods and aes-
thetics might emerge.

1. INTRODUCTION

The musical instrument design process requires numerous 
artistic, musical and engineering design specifications from 
software design to electronics, from mechanical function-
ality of instruments and fabrication to compositions and 
performances. Cather et. al. states that “The lack of a 
complete and thorough written specification is now gen-
erally accepted as being one of the main reasons for de-
sign failure” [1, 2]. Commonly, the physical design, me-
chanical functionality, and rapid manufacturing concerns 
do not always become the priority of the instrument de-
signers while new musical instruments experience limita-
tions in fulfilling their purposes in the long term. These in-

Copyright: c© 2019 Doga Cavdir. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

struments, even though they are designed for professional
use, most of the time, become restricted to be performed in
research labs, demos, and recording sessions [3]. In order
to increase their professional and artistic use in the long
term, designers aim to embody many qualities of tradi-
tional instruments in new interfaces with existing fabrica-
tion and rapid prototyping techniques. As a consequence,
the growth and advancement in digital fabrication tech-
niques create a dynamic interaction between the research,
arts, design and education fields.

Efforts in musical instrument design with digital man-
ufacturing are divided into two areas; one performed by
those experimenting new fabrication tools to manufacture
acoustic instruments, and the other mostly explored by re-
searchers who develop new interfaces, digital, augmented,
or hybrid musical instruments. In the first case, the crafts-
manship and knowledge on musical acoustics are crucial;
yet, the instrument making process still requires other skills
that relate to musical expression, aesthetics, and the in-
teraction. On the other hand, researchers either leverage
existing manufacturing techniques in unique ways for mu-
sical purposes or they develop new tools and advance the
technology for higher quality instruments and interactions.
This leads to an increasing demand for fast and accurate
prototyping tools in designing new interfaces for musical
expression.

This paper offers an overview of the current digital man-
ufacturing techniques used in musical instrument design
and discusses the application areas of the emerging fabri-
cation tools in new musical expression. The next section,
Section 2, introduces the field of digital fabrication giving
prior examples from researchers, instrument makers, and
musicians. Section 3 discusses the future direction of dig-
ital fabrication as well as the possible application areas of
the existing technology which is still unknown or uncom-
mon in music and instrument design research. It further
summarizes the emerging use of digital manufacturing in
music education, examples of fabrication labs and musical
instrument design classes.

2. MANUFACTURING MUSICAL INSTRUMENT

2.1 Rapid Prototyping

2.1.1 Additive Manufacturing

Additive manufacturing (AM), also known as 3D printing,
is a form of rapid prototyping which creates 3D objects
by applying materials layer upon layer [4]. AM, still a
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rapidly growing technology, is now available for personal
and commercial use, as well as for research and education.
The decrease in the cost of the technology also leads music
researchers, interface designers, and instrument builders to
adopt 3D printing into their design process, allowing cus-
tomized utilization of these technologies.

Figure 1. Hovalin, the 3D printed violin [5].

Earlier examples of instrument manufacturing based on
3D printing are mainly limited to acoustic violin, guitar,
and flute fabrications [5, 6]. Hovalin [5] is one of the ear-
liest examples of the 3D printed instruments, which pro-
vided a sustainable violin model (Fig. 1). After a num-
ber of iterations, designers could propose a model that can
be printed without any support structure. Since the layers
are supported by the layers beneath them, a model with
overhangs (structure with no support below) requires an
additional 3D printing support structures to ensure a suc-
cessful print. Printing an acoustic instrument without sup-
port as Hovalin designers suggested increases the produc-
tion speed significantly. Due to the dimension limitations
of the available tools, the instrument needed to be printed
in seven different parts, three of which formed the instru-
ment body. Contrary to Hovalin’s assembly method of
gluing soundboard parts to each other, the Modular Fid-
dle was printed in one piece by Openfab PDX [7] whose
source files are still available for personal manufacturing
purposes. According to the designer, because of the single-
piece instrument body, the sound is louder and richer than
the earlier versions; yet, the sound quality is still not com-
patible to the mediocre versions of wooden instruments.

Specifically, the earlier versions of 3D printed objects
were likely to have certain drawbacks, such as limitations
in acoustic qualities and durability. Due to the type of ma-
terial used in printing, these instrument shapes were de-
formed over time. Instrument bodies that needed to be
printed in multiple pieces due to the printer dimensions
also resulted in significant timbral changes. Previously,
these technologies could only offer a limited selection of
materials which directly affects the acoustics of printed in-
struments, as well as its tension resistance. An acoustic
violin printed in the Formlabs offered black, white, and
tough resin, new materials which brought a more stable
structure and a cleaner finish. Yet these instruments printed
in Formlabs still posed deformation problems of the neck
warped under string tension [8]. Despite the drawbacks
of the recent technology, these attempts made 3D print-
ing technology available to the do-it-yourself (DIY) and
maker communities, resulting in an increased in research
of new materials, different printing patterns, and advanced

manufacturing technologies. Additionally, these attempts
developed a maker community to share open source de-
signs which can enhance personal manufacturing in the
long term [9].

Relatedly, designing for AM comes in many different
forms in terms of the variety of material, core technology,
cost, or print time. Although the process extending from
the design to the end product follows a similar path, 3D
printing techniques differ in the technology behind them
such as stereolithography (SLA) technology, digital light
processing (DLP), and fused deposition modeling (FDM).
These became more accessible for personal manufacturing,
mainly because of economic reasons. On the other hand,
researchers started to explore new acoustic instrument de-
signs with advanced printing technologies like Binder Jet-
ting or PolyJet [10]. These machines differ in material
choices, resolution, and how they apply the support ma-
terials, which are crucial in musical instrument acoustics.
The use of new materials in printing to improve the acous-
tics provided opportunities to decrease the chamber’s size
while preserving the loudness of the instrument based on
cell structured assembly [11]. The 3D printed flute [10]
adopted an inject printing technology which could infuse
materials with different properties simultaneously in a sin-
gle build with higher resolution rates (Fig. 2). Despite
the fact that the PolyJet technology improved some of the
limitations FDM posed like cracking between layers, high
tolerance, lower resolution, and non-airtight walls, it still
cannot eliminate the material decomposition problem fully.

Figure 2. The 3D printed flute manufactured with the Poly-
Jet technology [10].

For these reasons, PolyJet offers a great technology for
prototyping, yet not for manufacturing [10]. This led the
researchers to direct efforts in manufacturing new forms
of instrument parts such as valves, mouthpieces, or uncon-
ventional tonal series [10, 12–16]. The motivation behind
these research work not only demands overcoming the lim-
itation of the current manufacturing technologies to create
complete working instruments, but also it encourages in-
strument designers and researchers to experiment creative,
artistic interaction methods, explore customized tuning in
addition to new solutions for improved ergonomics, acous-
tics, and aesthetics.

At the current state, despite the availability of new fab-
rication tools, acoustic instrument production still requires
great human effort in modeling, pre, and post editing. In
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Figure 3. 3D printed double helix flute on top [13], a
trumpet with multiple tubes of different radii on the bot-
tom [10].

order to enable analyzing the digital models of instruments
before materializing them, researchers developed modal
profiles computed with the Finite Element Method (FEM)
from 3D models of instruments [17, 18]. They proposed
a new modal modeling method integrating FEM analysis
into the open-source Computer-Aided Design(CAD) en-
vironment for computational estimation of the fabricated
targets.

Overall, additive manufacturing was not restricted with
the acoustic instrument design but also it was extended in
the design of professional uses of hybrid and augmented
instruments. Some researchers manufactured instrument
bodies and used 3D printing with aesthetic concerns in
mind [19]. Those projects not solely leveraged the flexi-
bility or the ability of rapid prototyping, but also proved
that AM can provide new forms of aesthetics. For exam-
ple, Michon et al. used these techniques to design hybrid
and augmented mobile instruments [20, 21]. Artists, re-
searchers, and designers leveraged the availability of AM
tools to customize their instruments in various ways. It
also becomes an integral part of the design for bodily in-
teractions in artistic performances [3].

2.1.2 Subtractive Manufacturing

Subtractive manufacturing is the process by which 3D ob-
jects are constructed by successively cutting material away
from a solid block of material [22]. Although SM tools
such as laser cutters, vinyl cutters, or CNC milling ma-
chines, are still an important part of the instrument design
process, as opposed to additive manufacturing, these pro-
cesses have less common use among the new musical inter-
face researchers and designers. This is mainly because of
the lack of availability of SM tools in music research labs
or their requirement of technical knowledge of machinery
use. The existing examples are mostly guitar designs man-
ufactured with wood CNC machines and aimed to improve

acoustic characteristics of the instrument by high accuracy
of the tools [23].

Additionally, some examples of instruments created in
this realm prove that the application of this manufacturing
method is not restricted with production purposes but also
concern aesthetics and customizable interactions. A com-
mercial carbon fiber guitar was designed and fabricated us-
ing milling machines [24] (Fig. 4). Pipeline, a brass pan
flute with customized tuning, was manufactured using a
combination of subtractive manufacturing techniques in-
cluding rotary milling, turning, and laser cutting [25] (Fig.
5). Subtractive processes, in contrast to 3D printing, do not
always offer flexibility; rather, they constrain design free-
dom due to the need for fixtures, diverse tooling, and the
difficulty of the cutter in reaching deeper locations when
fabricating complex geometries [26, 27]. For example, the
initial design of the Pipeline had to be modified due to the
dimensions and fixture limitations of the rotary table.

In general, SM becomes a priority when metal pieces
need to be processed. Although the innovations in addi-
tive manufacturing started to offer 3D printing metal ma-
terials, in many cases, CNC post-machining is required to
create fine features such as threads, to ensure functionality,
and for surface finish [28]. The combination suggests an
emerging and efficient fabrication method; hybrid manu-
facturing which is discussed in Section 2.3.

Figure 4. The carbon fiber acoustic guitar manufactured
by using advanced composites and machining techniques
[24].

2.2 Industrial Manufacturing

Some of the industrial manufacturing processes such as in-
jection molding are used to build instrument parts or bod-
ies. This technique provided the flexibility in designing
forms and allowed musicians to experiment with new ma-
terials in their design and. It offers an efficient tool for
rapid prototyping of multiple identical parts. Because the
creation of industrial manufacturing tools (jigs, molds,...)
are expensive and time-consuming, these processes are less
common as personal manufacturing tools [3]. Ted Brewer’s
violin is an example of manufacturing the instrument body
for his electric violin using injection molding [29]. Other
examples are Weinberg and Aimi’s Beat-bugs [30], which
were cast in clear urethane from rubber molds. These ex-
amples of injection molding focused on designing instru-
ment bodies for electric instruments rather than acoustic
instruments. Rautia and Koivurova reported that “Non-
enforced plastics commonly used in injection molding of
the body of an electric guitar are acoustically not as good
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Figure 5. Pipeline: brass pan flute with customized tuning
[25].

as wood” [31]. Again these instruments are results of mu-
sicians or designers collaborating with the manufacturers
from the industry rather than personal fabrications. An in-
teresting example of an iterative prototyping method bridg-
ing between the industrial manufacturing and personal fab-
rication could be Kalo and Essl’s approach of fabricating
cymbals using incremental robotic sheet forming [32].

Similarly, acoustruments provided a design method which
made the manufacturing possible by combining 3D print-
ing with injection molding. The passive acoustically driven
handheld devices are iterated by 3D printing for rapid pro-
totyping purposes and suggested that the manufacturing of
these toys can be extended to injection-molding for high-
volume, low-cost fabrication [21].

2.3 Hybrid Manufacturing

The term of hybrid manufacturing refers to the fabrication
methods and technologies which combine different pro-
cesses including additive, subtractive, or other (joining, di-
viding, transformative, ...) manufacturing processes on the
same machine. The main advantage of this emerging tech-
nology is that it offers freedom of additive manufacturing
while retaining the precision and surface finish quality of
CNC, as well as reducing the dependence on a single pro-
cess. This freedom unlocks the limitation of 3D printed in-
strument fabrication using multi-tasking machines. There
are some examples of automating existing manual fabrica-
tion methods for musical applications. For example, Kalo
and Essl used incremental robotic sheet metal forming to
form cymbals [32]. Their contribution complements com-
monly used methods like 3D printing; yet, hybrid manu-
facturing, as a newly growing field, still lacks examples of
musical instruments manufactured this way.

Hybrid manufacturing is progressively becoming com-
mon with the use of machinable materials for 3D printing,
mainly for purposes like decreasing tolerance and speed-
ing up processes. New machines which can apply both AM
and SM on the same run offer better prototyping opportuni-
ties for musical instrument design research. Additionally,
the fine features and surface finishes of instruments can
easily be achieved with hybrid approaches. Yet, it is likely

that it will take time for these tools to find their place in the
research labs [22].

2.4 Digital Manufacturing & Electronics

An integral part of the new interface design is the elec-
tronic construction of digital and electric musical instru-
ments. In addition to reliable mechanical systems that new
manufacturing techniques allow designers to realize, the
electronic construction has a big influence on robustness,
functionality, reliability, and durability of instruments [2,
3]. For stable and robust electronic circuits, designers use
printed circuit boards (PCB). This technology is getting ex-
tended to printable electronics with new advancements in
manufacturing of numerous sensing mechanisms [33]. The
printable electronics offer easier constructions for embed-
ded and wearable musical instruments. An earlier work
of a wearable musical instrument which used additive and
PCB manufacturing is Hattwick and Malloch’s prosthetic
instruments [3]. As in similar wearable musical interfaces,
the printed circuit technology open us new opportunities
for end products in professional and artistic use since it
provides low-cost, easy-to-use electronic circuits manufac-
turing. It further extends the tools to print flexible elec-
tronic components and sensors which are light-weight, ul-
tra-thin, stretchable, bendable, and easy to operate in high
mobility applications [34].

Figure 6. The fabric keyboard is built with multi-layer tex-
tile sensors machine-sewn in a keyboard pattern [35].

Subsequently, the manufacturing tools for flexible elec-
tronics led the designers to build improved designs of wear-
able instruments. Wicaksono and Paradiso explored a multi-
modal, fabric-based, stretchable keyboard for physical in-
teraction based on “deformable musical interface” which
detects different stimuli such as touch, pressure, stretch,
proximity, and electric field [35] (Fig. 6). Similar to [35],
researchers in the interaction design community built sev-
eral multi-touch textile sensors for music performances [36,
37]. This manufacturing type could be one of the most
available manufacturing methods, after additive manufac-
turing, which could free instrument designers and builders
to depend on a particular manufacturer.

Freed reports that the difficulties faced during the expe-
rience of building Wessel’s Slabs became a motivation to
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adopt new technologies that resulted in new designs and
new materials for piezoresistive pressure and position sens-
ing surfaces [38]. Wessel’s prediction about the printable
electronics with Inkjet technology [33, 34] in musical in-
strument design is nowadays advanced to producing flexi-
ble tactile sensor using additive manufacturing techniques
[39].

AM with embedded electronic components in the print
offers a new manufacturing method in prototyping elec-
tronic circuits. In the near future, 3D printing electron-
ics can offer a cost-effective and scalable fabrication tech-
nique as an alternative to conventional fabrication meth-
ods, most of which are complex, expensive and time-con-
suming [39]. Hybrid AM processes provide not only im-
provements for the form and appearance of final products,
but also for electronics functionality with embedding most
commonly used digital elements of DMIs (passive sensors,
accelerometers). Fig. 7 gives a simple example designed
using CAD modeling tools and prototyped with AM pro-
cess [40].

Figure 7. Gaming dice with electronic circuit mechanically
designed into substrate. It consists of a micro-controller,
MEMS accelerometer, batteries and LEDs [40].

Whereas there has not been an example of this technology
in the musical instrument design, not to the extent of au-
thor’s knowledge, the growing interest in designing digital
musical instruments and interfaces with 3D printing tools
creates room to incorporate the electronic construction in
the existing manufacturing processes. As a new technol-
ogy, 3D printing electronics currently has limitations like
complexity, time demand, higher cost. Hopefully, with
more cost-effective machines, manufacturing light-weight,
and compact flexible/stretchable electronics in fabrication
labs will not only help to develop new interaction meth-
ods but also encourage designers to develop wearable in-
terfaces for intermedia performances like combinations of
music, dance, and theater.

3. FUTURE APPLICATIONS

Musical instrument design requires a lot of hands-on study
in the fabrication labs (FabLabs). As the manufacturing
tools have become affordable, higher number of fabrica-
tion labs have been founded in the academic makerspaces,
and universities and research institutions have begun to of-
fer more musical acoustics and instrument design classes
[41–44]. Access to the manufacturing tools, specifically to
3D printers and laser cutters, brings fabrication processes
to the classroom not only for university-level students but
also for the primary school students. Harriman empha-
sizes the importance of digital musical instrument design
in children’s education [45], and Eisenberg discusses the
challenges in the way of incorporating digital manufac-
turing into the classroom for children [46]. On the other
side, researchers direct their efforts to design portable dig-
ital manufacturing tools to reach less accessible parts of
the world [47].

One of the changes occurring in the digital fabrication
area is in hybrid manufacturing. Although as of now there
are some examples of hybrid manufacturing, there are a
lot of improvements needed in this area, specifically for
more cost-effective tools. Musical instrument design could
benefit this technique in various ways by combining most
commonly used techniques either for fast prototyping or
for end products. These tools, in addition to portable digi-
tal manufacturing tools, can also enhance personal fabrica-
tion and change the modalities of industry-academia col-
laborations. Hybrid approaches are not limited to combi-
nations of manufacturing tools; virtual reality (VR) is be-
coming one of the main tools that researchers merge into
fabrication education and cloud control. Researchers use
VR simulations for remote control or teaching purposes
which accelerates the need for tactile sensors and haptic
feedback mechanisms in VR tools generally. On the other
hand, fast prototyping opportunities, which come with ad-
vanced digital manufacturing tools, propose customizable
controllers for VR to overcome the human sensory limita-
tions. The interaction between the two fields can be benefi-
cial for both areas in creating interactive tools and opening
up new opportunities.

While manufacturing and material science provide new
ways of fabricating instruments, researchers are finding
promising results with acoustic modeling of fabricated in-
struments. With improved computation of 3D data, 3D
scanners can be used in modal analysis of manufactured
instrument by reverse CAD modeling. Unfortunately, the
current state of the professional 3D scanners still poses
challenges in obtaining accurate models. The technology
requires post-processing of the scanner data before FEM
simulation.

4. CONCLUSIONS

While the design capabilities with the fabrication methods
discussed in this paper depend upon the financial and in-
stitutional infrastructures, digital manufacturing tools are
becoming available with a greater variety and frequently
used in music research and education. This paper discusses
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the current digital fabrication techniques used in musical
instrument design. It presents an overview of what future
directions are available and how they can be applied to mu-
sical instrument making and artistic interaction design.

The innovations creating new opportunities for musical
expression are not limited solely to the manufacturing pro-
cesses. New materials can provide better acoustics or more
playable and robust musical instruments. The research con-
ducted in this area such as print composites of wood and
polyester, or bio-composites are not covered in this paper.
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ABSTRACT

This paper introduces a series of tools to program the
Teensy development board series with the FAUST pro-
gramming language. faust2teensy is a command line
application that can be used both to generate new ob-
jects for the Teensy Audio Library and standalone Teensy
programs. We also demonstrate how faust2api can
produce Digital Signal Processing engines (with potential
polyphony support) for the Teensy. Details about the im-
plementation and optimizations of these systems are pro-
vided and the results of various tests (i.e., computational,
latency, etc.) are presented. Finally, future directions for
this work are discussed through a discussion on bare-metal
implementation of real-time audio signal processing appli-
cations.

1. INTRODUCTION

Arduinos 1 contributed to the spreading of microcon-
trollers by making them more accessible through a high
level programming language (which is essentially a sub-
set of C++), various domain-specific libraries, and an Inte-
grated Development Environment (IDE) allowing to export
the generated firmware to the board using USB.

The impact of the “Arduino revolution” on the com-
puter music/NIME (New Interfaces for Musical Expres-
sion) community has been significant and gave birth to
hundreds of new music controllers and instruments.

In parallel of that, the rise of embedded Linux platforms
with their potential applications to real-time audio sig-
nal processing also impacted the way we approach digi-
tal lutherie [1]. A series of tools (both hardware and soft-
ware) such as Satellite CCRMA [2] and the BELA 2 [3]
(to only name a few) have been exploiting the potential of
these new technologies. The BELA is especially interest-
ing to us as it adds audio-rate analog I/Os and low-latency
audio processing capabilities to the BeagleBone Black. 3

More specific applications and experiments have also been

1 https://www.arduino.cc/. All URLs presented in this paper
were verified on Feb. 4, 2019.

2 https://bela.io/
3 https://beagleboard.org/bone
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Figure 1. The Teensy 3.2 and its audio shield.

targeting specialized boards such as FPGAs (Field Pro-
grammable Gate Array) (e.g., Digilent Zybo Series 4 ) [4,5]
and DSPs (Digital Signal Processing) (e.g., Analog De-
vices SHARC Audio Module, 5 etc.). The main drawback
of these platforms is their price: fully functional “all-in-
one” solutions can’t be found for less than 100USD.

On the other hand, recent microcontrollers are cheap, of-
fer an heightened computational power, and can be used
to synthesize/process audio signals. Some of them such as
the ARM Cortex-M4F 6 even include a dedicated Floating-
Point Unit (FPU) and support for DSP instructions, making
them a well-suited platform for sound synthesis/process-
ing.

ARM Cortex-M4 microcontrollers are used at the heart
of PJRC’s Teensy 7 development board series whose
price averages 25USD. Since the Cotex-M4 hosts its own
DAC, 8 sound can be synthesized and played directly from
the Teensy. PJRC also offers an audio shield for the Teensy
that essentially upgrades it with a SGTL5000 Audio Codec
providing a 16bits 44.1kHz stereo audio input and output
(see Figure 1) for 15USD!

The Teensy comes with an Audio Library 9 where ba-
sic DSP objects (e.g., oscillators, effects, Karplus-Strong,
etc.) implemented in C++ can be patched with a high level
API. This task is facilitated by an online graphical environ-

4 https://store.digilentinc.com/
zybo-z7-zynq-7000-arm-fpga-soc-development-board/

5 https://wiki.analog.com/resources/
tools-software/sharc-audio-module

6 https://developer.arm.com/products/
processors/cortex-m/cortex-m4

7 https://www.pjrc.com/teensy/
8 DigitaltoAudioConverter
9 https://www.pjrc.com/teensy/td_libs_Audio.

html
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ment 10 where objects can be connected by drawing patch
chords between them.

The standard DSP objects of the Teensy Audio Library
are relatively basic. New objects can be implemented in
C++, which is often out of reach to people in the DIY (Do
It Yourself) community who might use the Teensy. Also,
since not all the microcontrollers used in the Teensy se-
ries have an FPU, the standard DSP objects of the Teensy
Audio Library are all implemented in fixed point.

FAUST [6] is a functional programming language for ef-
ficient real-time audio signal processing. The FAUST com-
piler can generate DSP code/classes in various languages
(i.e., C, C++, Java, JS, LLVM, WebAssembly, etc.) from
a given FAUST program. The FAUST DSP libraries im-
plement hundreds of algorithms for sound synthesis and
processing.

In this paper, we introduce a series of tools to pro-
gram the Teensy with FAUST. 11 First, we present
faust2teensy, a command-line application to gener-
ate new DSP objects for the Teensy Audio Library. Then,
we introduce a new target for faust2api [7] allowing
us to generate DSP engines (with potential polyphony sup-
port) for the Teensy. We also demonstrate how ready-to-
use Teensy programs can be written in FAUST. In that case,
the parameters of a FAUST program (e.g., the frequency of
an oscillator, etc.) can be directly mapped to the analog
and digital inputs of the Teensy. Finally, we evaluate the
performances of these systems and we present future di-
rections for this type of work.

2. CREATING NEW OBJECTS FOR THE TEENSY
AUDIO LIBRARY

2.1 Generating DSP Objects With faust2teensy

faust2teensy is a command-line tool that can be used
to generate new DSP objects compatible with the Teensy
Audio Library. 12 For this, the -lib option must be pro-
vided when calling faust2teensy:

faust2teensy -lib MyFaustSynth.dsp

which will yield a package containing two C++ files:
MyFaustSynth.h and MyFaustSynth.cpp (see Fig-
ure 2) implementing a class called MyFaustSynth.

These files can either be placed in the source of the
Teensy Audio Library or in their own library. In both
cases, the .h file should be included at the beginning of
the Teensy program and then called and connected at least
to a DAC (Digital to Audio Converter) just like any other
object of the Teensy Audio Library:

#include <Audio.h>
#include <MyFaustSynth.h>
MyFaustSynth myFaustSynth;
AudioOutputAnalog dac;

10 http://www.pjrc.com/teensy/gui/index.html
11 All the tools presented in this paper are open source and have been

integrated to the FAUST distribution which can be found on GitHub:
https://github.com/grame-cncm/faust.

12 We’ll see in §4 that faust2teensy can also be used to generate
ready-to-use Teensy programs.

AudioConnection
patchCord0(myFaustSynth,dac);

void setup() {
AudioMemory(2);

}
void loop() {
}

Listing 1. Simple Teensy program using a FAUST-
generated DSP object with the built-in DAC of the Teensy.

AudioOutputAnalog corresponds to the built-in DAC
of the Teensy but AudioOutputI2S could be used instead,
in case the Teensy is equipped with an audio shield. In that
case, an AudioControlSGTL5000 object should also be
instantiated and multi-channel audio connections can be
used:

#include <Audio.h>
#include <MyFaustSynth.h>
MyFaustSynth myFaustSynth;
AudioOutputI2S dac;
AudioControlSGTL5000 audioShield;
AudioConnection

patchCord0(myFaustSynth,0,dac,0);
AudioConnection

patchCord1(myFaustSynth,0,dac,1);
void setup() {

AudioMemory(2);
audioShield.enable();

}
void loop() {
}

Listing 2. Simple Teensy program using a FAUST-
generated DSP object with the Teensy Audio Shield.

Note that the number of audio inputs and outputs of the
generated object depends on the FAUST program, hence
MyFaustSynth could have more than one output, in
which case the wiring of the audio connections could look
like:

AudioConnection
patchCord0(myFaustSynth,0,dac,0);

AudioConnection
patchCord1(myFaustSynth,1,dac,1);

The following Code Listing presents an example FAUST
program implementing a band-limited sawtooth wave os-
cillator that could be used as MyFaustSynth.dsp:

import("stdfaust.lib");
freq = nentry("f",300,50,2000,0.01) :

si.smoo;
gain = nentry("g",0.5,0,1,0.01) :

si.smoo;
process = os.sawtooth(freq)*gain;

Listing 3. FAUST program implementing a band-limited
sawtooth oscillator controllable with some UI elements.

f controls the frequency of the oscillator and g its gain.
Both are processed by si.smoo which exponentially in-
terpolates samples, preventing discontinuities.
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Faust Program

Faust Compiler

C++ DSP Class

Teensy Audio 
Library Wrapper

faust2teensy -lib

.cpp and .h files

faust2api -teensy

DSP object for the
Teensy Audio Library

Teensy DSP Engine

Teensy Program
Wrapper

Teensy ARM
Compiler

.dex File

.ino Project

Project can be open in
the Teensyduino IDE

faust2teensy

Ready to be uploaded
with the Teensy bootloader

Faust Compiler

C++ DSP Class

faust2api Teensy
Wrapper

.cpp and .h files

Faust DSP Audio
Engine

Polyphony?

faust2api -teensy

Figure 2. Overview of the various tools to use FAUST on the Teensy.

The value of f and g can be set at any point by call-
ing the setParamValue method which takes the name of
the FAUST parameter and its corresponding value as ar-
guments. Note that this method can also be used with
faust2api (see §3) as it is inherited from the same
parent class (MapUI) of the FAUST architectures system.
Hence, the frequency of the FAUST sawtooth oscillator pre-
sented in Code Listing 3 could be set randomly every two-
hundred milliseconds by modifying the implementation of
the loop function 13 of Code Listing 1:

void loop() {
myFaustSynth.setParamValue("f",

random(50,2000));
delay(200);

}

2.2 Implementation

faust2teensy is a simple bash script calling the
command-line FAUST compiler to generate the C++ DSP
class corresponding to a given FAUST program (see Fig-
ure 2). The generated C++ code is pasted into a wrapper
C++ file (also called architecture in the FAUST world) im-
plementing a generic object for the Teensy Audio Library.
This file and its corresponding header file are then pack-
aged in a zip file which is provided to the user.

13 loop is a standard Arduino function that is repeated until the device
running it is powered off. In other words, it corresponds to the main
thread of the system. delay is also an Arduino function that can be
used to pause the thread for a given duration in milliseconds.

3. GENERATING FAUST DSP ENGINES FOR THE
TEENSY

3.1 Monophonic DSP Engine

FAUST can also be used to generate ready-to-use DSP en-
gines for the Teensy. In that case, the strategy consists
in letting FAUST taking care entirely of the sound synthe-
sis/processing portion of the program.

The FAUST program presented in Code Listing 3 can be
turned into a DSP engine using faust2api by running
the following command line in a terminal:

faust2api -teensy MyFaustSynth.dsp

Just like faust2teensy (see §2), the generated pack-
age contains a .cpp and a .h file that can be called directly
in a Teensy program:

#include <MyFaustSynth.h>
int SR = 44100; // Sampling Rate
int BS = 128; // Block Size
MyFaustSynth myFaustSynth(SR,BS);
void setup() {

myFaustSynth.setDevice(0,0);
myFaustSynth.start();

}
void loop() {

myFaustSynth.setParamValue(
"f",random(50,2000));

delay(200);
}

Listing 4. Teensy program using a FAUST-generated
monophonic DSP engine.

Here, the MyFaustSynth object relies on the Teensy
Audio Library which it calls internally. The setDevice

method allows the programmer to specify the hardware
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Device ID Device Description
0 Teensy Audio Shield
1 Teensy Audio Shield (Quad)
2 Built-In ADC
3 Built-In ADC (Stereo)
4 Teensy Audio Shield (Slave Mode)
5 Pulse Density Modulated Bitstream
6 Time Division Multiplexed Frame
7 USB: receive stereo audio from computer

Table 1. Input devices ID for the setDevice method (di-
rectly taken from the Teensy Audio Library).

Device ID Device Description
0 Teensy Audio Shield
1 Teensy Audio Shield (Quad)
2 SPDIF
3 PT8211 DAC
4 Built-In DAC
5 Built-In DAC (Stereo)
6 PWM
7 Teensy Audio Shield (Slave Mode)
8 Time Division Multiplexed Frame
9 ADAT
10 USB: send stereo audio to computer

Table 2. Output devices ID for the setDevice method
(directly taken from the Teensy Audio Library).

input (see Table 1) and output (see Table 2) of the DSP en-
gine. start launches computation and setParamValue

is used to change the value of a specific parameter (as with
faust2teensy). All the other standard faust2api
methods [7] are also available.

3.2 Polyphonic DSP Engine

While the benefits of using a Teensy monophonic DSP en-
gine generated with faust2api over faust2teensy
might be questionable, faust2api also allows us to gen-
erate polyphonic audio engines that can be used with a spe-
cific API.

A FAUST program can be made “polyphony-compatible”
simply be declaring the freq, gain, and gate parame-
ters. 14 In that case, an audio effect common to all voices
can be declared using the effect standard declaration.
Hence, Code Listing 3 can be easily modified to make it
polyphony-compatible (MyFaustSynthPoly.dsp):

import("stdfaust.lib");
freq = nentry("freq",300,50,2000,0.01);
gain = nentry("gain",0.5,0,1,0.01);
gate = button("gate");
envelope = en.asr(0.01,gain,0.01,gate);
process = os.sawtooth(freq)*envelope;

14 https://faust.grame.fr/doc/manual/index.html#
midi-polyphony-support

effect = +˜@(ma.SR*0.15)*0.3; // echo

Listing 5. FAUST program implementing a MIDI-
controllable polyphonic synthesizer.

The FAUST program presented in Code Listing 5 can be
turned into a polyphonic DSP engine by running the fol-
lowing command line:

faust2api -teensy -nvoices 4 -effect auto
MyFaustSynthPoly.dsp

Note that -nvoices allows us to specify the maximum
number of voices of polyphony of the engine and that -
effect auto connects all the voices to the effect de-
clared in the effect standard declaration.

The generated DSP engine allows for the use of
polyphony-related methods [7] such as keyOn, keyOff,
newVoice, deleteVoice, setVoiceParamValue, etc.
Code Listing 6 demonstrates the use of a polyphonic DSP
engine by generating random major chords.

#include <MyFaustSynthPoly.h>
MyFaustSynthPoly myFaustSynth(44100,128);
void setup() {

myFaustSynth.setDevice(0,0);
myFaustSynth.start();

}
void loop() {

int root = random(40,80);
int M3 = root+4; int P5 = root+7;
myFaustSynth.keyOn(root,100);
myFaustSynth.keyOn(M3,100);
myFaustSynth.keyOn(P5,100);
delay(1000);
myFaustSynth.keyOff(root,100);
myFaustSynth.keyOff(M3,100);
myFaustSynth.keyOff(P5,100);
delay(500);

}

Listing 6. Teensy program using a FAUST-generated
polyphonic DSP engine.

Figure 2 gives an overview of the implementation of this
system.

4. USING FAUST TO PROGRAM THE TEENSY

faust2teensy can be used in “standalone mode” to
fully program the Teensy directly from FAUST without
writing a single line of Arduino code. This is done through
the use of specific metadata in the declaration of the name
of the parameters of the FAUST program. Hence, [io:
AN] can be used to connect the N analog pin to the current
parameter. The same approach is used for digital pins us-
ing the [io: DN] metadata.

Global metadata can be declared as well to configure the
sampling rate (declare SR), the block size (declare
BS), and the audio input and output (declare device –
see Tables 1 and 2 for a list of available inputs and outputs)
of the Teensy.

Code Listing 7 presents a FAUST program where analog
pins 0 and 1 of the Teensy control respectively the fre-

115

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



quency and the gain of a sawtooth oscillator and digital
pin 0 the fact that it’s on or off.

declare SR "44100";
declare BS "128";
declare device "{0,0}";
import("stdfaust.lib");
f = nentry("f[io: A0]",

300,50,2000,0.01) : si.smoo;
g = nentry("g[io: A1]",

0.5,0,1,0.01) : si.smoo;
t = nentry("t[io: D0]",

0,0,1,1) : si.smoo;
process = os.sawtooth(f)*g*t;

Listing 7. Standalone FAUST Teensy program.

Note that the range of analog pins on the Teensy is auto-
matically mapped to that of the corresponding FAUST pa-
rameter. Hence, in the case of the f parameter in Code
Listing 7, if the Teensy uses 10 bits integers to store the
values of the samples acquired by analog pin 0, 0 will cor-
respond to a value of f of 50 and 1023 to a value of f of
2000. The same is true for digital pins.
faust2teensy can be used in standalone mode simply

by running the following command in the terminal:

faust2teensy MyFaustSynth.dsp

In that case, faust2teensy will automatically call the
Teensy bootloader to upload the generated firmware, so the
Arduino IDE doesn’t have to be used at all! Note that the
-vb option can be added to verbose the output of the com-
pilation process.

5. EVALUATION

The tools presented in §2-4 have been evaluated through
the simple FAUST program presented in Code Listing 8
which implements a sawtooth oscillator from scratch.

import("stdfaust.lib");
freq = hslider("freq",400,50,2000,0.01);
frac(n) = n - floor(n);
sawtooth(f) = +(f/ma.SR)˜frac : *(2)-1;
process = sawtooth(freq) <: _,_;

Listing 8. Standalone FAUST Teensy program.

This algorithm was chosen for its simplicity (only three
additions/subtractions and one multiplication). The corre-
sponding C++ code generated by the FAUST compiler was
used with faust2api in polyphonic mode (see §3.2) to
measure the number of cycles per seconds on the Teensy
under various conditions. This code was re-written “by
hand” to use fixed points instead of floating points with-
out changing the algorithm (the FAUST compiler can only
generate floating point DSP code).

Tests were carried out on a Teensy 3.2
(MK20DX256VLH7 Cortex-M4 72MHz) and a Teensy
3.6 (MK66FX1M0VMD18 Cortex-M4F 180MHz). Since
3.6 has an FPU, floating point instructions were forced by

using the following options during compilation: -mfloat
-abi=hard -mfpu=fpv4-sp-d16 (selects a hardware
floating-point unit conforming to the single precision
variant of the FPv4 architecture) when testing DSP code
using floating points. Since 3.2 doesn’t have an FPU, no
specific C++ compilation options for floating points were
selected (emulated floating points).

The results of our tests are presented in Table 3. All tests
were carried out at a sampling rate of 44.1KHz. We chose
128 samples as our maximum test block size since using
higher block sizes doesn’t seem to impact computation. 8
samples is the smallest block size that we were able to use
on the Teensy. “MaxPoly” corresponds to the maximum
number of voices of polyphony based on Code Listing 8
that we were able to run.

As expected, the Teensy 3.6 outperforms the 3.2 for all
tests. While there’s only a gain factor of ∼2.2 between
these two devices when using fixed point arithmetic, the
3.6 was 15 times more powerful in average than the 3.2
when using floating points. Hence, 63 parallel versions of
the algorithm presented in Code Listing 8 (which corre-
sponds to a total of 64 multiplications and 251 additions/-
subtractions per sample) could be ran in parallel and added
on the 3.6 while the 3.2 only allowed to play 4 voices. An-
other interesting element to note is that the impact of block
size on computation is rather small. Hence, a block size of
8 samples is only 1.2 times more expensive in average than
a block size of 128 samples (or greater) in most cases.

These performances could potentially be improved by
using CMSIS-DSP instructions, 15 but since all the op-
timized math function of this library are vector-based,
they’re only useful for very specific kinds of algorithms.
For instance, they would not help make the program pre-
sented in Code Listing 8 more officient because of its in-
ternal feedback.

More complex algorithms such as the FAUST version of
Zita-Verb (stereo feedback delay network) [8] were also
ran successfully on the Teensy 3.6.

Finally, audio “round-trip” (analog to digital and then
back to analog) latency measurements were carried out
(also using a sampling rate of 44.1KHz). When using a
block size of 128 samples, a latency of 10.5ms was mea-
sured. When using a block size of 8 samples, a latency of
1.2ms was measured!

6. FUTURE DIRECTIONS

The current set of metadata available to produce standalone
Teensy programs with FAUST (see §4) is somewhat limited
and could be easily extended. For example, it is currently
not possible to map sensors using i2s (Integrated Inter-IC
Sound Bus) to the parameters of a FAUST program, etc. We
plan to expand the scope of these metadata in the future
to allow users to program the Teensy in FAUST without
making compromises.

Microcontrollers and CPUs for embedded systems now
offer enough processing power to implement complex real-
time audio signal processing algorithms, but little work has

15 http://www.keil.com/pack/doc/CMSIS/DSP/html
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Block Size Teensy 3.2 Teensy 3.6
int16 128 ∼2,004,700 c/s ∼4,801,450 c/s

MaxPoly int16 128 34 (∼32,150 c/s) 75 (∼31,350 c/s)
int32 128 ∼1,113,700 c/s ∼2,402,900 c/s

MaxPoly int32 128 20 (∼23,950 c/s) 33 (∼55,550 c/s)
float32 128 ∼222,650 c/s ∼3,512,600 c/s

MaxPoly float32 128 4 (∼25,700 c/s) 63 (∼31,350 c/s)
int16 8 ∼1,774,000 c/s ∼4,271,300 c/s

MaxPoly int16 8 30 (∼49,050 c/s) 67 (∼59,950 c/s)
int32 8 ∼986,100 c/s ∼2,122,400 c/s

MaxPoly int32 8 17 (∼43,200 c/s) 30 (∼28,300 c/s)
float32 8 ∼196,000 c/s ∼3,109,050 c/s

MaxPoly float32 8 3 (∼70,150 c/s) 60 (∼27,900 c/s)

Table 3. Number of cycles per second and maximum number of voices of polyphony for different data types, block sizes
and Teensy boards based on the FAUST program presented in Code Listing 8.

been done towards bare-metal implementations on more
advanced platforms. Indeed, while we don’t think there’s
more work to be done on the Teensy side, we’d like to im-
plement a series of tools similar to the ones presented in
this paper targeting the Raspberry Pi (RPI). 16 The RPI
3 A+ 17 only costs 25USD and is based on a Broad-
com BCM2837B0 Cortex-A53 with 4 1.4GHz cores and
512MB of RAM. Beside the fact it offers much more pro-
cessing power than the Teensy, the Cortex-A53 microar-
chitecture provides support for Neon, 18 which should al-
low further optimizations for floating points operations.

While the PI is not a microcontroller like the Teensy and
therefore doesn’t have any analog inputs for sensors, etc.
it can be easily upgraded with an Analog to Digital Con-
verter (ADC) such as an MCP3008 19 which costs less than
4USD. Similarly, the built-in audio codec of the PI is no-
torious to be low quality. The Fe-Pi Audio Z V2 20 is a
sister board for the PI using the same SGTL5000 Audio
Codec as the Teensy Audio Shield, and its cost is inferior
to 12 USD. Hence, the total cost of this set-up is similar
to the one of a Teensy 3.6 upgraded with an Audio Shield
(∼45USD) but provides much more processing power for
potential bare-metal implementations.

7. CONCLUSIONS

Programming the Teensy for custom real-time audio sig-
nal processing applications is out of reach to most people
in the DIY community. The tools presented in this paper
provide a comprehensive way to carry out this type of task
at a higher level using the FAUST programming language.
Programmers benefit from hundreds of existing DSP func-
tions as well as complex functionalities such as handling
polyphony.

More generally, thanks to its high processing power (at
least considering that it’s a microcontroller) and its FPU,

16 https://www.raspberrypi.org/
17 https://www.raspberrypi.org/products/

raspberry-pi-3-model-a-plus/
18 https://developer.arm.com/technologies/neon
19 8-Channel 10-Bit ADC with SPI interface.
20 https://fe-pi.com/products/fe-pi-audio-z-v2

the Teensy 3.6, when combined with its audio shield pro-
vides a cheap platform (>50USD) for low-latency real-
time audio signal processing involving external sensors
control. The lack of operating system allows for the use
of low block sizes (eight samples) at a minimal computa-
tional cost, and for an extremely fast boot time (less than
one second).
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ABSTRACT

In collaboration with Volvo Cars, we presented a novel de-
sign tool to a large public of approximately three million 
people at the three leading motor shows in 2017 in Geneva, 
Shanghai and New York. The purpose of the tool was to ex-
plore the relevance of interactive audio-visual strategies for 
supporting the development of sound environments in fu-
ture silent cars, i.e., a customised sonic identity that would 
alter the sonic ambience for the driver and by-passers. This 
new tool should be able to efficiently collect non-experts’ 
sonic preferences for different given contexts. The design 
process should allow for a high-level control of complex 
synthesised sounds. The audience interacted individually 
using a single-touch selection of colour from five palettes 
and applying it by pointing to areas in a colour-book paint-
ing showing a road scene. Each palette corresponded to a 
sound, and the colour nuance in the palette corresponded 
to certain tweaking of the sound. In effect, the user se-
lected and altered each sound, added it to the composition, 
and finally would hear a mix of layered sounds based on 
the colouring of the scene. The installation involved large 
touch screens with high quality headphones. In the study 
presented here, we examine differences in sound prefer-
ences between two audiences and a control group, and eval-
uate the feasibility of the tool based on the sound designs 
that emerged.

1. INTRODUCTION

There is a growing interest in the field of sound design in 
the car industry; not just regarding branding and the tradi-
tional design of sounding objects (doors, motors, etc.) [1] 
and modern car-audio systems [2], but also the conception 
of outdoor/indoor sonic atmospheres linked to the emer-
gence of silent electric cars [3]. Once the sonic trace of the 
combustion motor is removed, how to sonically signal the 
presence of the car for neighbouring pedestrians or bikers 
and how to conceive the new indoor sonic ambiences of 
the vehicle as a main qualitative component of the travel 
experience is a matter of regulations [4, 5], safety [6], as 
well as aesthetics [7].

Regarding  the  external  sonic  presence  of  the  car,  it 
constitutes first a key safety issue, in particular in urban en-
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vironments. This sonic print can equally give support to
different forms of encounter between the traversed envi-
ronments and the vehicles/passengers, including informa-
tional but also masking as well as aesthetic components. A
customised sound identity could operate here as a relevant
mediator between car and place, and its design should thus
take these multiple components into account.

This “additive” approach to everyday sonic environments
(i.e., not only through traditional subtractive acoustic meth-
ods such as insulation, absorption or noise cancelling) is an
expanding field of research that has been explored in the
last years in different research case studies and practice-
based interventions, focusing in particular on public space
in dense urban contexts (e.g. [8–10]). The authors have
equally explored this question of additive sound design
in the context of different mobility modes e.g. in the re-
search project ISHT (Interior Sound Design of High Speed
Trains [11, 12]) in collaboration with the train manufac-
turer Bombardier. The authors have also been involved
with sound design of complex shared working spaces such
as flex- and activity-based offices [13]. In both examples
the main focus was on how to actively improve the expe-
rience of place and situation through subtle additive sonic
interventions.

Volvo Cars are focusing today on electric cars and par-
ticularly interested in the new sonic needs and possibilities
brought by this more silent mobility. The world’s major
motor shows—the Geneva International Motor Show, New
York International Auto Show, and Auto Shanghai—were
regarded as a relevant opportunity for a first exploration of
the users’ requirements, preferences, potential desires and
customisation skills. To that aim, we were asked to design
the interactive environment to be used in these three loca-
tions with a visitor count of almost three million people. A
general frame was provided by Volvo: to find an intuitive
and efficient way for visitors to design, or better to sketch
their own sound atmosphere; manipulating sound can cer-
tainly be regarded as an abstract and complex activity for
common visitors.

As a first step towards this ambitious aim, we wanted to
study here the potential efficiency of an audio-visual inter-
active environment for the collection of users’ preferences
and exploration of designing skills. However, we do not
aspire to propose a finished design tool. As such, the study
presented deals more with socio- or ethno-cultural differ-
ences in listening and interaction than a sound design that
can readily be applied by the industry.

A simple screen-based interactive visual/graphic environ-
ment was chosen to provide support to this fast and indi-
vidual prototyping process. Simplicity and robustness are
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central attributes in successful large-scale installations, and
large touchscreens have been found to engage and capti-
vate people [14]. Despite this simple frame, this parallel
visual/sonic interaction mode represents also in a more ap-
propriate way the multi-sensory nature of a driving experi-
ence; a purely sonic exercise would be in this sense an ex-
cessively reduced model. There are more nuanced discus-
sions about site-specific challenges for installations [15],
recommendations for design such as ease-of-use [16], fun
[17], and for intuitive interaction and matching people’s
expectations [18].

In the last years’ growing body of work on how to engage
with sound and music through technology, most notably in
sonic interaction design [19], sonification [20], and in new
interfaces for musical expression [21], we could not find
any closely related studies on designing sounds through a
typical drawing task nor guidelines for such. Sketching is
however a general, emerging research field within the CHI
community (e.g., [22]). We are also well aware that the
coupling between sound and colour or shapes have been
widely investigated; in for example [23], children were
drawing trajectories to fit a musical stimuli on paper, and
they found support for cross-modal mapping of drawing
and sound. Sonification of colours has also been found
useful for visually impaired and in other applications [24],
to name only one example. Our designed is also loosely in-
spired by a DJ system developed for creating music based
on coloured discs [25]; a camera traced the spinning plat-
ter and controlled a synthesizer with the registered colours
passing a tangent.

Adjacent research in synesthesia deals with cross-coupling
of sensory inputs. For instance, the connection between
brightness in colour and musical timbre has been shown
[26], and it has been found that going from music to visual
stimuli is most common [27]. Both synesthesia and related
questions concerning deviation and cultural differences in
colour perception [28] are somewhat relevant for this study
but intentionally excluded because the method design does
not really allow to take these into account.

A soundscape is according to [29] the auditory counter-
part to a visual landscape. Soundscapes can exist as per-
ceptual constructs, but also as physical phenomena [30].
When perceived in a shared context, the constituents of the
acoustic and the visual interrelate [31].

By essentially using a number of shared composition ma-
terials, we want to explore how different set contexts in-
fluence the choices realised by participants. Is it possi-
ble to trace case-specific preferences? Along this process,
the user could only manipulate sound by interacting with
a colour book interface. All interaction with the system
and the resulting compositions were logged in the form of
text files and recordings collecting the series of actions ex-
ecuted by visitors on the tactile screen.

2. METHOD

The interactive system we built, called Volvo Sound Stu-
dio, was based on an audio-visual environment including
touch screens, high-end headphones, and software built en-
tirely in Pure data and the graphic library GEM (for details

Hardware/
software

Description Link

Windows Surface Studio PixelSense™ 28”
touch display, Windows 10

W

Bowers &
Wilkins

P9 Signature over-ear headphones W

Audio-
Quest

DragonFly Red 32 bit ESS 9016
DAC and headphone amplifier

W

Pure Data
0.47-1

Real-time programming
environment for audio

W

GEM
0.93.3

Graphics environment for
multimedia

W

Table 1. Overview of the technical set-up and system com-
ponents.

see Table 1). While the hardware was decided by or in
collaboration with Volvo and Bower & Wilkins (Volvo’s
partners in the design of their car-audio systems and main
providers of audio components) the programming environ-
ment and the interaction design were the responsibility of
the authors. The system has previously been described in
brief [32], but then without results from the interaction.

2.1 Interface and Interaction Design

During several brainstorming and development sessions to-
gether with representatives from the partner companies, the
concept of having a simplistic colour-book interface was
decided. A strong argument was to create an experience
that did not resemble sound design or mixing tasks, and
something that would appear novel, which is of utmost im-
portance for a large-scale public event like this. Another
key characteristic of this concept was the accessible and
intuitive nature of the interaction to happen, requiring no
previous experience in editing or designing sound, no spe-
cific introduction to the user and very limited time before
reaching a meaningful result. The main focus was thus
placed on the driving contexts explored (graphically pre-
sented on screen and sonically evoked through a sound-
scape background track) and their specific impact on the
sound choices operated by visitors.

The concept of the colour-book, with its deep abstrac-
tion of a represented environment and its simple interac-
tive mode, was intended to allow the user not to focus ex-
clusively on the visual information, but also on the sound
textures under development, i.e., in search of a balance be-
tween both senses involved. A highly demanding visual
experience could more easily become a mono-sensorial ex-
ercise from an attention point of view. In the same sense, a
broader palette of graphic possibilities and realism would
equally require a careful analysis of the correlations pro-
posed between colour and sound; this complex aspect was
avoided as this early study focused on designing potentials
more than final sketching tools.

Participants were invited to “paint” three different land-
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Figure 1. The three scenes presented to the audience in colour-book style: from left the school area, city centre and
countryside road scenes. Colour is chosen in the palettes and then applied to an empty area. Each palette has a sound
assigned, and the sounds from the painted areas are mixed. The speedometer changes a global filter on the mixed sound.

scapes represented by three stylised scenes (see Fig. 1),
namely a school area scene with a school building sur-
rounded by curvy small roads and a low density area, a
city centre scene with a dense urban environment, and a
countryside scene depicting a curvy road in an open semi-
natural landscape. None of the scenes included presence
of other cars, neither traffic or congestion, as we wanted
users’ attention to be only on their “own” car. In Fig. 1,
the car in the school scene can however indeed be inter-
preted to be another sounding car.

The graphic language employed is intentionally simple,
based on the model of the colour-book, as well as the colour-
ing mode in action: each tone is applied at once on en-
tire predefined areas of each drawing, clearly delimited by
black lines on a white canvas. In the version shown to the
public, the user could choose from five colour palettes (gra-
dations of grey, green–blue, green–yellow, red–yellow and
red–magenta) and apply the chosen tone to seven differ-
ent areas in the drawing. The selection of the colour tone
was providing via headphones an immediate sonic feed-
back varying as the user was exploring the different possi-
ble colour nuances; different filters and sound effects fol-
lowed, in sonic terms, the movement of the arrow on the
colour selection area (see Fig. 2).

Each colour palette was linked to a different sound ma-
terial, the same per palette for the three scenes explored
(see Table 2). While selecting the colour, i.e., working
on a colour palette, only the corresponding sound can be
heard, and when finally applied to the main canvas, the
user gets the entire sonic mix or composition, including
a background atmosphere specifically designed for each
individual scene configured by a number of typical sonic
components of the depicted landscape (activities, textures,
soundmarks, etc.). This background atmosphere or sound-
scape aims at providing a coherent and easily understand-
able sound supporting layer for a more flexible and free
exploration of the new materials to insert which essen-
tially present no specific relation to the different contexts.
The exception is three specific contextual sounds present-
ing, a priori, an intentional relation to each context; these
three sounds will be the object of particular attention along
the analysis. At any time, the visitor can interact with a
speedometer, described below.

When no interaction was provided, the screen automati-
cally displayed an information video silently demonstrat-

ing how to use it, 1 and inviting passers-by to test the en-
vironment. For sound samples of both countryside scenes
represented in Fig. 2, including the specific background
soundscape (final compositions, produced by participants),
see Table 3.

2.2 Sound Design and Synthesis

A total of five sounds were designed. Each was five sec-
onds long and could be seamlessly looped at any given
point. The composing of the sound material had to cater
two design specifications. Each sound should easily and
harmoniously have the ability to be intertwined with any
other of the sounds. The sounds also needed to possess the
right balance between being interesting without generating
irritation during prolonged listening. Three of the sounds
would also be contextually linked to the scene through sim-
ilarity to the matching soundscape, one for each scene, and
two would be contextually deviant. The divergent sounds
were composed with the intention to be associated with a
real and a fictional vehicle: one sound was an actual Volvo
engine and the other a paraphrasing of how UFOs often
are depicted in sci-fi movies. This was done to find out if
the participants would connect the contextually connected
sounds to the scene and if an actual car engine were pre-
ferred.

The sounds, except the engine sound, were created with
an energy concentration around 1000 Hz, a frequency range
not too crowded in the exhibition areas. The sounds were
also designed through rhythm and pitch changes, making
them fluctuate in order to be distinguished from other con-
stituents emitting in the same frequency range of the sound-
scape. The intention of the dynamic character of the sounds
was to be more cohesive with the dynamics of the ever-
changing soundscape. The sounds would fit the surround-
ing rhythmic events and at the same time convey move-
ment and grab attention, and avoid being static sounds that
add to the denseness of the urban sonic environment.

The sound design had the aim of letting the user design
its preferred car sound based on the location generating the
driving situation, in this case the sonic and visual stimuli
presented at the scene. E.g., the harmonic sound was de-
signed to be connected to the city center scene, having a
dynamic movement and a melodic nature to be discerned

1 Video: https://kth.box.com/v/smc2019-HLA-video
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Figure 2. Examples of painted countryside scenes with different interpretation of the vegetation. The left image would be
dominated by sounds from the green palette, namely the “rolling” sound, while the right image would be dominated by
sounds from the orange palette, namely the “motor” sound.

in that context. The texture of a church bell used was soft-
ened to get a floating and non intrusive sound, that for the
listener would alter between staying in the background and
foreground.

The sounds described above were not played as is, but
instead treated in a synthesis based on looping. Each in-
stance of choosing colour tone in a palette and applying
to an empty space would trigger the synthesizer. In order
for the result to appear dynamic (like a motor sound), the
sound was replayed with three very short loops (fractions
of a second) of random start and length within the sound
file from its start, middle and end. Onto each looped part,
we added an audio effect controlled by the colour nuance
(see Table 2). In total there could thus be 21 loops go-
ing simultaneously, creating a very dense but still dynamic
composition.

In order to provide a coherent visual/aural experience,
once a colour is applied onto a scene, it is placed in the
stereophonic space according to its relative position in the
drawing. Each area in a scene will thus correspond to a
different left/right panning value. This effect will be par-
ticularly audible in the binaural space supported by head-
phones.

The speedometer aims at evoking the familiar glissando
sound effect linked to variations of speed as the motor
accelerates or decelerates. To that extent, the speedome-
ter controls a non-linear pitch-shifting function and loop-
speed effect where pitch and loop speed do not covary.
Each context will present a speed limit, according to nor-
mal traffic regulations (urban, country road, etc.).

2.3 Data Collection

Data were collected from two of the three expositions we
exhibited the Sound Studio in; Geneva and Shanghai, as
well as from a supplementary laboratory experiment. 2 Due
to reasons beyond our control, New York data became in-
accessible for this study. We chose two dates for inclusion:
both Sundays after the first open weekend (March 3 and
April 4 2017, respectively). These days were less busy and
we expected the installation to be stable (it turned out they
ran without trouble for the entire duration).

2 Log data: https://kth.box.com/v/smc2019-HLA-data

There are many parameters from such data collection that
we have little or no control over, and several are important.
The following list is inconclusive, but can serve as a careful
suggestion for reading the results with some attention:
The user: We are confronted in this study to entirely anony-
mous participants: no personal information regarding the
user and its profile was registered. That includes national-
ity, gender, age, physical characteristics, background, etc.
The intention: The users were not debriefed in order to
understand their interaction. This means we know nothing
about if there was preference for using colour instead of
sound, the users seriousness, if they were happy with the
results, or if they changed all parameters from their desired
soundscape in the last moment before submitting. 3

The interaction: Nothing surrounding the session apart
from the time of day was registered. That includes if it
was a returning user, if headphones were used correctly or
even used at all, if only one user interacted, if there were
disturbances elsewhere, etc.

However, there were always exhibition hosts attending
the two screens and giving support to the guests, so we
can reasonably argue in favour the exploitable nature of
the data collected. In order to verify this hypothesis, we
conducted—in addition to the exhibition setting—a lab-
oratory experiment with twelve first year media technol-
ogy students. They interacted without disturbance for as
long as they wished. The group was balanced with re-
gards to gender (6f/6m), but unbalanced with respect to age
(between 19–25 years), nationality (Swedish), and all be-
ing technology students. The purpose of having a control
group was to understand whether stress and contextual fac-
tors (time, sound environment, multiple surrounding pres-
ences and actions) would critically influence the exhibition
audiences.

3. RESULTS

For the two chosen dates from the data collection period,
we have 312 and 431 sessions from Geneva and Shanghai,
respectively, or one session every two minutes. A session
was defined as one completed soundscape design from se-
lecting a scenery to clicking the ‘Done’ button. The av-

3 Such behaviour would however be identified in the log data.
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Sound Description and effect Context Palette Link
“Harmonic” Resonating and reverberating church bell texture

fragments and a minor chord. Modified with pitch-shifted
delay.

City centre Grey–black W

“Rolling” Filtering and delaying a minor 7th chord using a
recording of waves to trigger the delay channel for an
organic rhythm. Modified with flanger.

Countryside Green–blue W

“School bell” A recording of wind chimes modulated to tremolate.
Modified with a time-varied delay line [33].

School area Green–yellow W

“Motor” A recording of a Volvo V60 internal combustion engine
high-pass filtered and moderately distorted to accentuate
the engine sound. Modified with a comb-filter octaver.

Red–yellow W

“Sci-fi” Oscillating a single tone which then is reverberated, and
further flanged and resonated. Modified with
voltage-controlled bandpass filter sweeps.

Red–magenta W

School
soundscape

A mix of field recordings from a playground, a quiet urban
environment, and a parking lot outside a shopping mall.

W

City
soundscape

A mix of field recordings of two cities recorded at
different locations early in the morning, a recording from
a busy pedestrian street, and a church bell.

W

Countryside
soundscape

A mix of field recordings of breaking waves, seagulls,
cars driving at a distance, and soft wind on a field.

W

Table 2. Sounds used in the interface with arbitrary names. The effect was added to the sound corresponding to the colour
nuance. The links go to sound examples in the Soundcloud repository.

erage time for the interacting visitor was 81 seconds, so
with 2–4 computers in the exhibition space, they were al-
most constantly in use. The longest session lasted 430
seconds, and all sessions shorter than 15 seconds were re-
moved from analysis before the estimation made above.
The control group generated 35 sessions of 36 planned.

There were significant differences (p� 0.001, two-tail t-
test) in average time spent on interaction, where the Shang-
hai audience spend 19% more time, or around 14 seconds
longer per completed session. Also, this audience painted
in average two more areas in a session than the Geneva au-
dience (the areas were painted 17.3 and 14.9 times, respec-
tively, p = 0.017). In average, the Shanghai and Geneva
groups adjusted and applied one new sound every five sec-
onds. The control group had longer interaction time (44%
longer, p = 0.006), but did not paint more areas; in effect,
they listened more than two seconds longer to each sound
before applying it.

The most prominent difference in interaction behaviour is
connected to exploring the sound palette. While we cannot
directly measure how the users listen for changes in sound,
the logging function produces one line for each incremen-
tal value from dragging the finger within the palette. The
exhibition audiences have similar values—Geneva almost
twice as many as Shanghai—while the line count of the
control group is more than six times higher than that.

In each scene, three of the five sounds (corresponding to
the five colour palettes described above and shown in Ta-
ble 2) were used similarly by the Geneva and Shanghai au-
dience; the harmonic, the rolling, and the sci-fi sounds (see
Fig. 3). The school bell sound was favoured only by the

Geneva audience, and only in the School scene (by 89%,
p � 0.001). We found no difference between Shanghai
and the control group. The motor sound was favoured by
the Shanghai audience, but only in the City scene (by 59%,
p� 0.001). This preference was even stronger in the case
of the control group (82% more, p� 0.001).

The three contextual sounds (the school bell, the har-
monic, and the rolling sound) each had an intended con-
nection to the scenes (the school, the countryside, and the
city, respectively). For the school bell sound/school scene,
the Geneva audience were, as shown above, significantly
more likely to choose the contextual sound (almost twice
as much). For the other scenes, there were no differences.

The audience in Geneva seemed to consistently choose
a higher speed on the speedometer than those in Shanghai
(in average 13.4% and 8.9% faster than “neutral” speed, re-
spectively). However, the significance test did not confirm
this observed tendency.

By shifting the colour nuance on the palette, each sound
could be ‘tweaked’ in the sense that the sound was manipu-
lated with an increasingly noticeable sound effect. Colour
nuance was mapped to position in the circle, which showed
a colour grading, while distance from the centre of the
palette corresponded to sound effect strength regardless of
absolute position in the circle. There was no significant
difference between the audiences nor the control group in
sound effect strength. In average, they tweaked the sounds
to 0.56 distance from the centre, or just above halfway out
towards the edge.

We did not find any difference in how varied the sound
designs were in terms of how many palettes that were used
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Figure 3. Proportion of sounds used by Geneva and Shanghai visitors for each of the three scenes.

for each session. In average, 2.9 of the five palettes were
used for one painting. However, the control group showed
a larger variation with 3.5 palettes used in average (p =
0.005). Even for this measurement there is ambiguity con-
cerning whether the user focused on sound or colour.

4. DISCUSSION

From the mentioned uncertainties concerning data collec-
tion, we cannot know if the users of our system among the
audiences at either Geneva or Shanghai are representative
for those geographically distant places. However, judg-
ing from the partner companies present, exhibition hosts,
and popular media reports, we find it is reasonable to as-
sume that visitors are representative for the general pop-
ulation of those places. In the following, we generalise
the results accordingly. Furthermore, the statistical analy-
sis must be read with caution as the experiment lacked in
control. Thus, only a few distinct findings were reported
above and included here to serve as a basis of discussion
and future work.

Among the measurements extracted from the log files,
there are far more similarities than differences between
Geneva and Shanghai. They adjust the speed similarly,
they tweak the sound to the same extent, and they use a
comparable varied selection of palettes for a given scene.
They do however differ in the amount of effort and time
that is put into the interaction.

Five designed “base sounds” were assigned to the palettes,
of which three were specifically suited for each of the three
scenes. For some reason, the school bell sound was strongly
associated with the school scene by the Geneva audience,
but not the Shanghai. The other sound that the audiences
applied differently was the motor sound. Generally, the
Shanghai audience chose this for the school scene when
the Geneva chose the bell sound.

One possible explanation is that the sound design was
done by a European who has more experience with school
bell sounds in Europe than in Asia. Another explanation
is that a bell sound is not common in traffic situations in
Shanghai, while low-frequency motor sounds are. Further-
more, although unlikely, we cannot overlook the possibil-
ity that users only chose a colour to match the scene which

is different between Geneva and Shanghai.
The control group was in many respects more similar

to the Shanghai audience, which contradicts the above-
mentioned regional differences in how one experiences the
school bell and motor sounds. Also, the control group
favoured the rolling sound. An alternative explanation to
these found differences could be that in the Geneva exhibi-
tion there were surrounding sounds which interfered with
the low-frequency motor and rolling sounds.

A further perspective on choice of sounds is the sound
feedback from the act of choosing a colour. For instance,
to paint the sky blue, the user needs to find the colour in the
second palette, or the “rolling” sound. Furthermore, to get
to the blue, the audio effect will be strong (for sound exam-
ples demonstrating this, see Table 3). As a result, the user
needs to compromise between image naturalness or inten-
tion and how it sounds. Similarly, the easiest way to paint
a grey or black road is to use the first palette with the “har-
monic” sound. However, none of these speculations can
really explain why the Geneva public favoured the school
bell sound (greens) for the school area.

Overall, the Shanghai audience spent more time and re-
painted more areas, despite that the number of completed
sessions was higher. Without having time constraints or
other distractions, the control group devoted considerably
longer for finishing a session than the exhibition audiences,
but without painting more areas. Also, the control group
listened or searched far more attentively for the right nu-
ance in the sound/colour palette. Regardless of this, it
seems that most users could finish a sound design within
less than 90 seconds. Considering the substantial variation
in sound that was possible with the relatively simple tool,
we are intrigued by this finding.

5. CONCLUSIONS

The installation Volvo Sound Studio globally fulfilled the
expectations in terms of reliability as well as efficiency of
planned interaction. Visitors to the major car exhibitions
in Geneva and Shanghai (as well as New York, not cov-
ered in this paper) could complete rather complex sound
designs within a period of time as brief as a minute. It
was efficient also in regard to the proved intuitive nature
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of the interaction; granting universal access to visitors re-
gardless of their skills or age. The graphic codes chosen
and disposition of elements on the screen naturally guided
the users in their explorations according to the observations
realised. The stability of the system proved to be entirely
reliable, which is not obvious when it comes to interactive
systems running non-stop along several days and with no
particularly qualified local maintenance.

We found that audiences at the Geneva and Shanghai mo-
tor shows had different preferences for the car’s sound-
scape outside a school and in a city centre. The Geneva
users favoured a school-bell sound which was specifically
designed to match that scene, and for the city scene, the
Shanghai users favoured a sound based on a combustion
engine recording.

In future studies we would like to explore a number of
different choices regarding aspects such as alternative pro-
gramming environments (GEM could readily be replaced
by better performing graphic options such as Processing),
data collected on participants (details on gender, age, would
have been relevant criteria to explore, even perhaps the
possibility of short surveys as initially suggested to our in-
dustrial partner) or even complementary methods focusing
only the aural dimension to be compared with the results
obtained here (e.g. employing the same sound materials
during the design process).

With regards to carrying out research within the confines
of a prominent publicity effort made at the most impor-
tant venue for one of the leading car producers, there are
naturally some compromises that had to be made. As a
first general reflection, the design of the interactive modes
and data collection protocols would have certainly been
conceived differently within a purely research frame; effi-
ciency was here a key concept, with a suggested time limit
of one minute per user. Without doubt, such compromises
are typically in conflict with research needs and require-
ments.

On a similar key, the installation we ended up building
is probably not the ultimate for finding answers to how
people design sounds: the colour-book concept could have
been exchanged for other concepts. The design process
was limited to the effort of the authors and with influence
from a few involved persons at Volvo. Also, it would be
impractical or even impossible to gather personal data from
the visitors. On the other hand, there are very few opportu-
nities of reaching out to such a number of people in another
context.

Links to Sound Examples

All sound examples have been uploaded to the Soundcloud
repository: https://soundcloud.com/kjetil-falkenberg-
hansen/sets/sound-examples-smc2019; see Table 3.
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Description Linkname
The harmonic sound harmonic-sound
The rolling sound rolling-sound
The school bell sound schoolbell-sound
The motor sound motor-sound
The sci-fi sound scifi-cound

School area soundscape soundscape-school
City centre soundscape soundscape-city
Countryside soundscape soundscape-country

Finished scene Figure 2a scene2a
Finished scene Figure 2b scene2b

Speedometer demonstration from
slow to fast to slow

speedometer

Audio effect demonstration on five
sounds from minimum to
maximum

audio-effects

Table 3. List of sound examples uploaded to the
Soundcloud repository. All links have the format
https://soundcloud.com/kjetil-falkenberg-hansen/linkname
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ABSTRACT

This paper reports on the procedure and results of an 
experiment to evaluate a continuous sonic interaction with 
an everyday wind-like sound created by both acoustic 
and digital means. The interaction is facilitated by 
a mechanical theatre sound effect, an acoustic wind 
machine, which is performed by participants. This work 
is part of wider research into the potential of theatre 
sound effect designs as a means to study multisensory 
feedback and continuous sonic interactions. An acoustic 
wind machine is a mechanical device that affords a simple 
rotational gesture to a performer; turning its crank handle 
at varying speeds produces a wind-like sound. A prototype 
digital model of a working acoustic wind machine 
is programmed, and the acoustic interface drives the 
digital model in performance, preserving the same tactile 
and kinaesthetic feedback across the continuous sonic 
interactions. Participants’ performances are elicited with 
sound stimuli produced from simple gestural performances 
of the wind-like sounds. The results of this study show that 
the acoustic wind machine is rated as significantly easier 
to play than its digital counterpart. Acoustical analysis of 
the corpus of participants’ performances suggests that the 
mechanism of the wind machine interface may play a role 
in guiding their rotational gestures.

1. BACKGROUND

This evaluation was conducted as part of an investigation 
into the sonic interactivity of historical theatre sound 
effects, devices created for soundmaking through 
performance actions, mechanisms and materials in the 
late nineteenth and early twentieth century. It is proposed 
that as interactive mechanisms designed explicitly for the 
performance of everyday sound events such as rain, wind 
and thunder, theatre sound effects offer the opportunity 
to explore how very simple hand actions might be 
coupled to the performance of complex digital sounds 
in a perceptually meaningful way. An examination of 
historical sources on theatre sound effects has shown 
that these historical interfaces were created using an

Copyright: c© 2019 Fiona Keenan et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

approach much like Franinović’s proposed enactive sound
design [1]. This is a Sonic Interaction Design (SID)
strategy that engages with the potential of ergoaudition
(listening to self-produced sound) [2] to facilitate learning
in a sonic interaction. Sound is produced directly
and continuously through a user’s movement, guides
their sensorimotor activity and allows them to build on
previously accumulated tacit knowledge of action and
sound [3,4]. With no established system of sound notation
in use in theatres in the late nineteenth and early twentieth
century, sound effects were explicitly designed to facilitate
the development of bodily skill in sound performance
through a simple process of exploration and rehearsal
while listening to self-produced sound.

As simple acoustic interfaces that produce the effect of
a familiar everyday sound [5] in performance, theatre
sound effect designs also afford an exploration of the
perceptual experience of a continuous sonic interaction,
and potentially expressive sound performance, without
the need for participants to have a particular level
of prior musical experience. This research therefore
adapts evaluation methods from previous research into the
design of Digital Musical Instruments (DMIs) focused on
musical expression [6–8], and applies them to a broader
cohort of participants. The evaluation method presented
here also positions theatre sound effect designs as a
potentially useful means of controlling and comparing
specific modes of multisensory feedback in the evaluation
of a continuous sonic interaction [9, 10]. To examine
how the enactive qualities of specific historical theatre
sound effects might be uncovered and then captured in
the design of a continuous sonic interaction with a digital
sound, this research focused on exploring the experience
of a continuous sonic interaction with one acoustic theatre
sound effect, and comparing this experience with that
afforded by a digital model of its sonic feedback in
performance. This work extends the methodology used
in prior research in the field of SID, which examined the
enactive qualities of Luigi Russolo’s intonarumori family
of early twentieth century acoustic noise instruments in
order to recreate them as digital models [11].

1.1 Interface Design and Synthesis Method

This work began with the construction of a working
example of a theatre sound effect, an acoustic theatre
wind machine, from historical design instructions. A
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wind machine consists of a wooden slatted cylinder, which
is mounted on a central axle and A-frame and covered
by a cloth. A crank handle coupled to the axle allows
a performer to rotate the cylinder. As the handle is
turned, the wooden slats of the cylinder rub and scrape the
encompassing cloth, which produces a wind-like sound.
(Figure 1). This acoustically modelled everyday sound [5]
can have perceivably repetitive and machine-like qualities
at slow and regular speeds of rotation, but when activated
with a gesture of continuously varying speed the sound
becomes more convincing as a wind effect. The cylinder of
the wind machine has flywheel qualities, storing rotational
energy and resisting changes in rotational speed during a
performance with its crank handle. This adds a complex
sensation of shifting weight and effort to the very simple
rotational gesture.

Following an exploration of its process of sound
production, a prototype digital model of this working
wind machine was programmed in Max/MSP 1 . This
digital prototype was created using a procedural approach
to sound modelling [12]. Rather than designing a
performable wind-like sound from a physical model of
real-world aeroacoustics [13,14], or a signal-based method
using noise and a band-pass filter [12], this prototype
aimed to directly model the mechanical wind effect, i.e.
the theatre wind machine’s wooden slats and cloth that
interact to produce sound. For this reason, the model
was based on the rubbing and scraping interaction between
each wooden slat and the encompassing cloth of the wind
machine during a rotational gesture performed with the
crank handle (Figure 2). In this way, the mechanical design
of the acoustic wind machine and the physics inherent in its
sound production could be explored through the modelling
process, a method long in use in musical acoustics
[15]. The perceptual experience and potential distinctions
between real-world wind sounds and the cloth-based effect
of the acoustic wind machine could also be examined, and
the primacy of the performer’s gesture in the realism of
the wind effect could be transferred more explicitly to the
digital prototype.

Twelve instances of the Sound Design Toolkit (SDT)
physical model of friction [16] were implemented in
Max/MSP to represent each of the twelve slats of the
acoustic wind machine and their interaction with the cloth.
Some additional dispersion of the resulting friction sound
through each side of the cloth was also implemented
using a digital waveguide [17]. The acoustic wind
machine’s mechanism was fitted with a rotary encoder,
some laser-cut gearing and an Arduino 2 . to capture data
from its rotational motion. This allowed the acoustic
wind machine’s crank handle to drive the digital model
of its sound in performance. The rotary encoder’s data
was mapped to each of the twelve digital slat models,
which were activated according to the position of the
wooden slats on the acoustic wind machine. The rotational
data also slightly modulated the delay time to the cloth
model to add some of the characteristic whistling of the

1 http://cycling74.com/
2 https://www.arduino.cc/

acoustic wind machine at high rotational speeds to its
digital counterpart.

Using the acoustic wind machine as a performance
interface for the digital model in Max/MSP maintained
a consistent tactile and kinaesthetic feedback during a
performance of both the acoustic and digital wind-like
sounds. It also allowed the acoustic and digital wind-like
sounds to be simultaneously activated by the same
performance gesture, facilitating an acoustic analysis and
comparison of the acoustic and digital sounds that helped
develop and calibrate the digital model in Max/MSP. This
objective analysis confirmed that the digital model was
quite similar to the acoustic wind machine, particularly at
slow and regular speeds of rotation. The stages of this
work, and the full technical details of the digital model,
have been previously described elsewhere [18, 19].

Figure 1. The working acoustic wind machine.

2. EXPERIMENT DESIGN

With the acoustic wind machine producing its own
wind-like sound and simultaneously driving its digital
counterpart during performance, it was possible to
design an experimental procedure to evaluate only one
modality of the interaction - the sonic feedback itself.
The evaluation was focused on exploring whether the
continuous sonic interaction with the digital wind-like
sound was perceivably ‘similar enough’ to that of its
acoustic counterpart. If so, this would confirm that the
digital model had captured many of the sonic qualities
of the acoustic wind machine, and could be used as a
substitute in a future evaluation. If not, the evaluation
would help to determine how the digital model of the
wind-like sound should be developed further. Comparing
the two sonic interactions would also help to discover more
about the perceptual experience of performing an everyday
sound [5] , and establish a baseline of results against which
future evaluations could be compared.

In the absence of prior work specifically examining the
sonic interactivity of theatre sound effects in performance,
this evaluation aimed to establish statistically significant
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Figure 2. A comparison of approaches to digitally
synthesizing a wind sound using A) a physical model
of real-world wind [13, 14], B) a signal-based approach
[12], and C) this research. The green outline denotes
performance data mapping.

results while also collecting some qualitative data in the
form of participants’ free descriptions of their experiences
of performing the acoustic and digital wind-like sounds.
To clearly investigate whether participants might perceive
a particular rotational gesture of the crank handle in
the acoustic or digital wind-like sound, the experimental
design focused on operationalizing the experience of a
continuous sonic interaction with both the acoustic and
digital wind-like sounds. This follows prior research in
the field of Digital Musical Instrument (DMI) Design,
where musical performers were given defined audio cues
to imitate, and time to reflect on their performance
experiences, when evaluating a new DMI [6]. This would
help to examine whether participants could understand a
rotational gesture from the wind-like sounds they heard,
and then translate this to a performance gesture of their
own.

Previous work to acoustically evaluate and compare both
wind-like sounds found that the prototype digital model’s
response was closer to that of its acoustic counterpart
at slower and more regular speeds [19]. As such, this
evaluation focused on simple and steady performance
gestures. The sounds produced by these gestures
were used as stimuli to elicit participants’ performances.
Participants were also asked to reflect on how they felt their
performances compared to the stimuli.

2.1 Stimuli

Two simple rotational gestures were chosen to serve as
stimuli for participants’ performances; a slow, single
rotation, and two rotations performed at a moderate and
steady speed. These gestures were recorded for both the

acoustic and digital wind-like sounds. Another recording
of a natural wind sound consisting of several short gusts
of varying speed was chosen from the BBC Sound Effects
Library [20] for use in the practice step.

2.2 Apparatus

The evaluation took place in an acoustically treated
room at the Department of Theatre, Film and Television
at the University of York. A laptop running the
python-based Open Sesame experiment platform [21]
presented questions and collected data from participants.
A second laptop was used to run the prototype digital
model in Max/MSP, and an additional computer was set
up to deliver the sound stimuli and record participants’
performances using Pro Tools. Both the Max/MSP patch
and the Pro Tools session were obscured from participants
to ensure they did not receive any additional visual
feedback during their performances.

The sound stimuli and live audio of participants’
performances was delivered to them via Pro Tools through
a closed-back pair of Sennheiser HD280 Pro headphones.
Participants’ performances in response to the sound stimuli
were recorded into the same Pro Tools session. The
acoustic wind machine was obscured, apart from its
crank handle, behind a cardboard screen to ensure that
it provided no visual feedback to participants during
performance (Figure 3).

Figure 3. The experimental setup with crank handle
highlighted.

2.3 Participants

The evaluation was undertaken with 48 participants. Of
these, 32 identified themselves as female and 16 as male.
38 participants designated themselves as 18-24, 8 as 25-34,
and 2 as 45-54 years old. 13 participants said they did not
have experience of playing a musical instrument, 15 played
a musical instrument at beginner level, 12 at intermediate
level and 8 at advanced level. All participants reported
normal hearing and were paid for their participation.

2.4 Procedure

The evaluation was based on a repeated measures design,
with all participants performing with both the acoustic and
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digital wind-like sounds in response to all of the stimuli. To
avoid order effects, the order of presentation of the acoustic
and digital wind-like sounds was randomised. The order
of presentation of the sound stimuli was also randomised.
This created four groups of twelve participants. Each
group had its own order of system performed and stimuli
presented (Table 1).

First System
Performed Subgroup

First Stimuli
Presented

Acoustic A Acoustic
B Digital

Digital A Acoustic
B Digital

Table 1. The different orders of system and stimuli for this
evaluation.

Participants were presented with the crank handle and
advised that they would be able to perform a wind sound
by rotating it. They were told that there would be two
wind sounds to perform with during this evaluation, and
that they would get to perform with both of these sounds,
one after the other. No terms such as ‘acoustic’ or ‘digital’
were used to ensure that participants’ responses would not
be influenced. Participants were then asked to listen to
a wind sound from the group of stimuli played through
their headphones, and then try to imitate what they had
heard directly afterwards by turning the crank handle.
There was a practice step, and then a test step, for both
the acoustic and digital wind-like sounds. During each
practice step, participants imitated the natural wind sound
[20] and answered all of the questions that would be
presented during the test step.

Participants were presented with a range of test questions
to evaluate their experiences. They were first asked to rate
how similar they perceived their own performances to be to
the stimuli on a scale of 1(not similar at all) to 7(as similar
as they can possibly be). Participants were then asked to
rate how far they agreed with the statement “This wind
sound is easy to play” on a scale of 1(strongly disagree)
to 7(strongly agree).

Next, a list of possible descriptors for the wind-like sound
that had been performed was presented, and participants
were asked to describe the wind sound they had just
played by selecting from these. There was also a space
to add a descriptor of their own to this list. Finally,
participants were given the opportunity to provide some
free description of their experiences of playing each of the
wind-like sounds.

3. RESULTS AND ANALYSIS

3.1 Perceived Similarity of Performances to Stimuli

Participants’ ratings of perceived similarity between the
sound stimuli and the wind-like sounds they had performed
to imitate them were scored with values from 1 to 7. A
Kruskal-Wallis test was then performed on the similarity
ratings given by the participants across each of the groups

according to the order of performance system and the
order of presentation of stimuli. This test confirmed that
there was no statistically significant difference between
the ratings given according to the experimental condition,
confirming that no order effects had influenced the ratings
(Table 2).

Test: Kruskal-Wallis Significance Effect Size
Acoustic similarity

H(3) = 6.36
p >0.05

not significant
-0.12 (small)
power = 0.8

Digital similarity
H(3) = 3.04

p >0.05
not significant

0.0 (no effect)
power = 0.8

Table 2. Results of the statistical testing to confirm
no order effects influenced the similarity ratings for the
acoustic or digital wind-like sounds.

A summary of the similarity ratings showed that, while
there was a range of scores for each of the interactions,
the acoustic wind machine performances had a higher
mean rating for similarity to the stimuli presented than the
prototype digital wind machine performances (Table 3).

Sound Played Mean SD Median
Acoustic 4.88 1.66 5.5
Digital 2.77 1.51 2.5

Table 3. Summary of ratings for the acoustic and digital
wind-like sounds’ similarity to the stimuli.

A Wilcoxon signed rank test was then performed
on these similarity ratings, which confirmed that there
was a statistically significant difference between the
ratings given to the acoustic wind machine performances
and the performances with its digital counterpart
(Table 4). Participants therefore rated the similarity of
the wind machine performances to the stimuli significantly
differently depending on whether they were performing an
acoustic or digital wind-like sound.

Test: Wilcoxon
Signed-Rank Significance Effect Size

Z = -5.40 p <0.01
-0.78 (large)
power = 0.8

Table 4. Results of the statistical testing of participants’
similarity ratings.

3.2 Perceived Easiness of Play

Participants’ scores for their responses to the statement
“This wind sound is easy to play” were scored with
values from 1 to 7. A Kruskal-Wallis test was then
performed on these ratings given across each of the groups
according to the order of performance system and the order
of presentation of stimuli. Again, this confirmed that
there was no statistically significant difference between

130

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



the ratings given according to each experimental condition,
confirming that no order effects had influenced the results
(Table 5).

Test: Kruskal-Wallis Significance Effect Size
Acoustic similarity

H(3) = 5.36
p >0.05

not significant
0.03 (small)
power = 0.8

Digital similarity
H(3) = 1.33

p >0.05
not significant

0.0 (no effect)
power = 0.8

Table 5. Results of the statistical testing to confirm no
order effects influenced the easiness ratings for the acoustic
or digital wind-like sounds.

A summary of the easiness ratings showed that the
acoustic wind machine had a higher mean rating for ease
of play than the prototype digital wind machine (Table 6).

Sound Played Mean SD Median
Acoustic 4.98 1.19 5
Digital 3.04 1.41 3

Table 6. Summary of ratings for the acoustic and digital
wind-like sounds’ ease of play.

A Wilcoxon signed rank test was then performed on
the easiness ratings to statistically compare the results for
each wind-like sound. This test confirmed a statistically
significant difference between how easy the acoustic and
digital wind-like sounds were perceived to play (Table 7).
Participants therefore rated the acoustic wind machine
as significantly easier to perform with than its digital
counterpart.

Test: Wilcoxon
Signed-Rank Significance Effect Size

Z = -5.62 p <0.01
-0.81 (large)
power = 0.8

Table 7. Results of the statistical testing of participants’
easiness ratings.

3.3 Descriptions of Sounds

Participants were then invited to describe the acoustic and
digital wind-like sounds by choosing as many descriptors
as they liked from a list. These descriptors were associated
with a range of categories, including weather (breeze,
gale), force (gentle, strong), onomatopoeic descriptions of
wind (shrieking, howling), and a historical action-oriented
onomatopoeic descriptor (swishing [1]).

Participants’ responses to this question were collated to
produce a bar graph in R comparing the frequency of
the descriptors given to each wind machine (Figure 4).
Participants chose not to add their own descriptors to the
list, but instead chose from the descriptors provided.

This showed that the most popular descriptor for
both the acoustic and digital wind-like sounds was the

Figure 4. Summary of the descriptors participants assigned
to their performances of the acoustic (blue) and digital
(red) wind-like sounds.

action-oriented swishing, followed by the force descriptor
strong and the weather-associated gusty. The acoustic
wind machine scored more highly across these three
descriptors than its digital counterpart. The digital
wind-like sound was described with a fuller spread of
adjectives, and was described more often as shrieking
and gale when compared with its acoustic counterpart.
This may reflect the fact that participants perceived the
digital wind-like sound as having a narrower bandwidth
of frequencies than the acoustic wind-like sound in
performance.

3.4 Free Descriptions

The free descriptions participants gave of their experiences
of performing with the acoustic and digital wind-like
sounds were collated and coded. It was evident that
participants had acquired some vocabulary from the list
of descriptive words previously presented to them, as
words like gentle, strong or gusty were included within
their free descriptions. Some interesting issues and trends
emerged. Participants readily connected the speed of
rotation of the handle with what they variously described
as the speed, motion, rhythm or pace of the resulting
wind-like sound, whether it was acoustic or digital in
origin. Some participants reported that the crank handle
felt heavier to turn when performing the acoustic wind-like
sound. One participant highlighted that they perceived a
disconnection between the crank handle movement and the
digital wind-like sound. Despite being informed that they
would be playing wind sounds with the crank handle, one
participant identified the digital wind-like sound as a rain
sound in their comments.

3.5 Acoustic Analysis of Performed Sounds

The evaluation produced a corpus of recordings of
participants’ performances of the acoustic and digital
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wind-like sounds in response to both the acoustic and
digital stimuli. These recordings were exported from Pro
Tools as audio clips and coded for analysis according to
the performance gesture (a single slow rotation or two
steady rotations) and the sound being performed (acoustic
or digital). The coded audio clips were then analysed in
Matlab using the MIR Toolbox [22] to produce numerical
measures of the spectrum (brightness, inharmonicity,
spectral centroid, spread and skewness) and amplitude
envelope (event density - a measure of the frequency of
onsets). The resulting numerical values for each feature
were then collated together for statistical analysis in R.

To establish whether the source of the stimulus presented
to participants (acoustic or digital) might have influenced
their performances, gestures performed with the same
system were paired in order to facilitate their statistical
comparison. For example, two rotations performed with
the acoustic wind machine in response to an acoustic
stimulus were compared to two rotations performed with
the acoustic wind machine in response to a digital stimulus.
A Wilcoxon signed rank test was then performed to
compare each acoustic feature of the paired gestures.
This testing established that no statistically significant
difference existed across the spectral measurements
of the performances. For the measures of event
density, no statistically significant difference was found
between the paired gestures of two steady rotations.
However, statistically significant differences were found
for measures of event density for a single rotation
performed with both the acoustic wind machine and the
prototype digital wind machine (Table 8).

This suggests that the gesture of two rotations performed
with the acoustic and digital wind-like sound was quite
consistent regardless of whether participants had first
listened to a stimulus that matched the sound that they
were performing. For a single rotation, performances
seem to have been more directly influenced by whether the
stimulus presented matched the sound of the wind machine
being played.

Test: Wilcoxon
Signed-Rank Significance Effect Size

Acoustic Wind
Event Density

(1 rotation)
Z = -3.46

p <0.01
-0.49 (medium)

power = 0.8

Digital Wind
Event Density

(1 rotation)
Z = -2.14

p <0.05
0.3 (medium)
power = 0.8

Table 8. Results of the statistical testing to compare the
acoustical analysis of participants’ performances.

4. DISCUSSION

This evaluation aimed to establish whether there was
perceived similarity between the experience of performing

with the acoustic wind machine and that of performing
with its digital counterpart. The results established that,
while the continuous sonic feedback was the only mode
of feedback that changed between these two performance
conditions, participants found the acoustic wind machine
significantly easier to play and perceived it as sonically
similar to the stimuli used to elicit their performances.
By contrast, the digital wind-like sound was rated as
significantly less easy to play, and participants found their
performances with it to be significantly less similar to
the stimuli they were trying to imitate. Statistical testing
showed that the ratings for similarity and ease of play were
significantly different depending on the kind of wind-like
sound being rated, and so the results did not allow the null
hypothesis to be rejected. These results suggest that the
digital model of the acoustic wind machine needs to be
developed further. In particular, the easiness ratings for the
digital wind-like sounds may reflect the need to improve
the model’s response to variations in performance gesture.
Participants may have experienced this as an action-sound
latency issue, something which previous research has show
to be disruptive to musical performance [23].

When asked to choose from a list of descriptors for
the acoustic and digital wind-like sounds, participants
preferred the action-based descriptor swishing for both
sounds, and were more confident in categorising the
acoustic wind machine (as gusty, strong and swishing).
Some interesting information emerged from participants’
free description of their performances, in particular that
the change in sonic feedback from an acoustic to digital
sound might have influenced how the physical properties
of the acoustic wind machine were experienced. This
concurs with previous research showing that auditory cues
can influence the perception of haptics and movement
[24–26]. This aspect of the change in sonic feedback from
an acoustic to digital wind-like sound could be explored
further in a future evaluation.

Acoustical analysis of the corpus of wind sounds
produced from recordings of participants’ performances
established that there was no statistically significant
difference in the acoustical measurements of sounds
performed in response to a stimulus that matched the
wind-like sound being played when compared with
performances responding to an unmatched stimulus. The
exception to this finding was the measurement of event
density, or number of onsets in the sound’s amplitude
envelope per second, which was found to be significantly
different for a single rotation performed with the acoustic
wind machine between the acoustic and digital wind
stimuli. The same pattern was visible for a single rotation
with the digital wind-like sound.

This suggests that participants played the wind-like
sounds quite differently depending on the kind of stimulus
(acoustic or digital) presented to them to elicit their
performance. However, this difference was not evident
in the gestures of two steady rotations. It is possible
that participants understood the stimuli of two steady
rotations much more easily, but given the lower ratings
for similarity and easiness participants gave to the digital
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wind-like sound, it is unlikely that the digital stimuli were
so simple to imitate. It is proposed that this continuity
of gestural response evidenced in the performances of
two steady rotations may be the result of the mechanical
qualities of the acoustic wind machine itself, rather than
the responses of participants. With a single rotation, the
acoustic wind machine’s cylinder may not have time to
accumulate rotational energy and push forward from the
movement of the performer’s hand on the crank handle.
However, with a gesture of two rotations, the moving
cylinder must be imposing more of its flywheel qualities,
and hence some regularity, on the performer’s rotational
movement. Given the medium effect size observed here,
further testing with a larger number of participants would
be able to confirm these results. An experiment examining
a broader range of gestures, and in particular a robust
method of recording data from the rotary encoder would
help to illustrate the influence of the cylinder’s rotational
inertia on the performer’s movement in the continuous
sonic interaction.

5. CONCLUSION

The evaluation of the acoustic wind machine and its
digital counterpart in performance has confirmed that the
sonic response of the digital model is not yet perceptually
close enough to the acoustic wind-like sound to be used
as a substitute for it in a future experiment. Further
work is therefore needed to calibrate the response of
the digital model. However, the acoustic wind machine
was itself rated highly for ease of performance and
similarity to the stimuli it imitated, confirming its enactive
qualities. The potential of the mechanical wooden
interface playing a role in facilitating a meaningful link
between a performer’s action and the complex wind-like
sound is interesting, as the flywheel properties of the
cylinder and axle design may have a critical role in
enhancing the enactive potential of this particular theatre
sound effect design. Isolating the sonic feedback as
part of this evaluation has also shown that despite the
continuity of tactile and kinaesthetic feedback across
the interactions, participants perceived their acoustic and
digital performances significantly differently.

Using historical theatre sound effect designs as the focus
of an evaluation like this allows participants’ perceptual
experiences of incrementally different modes of feedback,
in a continuous sonic interaction, to be explored in detail.
How far the digital model needs to be developed in order
to capture more of the enactive experience of the acoustic
wind machine in performance should be investigated. In
this way, the potential of digital systems to afford rich,
intuitive encounters with performable everyday sounds can
be explored further.
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ABSTRACT

The need for loudness compensation is a well known fact
arising from the nonlinear behavior of human sound per-
ception. Music and other sounds are mixed and mastered
at a certain loudness level, usually louder than the level at
which they are commonly played. This implies a change
in the perceived spectral balance of the sound, which is
largest in the low-frequency range. As the volume setting
in music playing is decreased, a loudness compensation
filter can be used to boost the bass appropriately, so that
the low frequencies are still heard well and the perceived
spectral balance is preserved. The present paper proposes
a loudness compensation function derived from the stan-
dard equal-loudness-level contours and its implementation
via a digital first-order shelving filter. Results of a formal
listening test validate the accuracy of the proposed method.

1. INTRODUCTION

Loudness compensation is based on the equal-loudness-
level contours first reported by Fletcher and Munson in the
1930s [1] and different approaches to loudness compensa-
tion have been discussed since then [2–5]. It is well known
how perceived bass and sub-bass ranges are much more
affected than high frequencies when the sound level goes
down. As a consequence, it is beneficial to adapt the com-
pensation based on the listening level of the audio track.

Recently, Prasad described a compensation based on and
approximation of the difference in sensitivity, which can be
implemented using a filterbank or fast convolution based
on the FFT (Fast Fourier transform), which causes some
processing latency [6]. Hawker and Wang proposed the
use of a scalar function describing the change in SPL re-
quired to effect a change of 1 Phon. Their method is im-
plemented using FIR (Finite Impulse Response) filters with
1024 coefficients, which are also best to implement using
fast convolution [7].

According to Katz [8], music is nowadays usually mixed
and mastered with loudspeakers at the sound pressure level
(SPL) of 83 dB, or more generally at SPL between 80 to

Copyright: c© 2019 Leonardo Fierro et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-
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85 dB. In such a range, human loudness perception is the
closest to be flat while avoiding painful levels. However,
those are quite high levels and a prolonged exposure can
tire the listener or even damage the hearing [9] [10]. Safer
listening levels for consumers (in particular using head-
phones) lie in the 60–75 dB SPL range.

Inevitably, when the sound reproduction level is changed,
the perceived spectral balance is altered as well and the fi-
delity to the original master is lost. The ultimate goal of
a loudness compensation method is not to provide the best
subjective bass compensation according to the listener, but
to recover such lost fidelity by regaining the spectral bal-
ance of the playback sound. Consumer audio equipment
sometimes offered a “loudness” switch, whose action was
merely a constant bass boost regardless of the playback
level or a variable analog shelving filter control without
calibration [4, 11]. More recent devices have removed this
feature, leaving the user to manually change the volume
controls.

This paper proposes a computationally efficient compen-
sation technique using a first-order IIR (Infinite Impulse
Response) digital filter to improve the listening experience,
based on the equal-loudness-level contours (ELLC) pro-
vided by the ISO226:2003 standard [12]. The proposed
method is highly accurate approximating the ELLC curves
within ±1 dB. Furthermore, the low-order IIR filter does
not introduce practically any processing latency. This is
similar to the best analog loudness control circuits with the
addition that it allows level calibration.

The rest of this paper is organized as follows. Section 2
briefly illustrates the ELLC, reporting the contour function
and data interpolation useful for the proposed compensa-
tion method described in Section 3. Section 4 is related to
the filter design, and Section 5 to the optimization of filter
parameters. Description and results of conducted listen-
ing tests are shown in Section 6. Section 7 concludes this
paper.

2. EQUAL-LOUDNESS-LEVELS CONTOURS

The ISO226 standard is used as reference for the work
described in this paper. The standard specifies the sound
pressure levels of a pure tone, as function of frequency,
perceived as equally loud by human listeners in free space
[12]. Polynomial function for the contours is given by:
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Figure 1: Interpolated ELLC for 20–90 Phon range be-
tween 20 Hz and 12.5 kHz.

Lp =
10

af
log10Af − Lu + 94, (1)

where

Af =
4.47

103
(10

Ln
40 − 1.15) + (0.4 · 10

Tf+Lu

10 −9) af ; (2)

Lp is the sound pressure level (in dB SPL) of a pure tone;
Ln is the loudness level (in Phon); f is the frequency of the
pure tone; Tf is the hearing threshold (in dB SPL); af is
the exponential factor, accounting for loudness perception;
Lu is the magnitude (in dB) of the frequency response, nor-
malized at 1 kHz. The data range provided by the standard
is 20 to 90 Phon, whereas the frequency spans from 20 Hz
to 12.5 kHz, and it is shown in Fig. 1.

From the ELLC, it is easy to see how the sensitivity of
human perception changes nonlinearly with frequency and
how low-frequency range is the most heavily affected part
of the spectrum. Data from ISO226 was linearly inter-
polated with 1-Phon steps to provide intermediate curves
(Fig. 1).

3. COMPENSATION METHOD

The main idea behind the proposed method is quite straight-
forward: derive a sensitivity function from the ELLC, rel-
ative to the listening level, then find an inverse function to
be used as a trace-guide for the design of a digital filter that
can then correct the spectral balance.

It is possible to normalize each curve in Fig. 1, with re-
spect to its SPL value at 1 kHz, in order to evaluate the
sensitivity of human hearing for different SPLs, i.e. to ob-
tain a sensitivity function S:

S (f, Ln) = −Lp(f, Ln) + Lp(1000, Ln). (3)

For each sensitivity curve shown in Fig. 2, the difference
in perception with respect to SPL at 1 kHz corresponds to
the gain (or attenuation) to be introduced in order to have
a flat response.

The mastering level (LM ) and the listening level (LL) for
music are usually different, as the latter is quieter than the

Figure 2: Sensitivity function, for different levels.

Figure 3: Derived filtering trace-guides at f ≤ 1 kHz for
certain listening levels, LM = 80 dB SPL.

first one. The goal is to compensate the perceived spectral
balance at LL in such a way that it matches the perceived
spectral balance at LM . A relationship between the two
levels is derived, identifying a difference curve ∆Lp:

∆Lp(f, LM , LL) = Lp(f, LM )− Lp(f, LL)−Nf , (4)

where Nf is the normalization factor for the sensitivity
function, according to (2):

Nf = Lp(1000, LM )− Lp(1000, LL) = LM − LL. (5)

Inverting (3), a balancing curve is finally obtained. It cor-
responds to the magnitude response that perfectly balances
the perception of spectral components as intended by the
mastering:

H(f, LM , LL) = −∆Lp(f, LM , LL)

= −Lp(f, LM ) + Lp(f, LL) +Nf .
(6)

Notice how bass reduction instead of boost is required for
LL > LM in Fig. 3. This is significant for situations like
live concerts or discos, where music can be played at high
levels [11].
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4. FILTER DESIGN

Since a set of curves—referred as trace-guide from here
on—has been obtained, the next step is to identify a type of
digital filter whose magnitude response is sufficiently close
to the trace-guide and that can easily adapt to a change in
listening level; low order and low complexity are desired,
in order to have minimum impact on the reproduction sys-
tem and allow a real-time implementation.

IIR filters are a natural choice in terms of efficiency for
many audio DSP applications [13]. Their processing is
typically low demanding in terms of operations and mem-
ory, enabling the implementation of such filters in low cost
architectures and products hitting the markets. FIR fil-
ters allow linear-phase processing, but require generally a
larger number of operations per output sample and more
memory on the DSP interface than IIR filters. Furthermore,
FIR filters can be limited in resolution when working with
low frequencies, affecting the quality of the filter coeffi-
cients [13]. For those reasons, FIR filters are not consid-
ered in this paper.

Digital filters can be derived from analog filters, convert-
ing a transfer function with analog poles/zeroes from the
Laplace-domain to the z-domain and obtaining a difference
equation, using common transformations such as the bi-
linear transform, the matched Z-transform, the pole-zero
mapping method, or the impulse-invariant method [14].
Digital filters can also be designed by choosing appropriate
locations for the poles and zeroes on the unit circle in the
z-domain, thus imposing desired corner frequencies and
slope [15].

Depending on the quality of the back-end application, IIR
filters can be applied on both fixed-point and floating-point
architectures. Consequently, either Direct Form I, II or
Transpose II can be chosen for implementation: DF2 and
DF2T require less delay elements but are prone to over-
flows with high-order filters, so DF1 may be a simpler and
better solution for fixed-point architectures [15].

4.1 Fractional order filters

From Fig. 3, it can be observed that the target magnitude
response slope is less than 20 dB/decade, for every curve.
This suggests to look for filters with an order smaller than
one—the so called fractional order filters—and with a low-
pass behaviour.

Fractional order filters (FOF) are neither well documented
nor well described in DSP literature at the moment of writ-
ing [16], but a design process for digital FOFs has been
proposed by Nielsen [11]. Although providing similar re-
sults as shelving filters (Section 4.2), the latter should even-
tually be preferred to FOFs, due to the wider use and lower
complexity (always a good thing when discussing real-time
audio applications). For this reason, FOFs are not consid-
ered in this paper. Future studies might provide interesting
results, also relevant for this work.

4.2 Shelving filters

A shelving filter boosts or attenuates the magnitude of an
input signal in a certain frequency band—either the lowest

(a) Variable G, constant ωc = 1 kHz

(b) Variable ωc, constant G = 10 dB

Figure 4: Effects of gain and crossover frequency on the
magnitude response of a first-order low shelving filter.

frequency band or the highest frequency band—without
cutting out the harmonics in that band as a typical low-
pass/high-pass filter would do [13, 17].

Depending on whether it affects the bass or the treble
(high frequencies), it will be referred to as either a low-
shelving or high-shelving filter, respectively.

This type of filter is largely used in parametric equaliz-
ers, due to the smooth transition of the response between
affected and unaffected regions and the simple implemen-
tation. A classic parametric equalizer presents two knobs
to the user, one for bass and one for treble 1 , through which
it is possible to alter the filter shape and its effect on the
playback sound.

Simplicity comes from the fact that the behavior of a
shelving filter is completely described by just the gain G
and the crossover frequency fc (often also called corner or
cut-off frequency). As can be seen from Fig. 4, the gain
parameter affects the gain at low frequencies and the slope
(Fig. 4a), while the crossover frequency parameter affects
the width of the response, i.e. its frequency span (Fig. 4b).

Transfer functions for both the first and second-order low-
shelving digital filters have been derived by Välimäki and
Reiss [13]. The transfer function of the first-order shelf can

1 Typically, one or more knobs adding peaks/notches in the mid-
frequencies range are also available in common music equipment.
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Figure 5: Comparison between trace-guide and shelving
filters, LM = 80 dB SPL, LL = 50 dB SPL.

be written as

HLS(z) =
b0 + b1z

−1

1 + a1z−1
, (7)

where

b0 =
GΩ +

√
G

Ω +
√
G
, b1 =

GΩ−
√
G

Ω +
√
G
, a1 =

Ω−
√
G

Ω +
√
G
,

Ω = tan(ωc/2), and ωc = 2πfc/fs.
Fig. 5 shows a comparison of different low-shelving fil-

ter responses, where the trace-guide is interpolated with
a spline function to provide more frequency points. As
can be seen, the first-order shelving filter presents a fairly
good approximation of the trace-guide; an even better re-
sult is achieved with a cascade of two first-order filters,
but a second-order low-shelving returns curves which are
too steep. Moreover, the flat response towards the lowest
frequencies avoids unnecessarily boosting the frequencies
close to DC, or 0 Hz.

5. OPTIMIZATION OF FILTER PARAMETERS

After choosing the filter type, the optimal parameters (G,
ωc) should be found. In case of a cascade of two first-
order shelves, there are four parameters: (G1, G2, ωc1 ,
ωc2 ). However, few things might be taken into account in
order to simplify the optimization problem:

• LM typically lies in a very limited interval (80–85 dB
SPL), so trace-guides will be similar for levels in
such a range;

• it is reasonable to choose trace-guide SPL at 20 Hz
as G; in case of a filter cascade, the product of the
gains (the sum, in the log domain) should match
such value.

Holding to these considerations, an optimization algo-
rithm can be run to identify the optimal parameters. A
genetic algorithm (GA) has been chosen for this task [18],
due to its suitability to solving search problems and the
high-quality solutions it is capable of generating in a rea-
sonable time.

(a) Single first-order filter

(b) Cascade of first-order filters

Figure 6: Worst-case deviations from trace-guide given by
first-order low-shelving filters, with peaks of max devia-
tion.

5.1 Crossover frequencies

Initial GA runs over the 80–85 dB SPL range for LM show
that the optimal solution for gains in the shelving cascade
is really close to an equal weighting. So it is safe to as-
sume, in first approximation:

G1 = G2 =
1

2
G. (8)

This way, the complexity of the optimization task has al-
ready been reduced by one degree. Of course, this does not
concern the single filter case.

Then, the crucial step in optimization seems to be the
choice of the poles, i.e. the crossover frequencies. It is
easy to change filter parameters in real-time application.
However, given the short range of considered mastering
levels and the definite frequency span of the trace-guide,
fixing the poles simplifies the problem even further with-
out loss of generality, leaving only G to be modified as LL
changes.

Multiple GA runs return, as consistent optimal solution:
fc = 122 Hz for the first-order shelving filter; and fc1 =
61.1 Hz and fc2 = 242 Hz for the cascade of first-order
shelving filters. Maximum deviations from trace-guide are
plotted in Fig. 6. As can be seen, both cases provide inter-
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Figure 7: Deviation from trace-guide given by first-order
low-shelving filter, with gain adjustment α = 0.485 dB.

esting results, with small errors for all considered listen-
ing levels and minimum error on the mid frequencies. To
achieve high-fidelity, a maximum deviation of±1 dB from
the trace-guide is desired. As shown in Fig. 6b, the fil-
ter cascade error always lies inside such a range, while the
single filter deviation slightly exceeds −1 dB around 250
Hz (Fig. 6a). Although, the cascade already satisfies re-
quirements, the use of a single filter is desirable to further
reduce complexity and computation time.

5.2 Gain adjustment

Since the crossover frequency has been fixed, a possible
solution is to adjust the gain with a small bias term α in
order to compensate for the deviation peak around 250 Hz,
without exceeding the range somewhere else. The modi-
fied filter gain is then determined as:

GdB = ∆Lp(20, LM , LL) + α. (9)

Running the GA again, an optimal bias term α = 0.485 dB
was found. Fig. 7 shows that this small bias reduces the
maximum deviation, while maintaining the error between
±1 dB in the rest of the bass range.

Fig. 8 shows the magnitude responses of the first-order
shelving filters using the modified gain and (7). The filter
coefficients used for these curves are listed in Table 1.

6. LISTENING TEST

6.1 Design

A listening test was conducted on a selection of experi-
enced listeners. No one reported any hearing impairments
or medical conditions. The test was designed for this pur-
pose and conducted in the MATLAB environment on a
MacOS computer, using a pair of Sennheiser HD 650 dis-
patched inside a listening booth at the Aalto Acoustics Lab.

Audio samples were chosen from different genres for hav-
ing a prominent bass line and other different spectral fea-
tures. They consisted of short tracks (4 to 8 seconds) cut
from the following songs:

1. Queen, “Another One Bites The Dust” (1980);

Figure 8: Magnitude responses of the first-order shelving
filter at f ≤ 1 kHz for certain listening levels, when ML =
80 dB. Cf. Fig. 3.

Numerator Denominator
LL [dB] b0 b1 a1

90 0.9952 −0.9821 −0.9773
80 1.0005 −0.9827 −0.9832
70 1.0058 −0.9818 −0.9876
60 1.0117 −0.9791 −0.9908
50 1.0186 −0.9746 −0.9932
40 1.0271 −0.9678 −0.9949

Table 1: Shelving filter coefficients for various choices of
LL, when ML = 80 dB.

2. White Stripes, “Seven Nation Army” (2003);

3. Daft Punk, “Around The World” (1997).

From further on, each track will be identified with its
number from the list above, e.g. Track 1, Track 2, Track 3.
Track 2 is composed by just bassline and drumline, show-
ing narrow spectral content concentrated in the bass range.
Track 3 present a broader spectral content; same for Track
1, which also includes vocals.

Subjects under test were presented with 7 instances of
each track, for a total of 21 stimuli pairs. Each step held a
version of the track played at LM (see Section 6.2), named
reference, and an attenuated variant. Applied loudness re-
duction varied between 0 and 40 dB in steps of 10 dB, cor-
responding to five different listening levels in the 40–80 dB
SPL range. 80 dB SPL (no reduction, same as reference)
and 60 dB SPL (20 dB attenuation) were presented twice
per each track: repeated reproductions were used during
the screening phase to evaluate subject consistency and
then discarded before statistical analysis of results.

Loudness compensation was applied to the attenuated vari-
ant using the single first-order low-shelving filter. The
crossover frequency was fixed at 122 Hz (see Section 5.1),
and the subjects modified the filter gain using a slider dur-
ing the test. The slider selected a different gain for the
filter based on the ELLC trace-guide (Section 5). Slider
movements were discretized and each step corresponded
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Figure 9: Screen-shot of the test GUI.

to a 2-dB variation in the selection of the curve.
The subjects were asked to focus on the bass of the played

sounds, in particular on the balance between the overall
loudness and the bass loudness of the reference, and to
compensate the spectral balance of the variant in order to
match the reference balance, but at a differentLL. Subjects
had access to a horizontal slider (Fig. 9) that, it was told
them, allowed to give “boost or reduction” to the bass of
the variant. The range of the slider was hidden and slightly
randomized, having only the labels “Min” and “Max” at its
two extremes.

The audio samples were set to play in a continuous loop
until they were manually stopped. While it was possi-
ble to reproduce the variant as many times and a long as
as desired, the play count of the reference was limited to
two, the first starting automatically at each new step of the
test. This means that, after stopping the reference the first
time, it was possible to play it again just one more time.
This choice was made to avoid the listener to go “back and
forth” from the reference to the variant and force them to
pay extra focus on the task.

Given the fast decay of human memory of sounds, the
subjects have been suggested to get a general idea of the
frequency components of the reference during the first play,
then to reproduce the variant and explore the amount of
possible “boost” given by the slider, before getting back to
the reference and gain a more clear sense of the spectral
balance. After the second stop, a final choice for variant
compensation should have been made.

Listeners were allowed a short training session before
starting the actual test to get acquainted with the interface,
the keyboard shortcuts and the task itself. The results of the
training session were not included in the statistical analy-
sis.

6.2 Level calibration

Having an accurate measurement of the loudness level was
critical for the goodness of the test, so a calibration phase
was performed. Used instrumentation involved a RME
Fireface 800 and a G.R.A.S. 45CA Headphone Test Fix-
ture in compliance with the IEC 60318-4:2010 occluded-
ear simulation [19].

The different tracks, played through the headphones allo-
cated on the ear simulator, were loudness matched by using

Loudness [LUFS] Max SPL [dBA]

Track 1 −11.3 83.4
Track 2 −11.1 77.0
Track 3 −11.0 81.2

Table 2: ITU-based loudness in loudness units relative to
full scale (LUFS) according to ITU-R BS.1770-4 and the
maximum measured SPLs (in dBA).

the ITU-R BS.1770-4 [20] loudness measure. Their play-
back level was then set to be close to 80 dBA (A-weighted
dB). The actual measured dBA vary, since the levels de-
pend on the contents of the considered track. The ITU-
based loudness levels and maximum A-weighted dB levels
are reported in Table 2.

6.3 Screening

In order to isolate inconsistent listeners, 80 dB SPL and
60 dB SPL cases were presented twice. For screening, it
was not tested how accurate subjects were, but their de-
gree of repeatability. For this reason, the absolute differ-
ence between the first and the repeated value was calcu-
lated at both levels, for each song and for every subject.
A double-threshold method was implemented to evaluate
consistency:

1. If ∀i ∆80i ≤ 6 dB, subject is consistent;

2. Otherwise, if ∆80i > 6 dB for one track and ∆60i ≤
10 dB for at least two tracks, subject is consistent;

3. Otherwise, subject is inconsistent and discarded.

Here i = 1, 2, 3 is the number of the track and ∆80i and
∆60i are the differences of the two instances. Since hu-
man perception was evaluated, it was reasonable to have a
stricter threshold at the reference level (80 dB), where the
spectral balance of two signals with the same level were
matched, and a more relaxed threshold for the attenuated
level (60 dB), which required a harder task of matching the
spectral balance of two signals with different listening lev-
els. A total of 18 subjects participated in the test; 11 of
them passed the consistency screening and were included
in the analysis.

6.4 Results

Results from the listening test show that ELLC can repro-
duce the average response of the listeners. This is shown
by the box plots in Figs. 10 and 11, where the box plots
present the median (red line), the 25th and 75th percentiles
(blue rectangle), the extension to the most extreme data
points not considered outliers (black whiskers) and the out-
liers (red cross). Furthermore, the black markers represent
the predicted correct compensation that matches the level
of the ELLC.

Fig. 10 plots the applied compensation versus the listen-
ing level of the track, showing how such compensation
adapts to the level and increases towards the lowest levels.
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(a) Track 1

(b) Track 2

(c) Track 3

Figure 10: Test results, grouped by song. Box-plot of com-
pensation introduced by subjects at each listening level.

Fig. 11 shows the level deviations, so it is easier to see the
goodness of the results and the cases of under or over com-
pensation. As expected, data presents moderate variance,
due to the difficulty of the task; nevertheless, the median
of the error in level evaluation always lies in a close range
near 0 dB (Fig. 11).

Analyzing the results, it is possible to state the following:

• The reference was matched quite well by almost all
listeners for all samples, with slightly worst accu-
racy for Track 3 (Fig. 10c and 11c);

(a) Track 1

(b) Track 2

(c) Track 3

Figure 11: Test results, grouped by song. Box-plot of error
in level evaluation versus the corresponding correct level.

• Fairly good results were obtained in typical music
listening range (60 and 70 dB SPL);

• The variance increased towards the lowest levels (40
and 50 dB SPL), where sound was really quiet and
the task of matching the perceived spectral balance
became harder.

It is interesting to notice that, for Track 2 (Figs. 10b and
11b), the majority of the listeners tended to overcompen-
sate when the music level went down. This makes sense,
due to the sample having narrow spectral content and, as a
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consequence, no “untouched” frequency components to be
compared to, increasing the difficulty.

After taking the test, the subjects were asked for a feed-
back. They confirmed the difficulty of matching the spec-
tral balance, when the level of reproduction went down. It
was also difficult to notice the audible difference among
small changes of the slider, since only the lowest frequen-
cies were affected. They also stated that bass contribution
was noticeable and pleasing.

7. CONCLUSION

A loudness compensation function derived from the equal-
loudness-level contours and implemented via digital filters
was proposed. This function introduces an adaptive con-
tribution to the bass based on the listening level, in order
to balance the perceived spectral variations given by the
nonlinear response of the human hearing system.

Among different typologies, the first-order low-shelving
filter with gain adjustment and fixed crossover frequency
was shown to provide a high-fidelity approximation of the
compensation function for a wide range of music listening
levels. Its low computational complexity enables a real-
time implementation.

A formal adaptive listening test was designed and con-
ducted to validate the accuracy of the proposed compensa-
tion method, which was proved by the test results. Future
work on this topic might include on-chip applications, cus-
tomization for specific hardware or environments, and new
listening tests conducted with a larger pool of non-trained
listeners reflecting consumer market.
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ABSTRACT

The tuning of a piano is a complicated and time-consuming 
process, which is usually left for a professional tuner. To 
make the process faster and non-dependent on the skills 
of a professional tuner, a semi-automatic piano tuning sys-
tem is developed. The aim of the system is to help a non-
professional person to tune a grand piano with the help of 
a computer and a motorized tuning machine. The sys-
tem composes of an aluminum frame, a stepper motor, 
an Arduino processor, a microphone, and a laptop com-
puter. The stepper motor changes the tuning of the piano 
strings by turning the pins connected to them whereas the 
aluminum frame holds the motor in place. The Arduino 
controls the motor. The microphone and the computer are 
used as a part of a closed loop control system, which is 
used to tune the strings automatically. The control system 
tunes the strings by minimizing the difference between the 
current and optimal fundamental frequency. The current 
fundamental frequency is obtained with an inharmonicity 
coefficient estimation algorithm, and the optimal funda-
mental frequency is calculated with a novel tuning pro-
cess, called the Connected Reference Interval (CRI) tun-
ing. With the CRI process, a tuning close to that of a pro-
fessional tuner is achieved with a deviation of 2.5 cents 
(RMS) between the keys A0 and G5 and 8.1 cents (RMS) 
between G#5 and C8, where the tuner’s results are not 
very consistent.

1. INTRODUCTION

Tuning a piano is known to be a complicated process, 
which takes a considerable amount of time and effort. To 
many musicians tuning all the 200 plus strings of the in-
strument is a daunting task, especially as doing it incor-
rectly may leave the instrument in even worse tune. Be-
cause of this the tuning of a piano is usually left to profes-
sional tuners.

The scale of a piano is based on the twelve-tone equal 
temperament scale (12-ET), which specifies the fundamen-
tal frequency of each key. The difficulty of tuning a pi-
ano comes from the fact that, because mode frequencies

Copyright: c© 2019 Joonas Tuovinen et al. This is 

an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original 
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of piano strings deviate from the harmonic series, in a phe-
nomenon called inharmonicity, tuning the fundamental fre-
quencies of the strings to follow the 12-ET scale leads the
instrument to sound out of tune [1]. Instead, professional
tuners use the beating effect, produced by two frequencies
close to each other, to tune the instrument, as the 12-ET
scale specifies beating rates for each interval [2].

To make the process of tuning a piano faster and non-
dependent on the skills of a professional tuner, a semi-
automatic piano tuning system is developed in this work.
There have been related previous developments, e.g. [3],
but an automatic piano tuning system is still not commonly
used. The proposed tuning system is aimed towards tuning
a grand piano with the help of a non-professional tuner.
The system includes a stepper motor, an aluminum frame,
an Arduino Uno [4], a microphone and a computer.

The system uses closed loop control to change the funda-
mental frequency of a string from the current frequency to
a target frequency. The current fundamental frequency is
determined by an inharmonicity coefficient estimation al-
gorithm. The target frequency is determined by a novel
tuning process, called the Connected Reference Interval
(CRI) tuning process, which calculates the optimal fun-
damental frequency for each string based on the beating
rates between the current and previously tuned strings. The
change from current to target fundamental frequency is im-
plemented with a Proportional-Integral-Derivative
(PID) controller, which is discussed later in more detail.

There have been previous algorithms that are designed to
find the optimal tuning for a piano, but these algorithms
require all or some of the strings to be recorded before tun-
ing [5–7], unlike the CRI tuning process, which calculates
everything while the tuning is done.

The paper is structured as follows. In Section 2 the struc-
ture of the piano tuning robot, in charge of turning the pins
of the piano, is described. Next, in Section 3 the control
system which automatically changes the tune of a string to
a desired tuning is discussed. The system needs the current
fundamental frequency, discussed in Section 4, and the tar-
get fundamental frequency, described in Section 5 to tune
the string. The accuracy of the CRI tuning system is also
evaluated in Section 5. Finally, Section 6 includes conclu-
sion of the project as well as discussion about the future of
the system.
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Figure 1. Proposed piano tuning system with the Arduino
processor near the midpoint of the picture and the stepper
motor on its left-hand side, attached to the topmost alu-
minum bar.

2. STRUCTURE OF PIANO TUNING ROBOT

In the process of tuning a piano, tuners use a lever to tune
the strings of the piano. The lever is used to turn a pin
which has a string wrapped around it. Turning the pin
changes the tension of a string and this change in tension
determines the fundamental frequency of the string accord-
ing to:

f0 =
1

2L

√
T

m/L
, (1)

where L is the length of the string, m is the mass of the
string and T is the tension of the string. The fundamental
frequency of a string (along with the inharmonicity coef-
ficient which will be discussed later) determines the mode
frequencies (partials) that tuners listen to when tuning the
instrument.

The first step in making an automatic piano tuner was
to create a structure which allows the automatic control
of string tension. The proposed structure (stepper motor,
aluminum frame and Arduino) is able to turn the pins of
the piano with high precision (small angle) and has enough
torque to turn even the tightest strings. The Arduino is able
to turn the pins of the piano depending on input given by
the computer with a program uploaded to it. The prototype
structure can be seen in Figure 1.

3. CONTROL SYSTEM

The control system used to automatically determine the
number of steps needed to change the fundamental fre-
quency of a string from current to a desired value, is a
closed loop control system. The general structure of a
closed loop control system can be seen in Figure 2a. The
system has a reference value as its input, and the aim of
the control loop is to minimize the difference between the
reference and the value measured from the output of the
system with the sensor. This is accomplished with the con-
troller, which changes the input to the process based on the
difference between the reference and the measured output.

ProcessController

Sensor

Process  
input

–
+

Reference

Measured output

Measured  
error Process output

Stepper
motorArduino

Microphone
& computer

Steps

–
+

f0, target
f0, current

f0,target – f0,current 
Tone

(a)

(b)

Figure 2. Block diagram of (a) a general closed loop con-
trol system (b) closed loop control system used in the piano
tuning robot.

Figure 2b shows a diagram of the piano tuning system.
In the piano tuning system the Arduino is used as the con-
troller as the microprocessor has enough processing power
to do this task and it controls the number of steps that the
stepper motor takes. The process is the stepper motor turn-
ing a pin and thus affecting the fundamental frequency of
the string attached and the process output is a tone pro-
duced by the string. To be able to measure the fundamen-
tal frequency of a string based on the tone, a microphone
and computer are added to the system. In addition to work-
ing as the sensor, providing the measured output, the two
components provide the reference as well, as information
extracted from the current tone as well as previous tones
is used to calculate the target frequency. The difference
between the current and target fundamental frequency is
used by the controller (Arduino) to calculate the appropri-
ate number of steps the stepper motor should take.

A PID (proportional-integral-derivative) control scheme
is used by the Arduino to control the stepper motor. PID
controller calculates the error value e(t) between the refer-
ence (f0,target) and measured output (f0,current) and ap-
plies a correction to the process based on proportional (P),
integral (I) and derivative (D) terms. This control value
u(t) (number of steps) attempting to minimize the differ-
ence between the reference and measured output is then
applied to the process.

4. FUNDAMENTAL FREQUENCY

The fundamental frequency of a string can be estimated
looking at the spectrum of its tone. This is done by finding
spectral peaks belonging to mode frequencies of the string.
The relationship between these partials and the fundamen-
tal frequency is affected by an effect called inharmonicity.
In this section, inharmonicity as well as algorithms for esti-
mating the fundamental frequency of a string are reviewed.

4.1 Inharmonicity

The partials of an ideal string are integer multiples of its
fundamental frequency (harmonics). However, real strings
have stiffness, which acts as a restoring force, making the
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Figure 3. Inharmonicity coefficients of piano strings cal-
culated with an inharmonicity coefficient estimation algo-
rithm from tones recorded from a Yamaha grand piano.
The strings for keys 1–7 are wrapped twice in wire, those
of keys 8–26 are wrapped once, and the rest of the strings
are unwrapped.

mode frequencies deviate from the harmonic series. This
deviation is called inharmonicity and the effect is greater
with higher modes, as they have more bends [8].

The mode frequencies of piano strings can be calculated
from the following equation [9]:

fk = kf0
√

1 +Bk2, (2)

where fk is the frequency of the kth mode (also known as
the kth partial), f0 is the fundamental frequency, and B is
the inharmonicity coefficient of the string. The value of
inharmonicity coefficient of a solid string depends on the
length, tension and radius of the string according to the
following equation [8]:

B =
π3r4E

8TL
, (3)

where r is the radius of the string, E is Young’s modulus,
T is tension, and L is the length of the string. The strings
in the bass end are wrapped in wire to lower their funda-
mental frequency by increasing their linear mass. This in-
creases their inharmonicity slightly from Equation 3, but
not as much as adding the linear mass by increasing the
radius of the solid string.

Inharmonicity coefficient values of a Yamaha grand piano
can be seen in Figure 3. It can be seen how the short strings
in the treble of have inharmonicity coefficients close to
1e−2 and the long bass strings have inharmonicity coeffi-
cients close to 1e−4. It can be also seen how the values of
inharmonicity coefficients increases towards the bass end,
as the strings are wrapped in one or two layers of wire.

4.2 Inharmonicity Coefficient Estimation

Inharmonicity coefficient estimation algorithms find spec-
tral peaks belonging to partial frequencies and make esti-
mations for the inharmonicity coefficient and fundamen-
tal frequency based those values. These algorithms need
rough estimations for the values of B and f0 and make
better ones based on the found partial frequencies. The
difficulty of finding spectral peaks, belonging to partial

frequencies, comes from distinguishing partial frequencies
from other spectral peaks.

There has been many algorithms tackling the issue of par-
tials frequency estimation [10–14], but most of these algo-
rithms suffer from high computational complexity. As the
control system of the piano tuner needs the sensor (micro-
phone and computer) to calculate the value of fundamental
frequency on every iteration loop, the chosen algorithm has
to be fast as well as accurate.

The Median-Adjustive Trajectories [14] (MAT) algorithm
for estimating the inharmonicity coefficient best fulfills the
accuracy and runtime requirements of the piano tuner. The
algorithm calculates estimations for B and f0 based on the
frequencies of known partials, and finds new partials based
on these estimations. The algorithm is based on the idea
that if the frequencies of two partials are known, the value
of B can be calculated purely based on their values.

If equation 2 is solved in terms of fundamental frequency,
with partial number m:

f0 =
fm

m
√

1 +Bm2
, (4)

and then 4 is substituted into equation 2 for partial k:

fk = kf0
√

1 +Bk2 = k
fm

k
√

1 +Bm2

√
1 +Bk2. (5)

The value of B can be solved from this equation:

B =
(fk

m
k )2 − f2m

k2f2m −m2(fk
m
k )2

. (6)

This means that if the frequencies of first two partials can
be found from the spectrum of the tone, an estimation for
the value of B can be made. As the first two partials do
not deviate very much from the harmonic series, these can
be found with good initial estimations of f0 and B. This
newB estimation can then be used together with the found
partial frequencies to make new estimations for f0 with
Equation 4. After that, these f0 andB estimations can then
be used to find new partial frequencies from the spectrum.

Figure 4 shows the block diagram of the MAT algorithm.
The diagram shows how the initial estimates of the f0 and
B are used to find the first two partials of the tone. The
original MAT algorithm suggested that first two partials
should be found by looking at a window around frequen-
cies f0,init and 2f0,init. A small adjustment to the algo-
rithm is made by using the initial values of f0 and B in
Equation 2 to calculate estimates for the first two partials.
By doing so a slight improvement to the accuracy of the
algorithm is achieved.

After the first two partials are found, the first B estima-
tion can be made with Equation 6. This value is stored to
an array of B estimates and a median of this array is taken
to make two estimation for the value of f0. The f0 estima-
tions are then stored into an array of f0 estimations and the
median values of the B and f0 arrays are used in Equation
2 to make an estimation for the value of the third partial f3.
A smaller window around the estimated value can be used
to find the partial, as the estimate is more accurate than the
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Figure 4. Block diagram of the MAT algorithm adopted
from [14]

estimation for the first two partial. The process moves on
making new estimations for B, f0 and partial frequencies
until the found partials have a magnitude below a speci-
fied threshold. At this point the median of the B and f0
estimation are then used for the final estimations.

With this method the estimation for the current value of
f0 is gotten. These f0 and B estimates will also be used in
the CRI tuning process, as they can be used in Equation 2
to represent the partial frequencies of the string, which are
used to calculate beat rates between piano strings.

5. CRI TUNING PROCESS

The CRI tuning process determines a target frequency for
every piano string. The process specifies the order of tun-
ing so that as many intervals as possible can be used to
calculate the target fundamental frequency. The keys of
the piano are connected to one, two or three strings, and
all the strings connected to the same key are called a string
unison. The tuning process specifies that a single string
from each string unison is to be tuned at first, using single
strings from other unisons as a reference, and after that, the
rest of the strings in the same unison are tuned using the
tuned string as a reference. The other strings in the unison
are tuned to have approximately a 1.5 cent difference to
the reference as that maximizes the decay time of the com-
bined strings [15]. From here on, the tuning process talks
only about the single string of every string unison, which
is tuned using single strings of other unisons as reference.

Strings are tuned one by one starting with a reference tone
(A4) which is tuned to a reference frequency, and after that,
the rest of this strings are tuned in the following order: ref-

erence octave (F3 to F4), tones above the reference octave
(F#4 to C8) and tones below the reference octave (E3 to
A0).

The target fundamental frequency for each string is found
by optimizing the beating rates between the string that is
currently tuned and all the strings that have been already
tuned and are a certain interval away from that string.

5.1 Beats

When a tone contains two frequencies that are close to each
other, the frequencies cause periodic changes in the ampli-
tude of the tone. These amplitude modulations are called
beats and the frequency of these modulations can be calcu-
lated from equation [16]:

fB = |f2 − f1| = ∆f, (7)

where f1 and f2 are the two frequencies close to each other.
Equation 7 applies only until a certain point. As the two
frequencies get further away from each other the frequency
of beats gets faster at first, until unpleasant roughness be-
tween the two frequencies emerges. From this roughness
two distinct tones can be heard after ∆f exceeds the limit
of frequency discrimination and after ∆f surpasses the
critical band, the roughness disappears and only two dis-
tinct frequencies can be heard [16].

5.2 Scale of the Piano

The tuning of a piano is based on the equal temperament
scale, which makes all the steps in the scale equal. This
means that the ratio between fundamental frequencies of
subsequent tones in the scale should be the same. More
specifically the scale is a twelve-tone equal temperament
scale (12-ET) which in addition to having equal steps spec-
ifies the ratio between an octave to be 2:1 (f0 of the lower
tone is two times the f0 of the higher one) and divides each
octave into twelve steps. The ratio of 2:1 and 12 equal steps
leads a single step in the scale to have a ratio of 12

√
2:1, as

12 12
√

2 = 2.
The distance between two tones in a scale is called an in-

terval. Musical scales are usually designed so that some
partials of two harmonic tones having a certain interval
line up to produce the minimum level of roughness be-
tween tones. This is achieved by designing fundamental
frequencies of the intervals to have certain frequency ra-
tios, as harmonic overtones are integer multiples of the
fundamental. For example, if the fundamental frequencies
of two tones have frequency ratio of 2:1, the 2k partials of
the lower tone match with the k partials of the higher one
(k = 1, 2, 3...). The names of these intervals and ratios
of their fundamental frequencies are listed in the first two
columns of Table 1.

The way the 12-ET scale is designed leads all other in-
terval ratios except for the octave to deviate. The amount
of deviation per interval can be seen in the third column of
Table 1. This deviation is measured in cents, which is a
logarithmic unit, expressed as:

Deviation = 1200 log2 (b/a), (8)
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Figure 5. The first two matching partials in the octave be-
tween Bb7 and Bb8.

where the deviation is positive if b is greater than a. The
Distance column in Table 1 shows the number of steps
(semitones) is between each interval in the 12-ET scale.

This deviation leads the intervals to have specific beating
rates, which tuners use to tune the instrument. The reason
why the fundamental frequencies of the 12-ET scale can-
not be used to tune the instrument is because piano strings
are inharmonic, and thus the spacing of fundamental fre-
quencies specified by the scale do not produce wanted beat
rates. Instead the spacing is slightly wider as the partials
deviate upward from the harmonic series. This leads the
tuning of the piano to be ”stretched”, meaning that when
compared to the 12-ET scale, a tuning performed by a pro-
fessional tuner is slightly higher in the treble and lower in
the bass. Also, as the inharmonicity is different with each
string, it is impossible for all the partials that are integer
multiples of the frequency ratios to have the same beating
rate. Because of this, piano tuners listen to all beats and
tune the strings in such a way that none of the prominent
beats deviate too much from the desired beating rate.

An example of this can be seen in Figure 5 which shows
the partial frequencies and magnitudes of the octave be-
tween Bb7 and Bb8. According to Table 1 the beating rate
and thus the difference between the two sets of frequen-
cies (2:1 and 4:2) should be zero, but this is not possible
as matching either of the two sets would leave the other
one to have even more deviation. Instead the tuner has
made a compromise. The second partial of Bb7 is tuned

Interval Ratio Deviation Distance
Octave 2:1 0 12
Perfect fifth 3:2 -1.96 7
Perfect fourth 4:3 +1.96 5
Major sixth 5:3 +15.64 9
Major third 5:4 +13.69 4

Table 1. Several intervals. The ratio tells which partials
of the lower tone is closes to the partial of the higher tone
(partial of lower tone : partial of higher tone). The de-
viation tells how much deviation there is between these
partials according to the 12-ET scale. The distance is the
number of semitones between the two tones.

slightly below the frequency of the first partial of Bb8 and
the fourth partial of Bb7 is tuned slightly above the second
partial of Bb8.

Electronic tuners that use partial frequencies of octaves to
tune a piano match only a pair of partials. For example, a
2:1 method of tuning octaves matches only the second par-
tial of the lower tone with the first partial of the higher tone
and a 4:2 method of tuning octaves uses only the fourth and
the second partial [6].

5.3 Calculating Target Frequencies

As the 12-ET scale specifies beating rates for each interval,
and those beating rates should be calculated as the differ-
ence between the inharmonic partials of piano tones, the
values of f0 and B obtained with the MAT algorithm can
be used find the fundamental frequency that provide said
beat rates. The beating rate in cents between two frequen-
cies within a certain interval can be calculated from equa-
tion:

1200 log2

(
fl,n+m
fk,n

)
, (9)

where c is the difference in cents, fk,n is the kth partial
of the nth tone and fk,n+m is the lth partial of the tone
which has a m semitone difference (interval) from n. The
values of c, k, l and m for the first matching partials of
each intervals can be seen in Table 2 (for other matching
partials integer multiples of k and l are used and all other
variables stay the same).

Equation 9 can be rewritten in terms of f0 andB by using
Equation 2 to calculate partial frequencies:

1200 log2

lf0,n+m
√

1 +Bn+ml2

kf0,n
√

1 +Bnk2
− c = 0. (10)

When Equation 10 is used to calculate the sum of multi-
ple intervals with the same tone n, the following equation
is obtained:

N−1∑

i=0

[
log2

(
lif0,n+mi

√
1 +Bn+mi

l2i
kif0,n

√
1 +Bnk2i

)
− Ci

]
= 0,

(11)
where N is the number of intervals used for the tuning and
ki, li, mi, and ci are the values k, l, m, and c, respectively,

Interval c k l m
Octave (up) 0 2 1 +12
Perfect fifth (up) -1.96 3 2 +7
Perfect fourth (up) +1.96 4 3 +5
Major sixth (up) +15.64 5 3 +9
Major third (up) +13.69 5 4 +4
Octave (down) 0 1 2 -12
Perfect fifth (down) +1.96 2 3 -7
Perfect fourth (down) -1.96 3 4 -5
Major sixth (down) -15.64 3 5 -9
Major third (down) -13.69 4 5 -4

Table 2. Values of c, k, l and m for several intervals.
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for a specific interval and Ci equals

Ci = 2ci/1200. (12)

An estimation for the value of f0,n can be made by solv-
ing it from Equation 11 with the assumption that the inhar-
monicity coefficient of the string does not change during
the tuning. This estimate is fairly accurate as the change
in tension changes f0 much more than B. Other coeffi-
cients in the equation are known, as n +m is the index of
a previously tuned string with known values of f0 and B.
It should be noted that the intervals used for this tuning are
a design choice and that some intervals will get a tuning
closer to that of a human tuner, as human tuners use only
specific intervals to tune the instrument [2].

When f0,n is solved from Equation 11, the following
equation is obtained:

f0,n =

( ∏N−1
i=0 Ai∏N−1

i=0 2ci/1200

)1/N

, (13)

where

Ai =
lif0,n+mi

√
1 +Bn+mi

l2

ki
√

1 +Bnk2i
. (14)

The fundamental frequency of piano strings can be com-
puted using Equation 13 by comparing multiple intervals.
However, as the equation uses one set of partials per inter-
val, the process does not take higher partials into consider-
ation.

5.4 Weights

To take all the audible beats into consideration in a sim-
ilar way as an human tuner does, weights can be added
to Equation 13. The weight of a set of partials produc-
ing beating within an interval is calculated by taking the
maximum loudness of the beating effect as well as mask-
ing into consideration. Masking is a phenomenon in which
soft sounds cannot be heard because of loud ones occur-
ring at the same time, or in other words, louder sounds
mask softer sounds. When weights are added to equation
13, the following form is obtained:

f0,n =

( ∏N−1
i=0 Ai

wi

∏N−1
i=0 2ciwi/1200

)1/
∑N−1

i=0
wi

, (15)

where wi is the weight of a specific interval.
The weights are distributed in a way that the sum of the

weights for each interval is one, so the weight of each in-
terval is the same. The weights are calculated with the
following steps:

1. Find the magnitude of partial frequencies: The mag-
nitudes of partial frequencies can be found and stored
by modifying the MAT algorithm to do so.

2. Apply A-weighting: The A-weighting is applied to
approximate the frequency-dependent sensitivity of
human hearing.
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Figure 6. Weights (stems) of the beats between E3 and E4

(octave) and the corresponding masking thresholds.

3. Masking: An approximation of masking can be cal-
culated by using a spreading function (SF). A popu-
lar SF proposed by Schroeder is used, as it is inde-
pendent of the masking SPL, which is unknown [17].
The SF is shifted slightly lower depending on the
tonality of the masker [18].

4. Weights: After all partials under the masking thresh-
old have been taken out of consideration, the weights
for each set of partials are calculated as

wi =
Mi∑N−1

n=0 Mn

, (16)

where wi is the weight of ith matching partial, Mi

is the maximum magnitude of the beats produced by
the partials, and N is the total number of matching
partials over the masking threshold.

Figure 6 shows the weights of the octave between E3 and
E4. It can be seen that the sum of these weights is one and
that all beats under the threshold have a weight of zero.

5.5 Accuracy

The accuracy of the CRI tuning process was estimated by
comparing it to a tuning performed by a professional piano
tuner. The deviation (in cents) between the first partials
of each tuning was used for the comparison. Single string
recordings of all the 88 keys of a Yamaha grand piano were
made the next day after tuning. The tuning accomplished
by the CRI tuning process was emulated by resampling the
recorded tones.

The accuracy was evaluated without weights, using the
first matching partials for each interval, and with weights.
The appropriate kind of distribution of weights for all par-
tials of each interval could not be achieved yet, and too
much weight was given to higher partials. This led to ex-
cessive amount of stretching, much more than that of the
tuner. Because of this, only the first fifteen partials were
considered for the algorithm with weights.

Both algorithms (with and without weights) use the same
values and intervals for the reference tone and the reference
octave. A4 is used as the reference tone and the first partial
of this tone was tuned to match the first partial of A4 tuned
by the tuner. This way the tunings could be compared. The

148

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



0 5 10 15
30

40

50

30

40

K
e
y
 n

u
m

b
e
r

(a)

20 30 40 50

40

60

80

K
e
y
 n

u
m

b
e
r

(b)

60 65 70 75 80 85

Order of tuning

0

20

40

K
e
y
 n

u
m

b
e
r

(c)

Tuned key

Reference key

Figure 7. Order of tuning and reference intervals for the
process without weights. Each cross (×) represents the key
that is tuned while the circles (o) are the reference keys.

reference octave is tuned according to the “Defebaugh F-
F” temperament, which is a tuning scheme commonly used
by piano tuners [2].

For the algorithm without weights, matching the follow-
ing intervals gave the best result:

• F#4(46) to C8(88): Octaves

• E3(32) to F#2(22): Octaves, fifths, tenths.

• F2(21) toA0(1): Octaves, fifths, tenths, seventeenths,
double octaves, and double octaves and a third.

Figure 7 shows the order of tuning and the intervals used
for the algorithm without weights. The crosses show the
key that is being tuned whereas the circles above and be-
low it are the keys that are used as a reference. For the
algorithm with weights, using an octave and a double oc-
tave gave the best result.

Figure 8 shows the tuning curve produced by the algo-
rithm without weights. Its deviation from the tuning con-
ducted by the professional tuner is presented in Table 3.
The tuning done by the algorithm with weights can be seen
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Figure 8. Deviation of the professional tuner and the CRI
process (without weights) from 12-ET.
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Figure 9. Deviation of the professional tuner and the CRI
process with weights calculated from 15 first partials.

in Figure 9, and the corresponding deviations from the pro-
fessional tuner’s result are presented in Table 4.

It can be seen that the algorithm without weights and op-
timized intervals gave a better accuracy with the overall
deviation of 5.1 cents (RMS) than the one using weights,
which had an overall deviation of 6.12 cents (RMS). It can
also be seen that the deviation mostly happens in the treble
end. This is most likely because these tones have a high
degree of inharmonicity as well as a very short decay time,
which make it harder for the tuner to hear and count beats.

6. CONCLUSIONS

In this paper a semi-automatic tuning system aimed toward
tuning a grand piano with the help of a non-professional
tuner was presented. The system uses a stepper motor at-
tached to an aluminum frame to turn the tuning pins of the
piano. The stepper motor is controlled by an Arduino pro-

Keys RMS deviation (cents)
A0 to E3 3.2
Reference octave 1.3
F#3 to C8 6.3
All 5.1

Table 3. Average deviation between the professional tuner
and the CRI process without weights.
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cessor, which is a part of a closed loop control system, to
automatically adjust the tension of the strings. The con-
trol system also includes a microphone and a computer,
which are used to measure the fundamental frequency and
the inharmonicity coefficient of the piano strings as well as
the magnitudes of partial frequencies from the tone of the
string. The frequency values are obtained using an inhar-
monicity coefficient estimation algorithm called MAT and
are used to calculate the difference between the current and
the target fundamental frequency.

The target fundamental frequency is determined with a
CRI tuning process using beating rates between the par-
tials of several intervals. The process specifies the order of
tuning for the strings to get the maximum number of inter-
vals for its estimation. The process can calculate the fun-
damental frequency for either a specified set of partials, or
for all partials, using weights. The process with and with-
out specified partials were compared to a tuning conducted
by a professional tuner. The process with specified partials
was based on the first matching partials of each interval.
With the optimal intervals, both processes gave great re-
sults with an RMS of 5.1 cents of deviation with specified
partials and 5.7 cents without them.
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ABSTRACT

In this paper, implementation, instrument design and con-
trol issues surrounding a modular physical modelling syn-
thesis environment are described. The environment is con-
structed as a network of stiff strings and a resonant plate,
accompanied by user-defined connections and excitation
models. The bow, in particular, is a novel feature in this
setting. The system as a whole is simulated using finite
difference (FD) methods. The mathematical formulation
of these models is presented, alongside several new instru-
ment designs, together with a real-time implementation in
JUCE using FD methods. Control is through the Sensel
Morph.

1. INTRODUCTION

Physical models for sound synthesis have been researched
for several decades to mathematically simulate the sonic
behaviour of musical instruments and everyday sounds. Var-
ious techniques and methodologies have developed, rang-
ing from mass-spring models [1–3] to modal synthesis [4]
and waveguide based models [5]. The latter two techniques
may be viewed as numerical simulation techniques applied
to the systems of partial differential equations (PDEs). These
equations define the dynamics of a musical instrument, ei-
ther real or imagined.

Mainstream time-domain simulation techniques, such as
finite difference (FD) methods, were first applied to the
case of string vibration by Ruiz [6] and Hiller and Ruiz
[7, 8], and then later by other authors [9] including, most
notably Chaigne [10] and Chaigne and Askenfelt [11]. The
general use of finite-difference schemes (FDSs) in sound
synthesis is described in [12]. Modularized physical mod-
elling sound synthesis, whereby the user may construct a
virtual instrument using basic canonical components dates
back to the work of Cadoz and collaborators [1–3]. It
has been also used as a design principle in the context of
FD methods [13–15], where the canonical elements are
strings and plates, with a non-linear connection mecha-
nism. Though computational cost of such methods is high,

Copyright: © 2019 Silvin Willemsen et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which
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standard computing power is now approaching a level suit-
able for real-time performance for simpler systems.

We are interested in bridging the gap between large-scale
modular physical modelling synthesis and sonic interac-
tion design [16], to be able to play with such simulations
in real-time. Specifically, we are interested in using the
expressivity of the Sensel Morph [17] to control our simu-
lations, using both percussive and bowing excitations. Our
ultimate goal is to create models that are both mathemat-
ically accurate and efficient. This goal is nowadays pos-
sible thanks to improvements in hardware and software
technologies for sound synthesis, yet it has rarely been
achieved. The ultimate goal is to provide a modular ef-
ficient synthesizer based on accurate simulations, where
real-time expressivity can also be achieved. This synthe-
sizer has already been informally evaluated by composers
and sound designers, who appreciated the current sonic
palette.

This paper is structured as follows: Section 2 describes
the physical models used in the implementation and Sec-
tion 3 shows a general description of the FD methods used
to digitally implement these models. Furthermore, Sec-
tion 4 elaborates on the real-time implementation, Sec-
tion 5 shows several different configurations of the physi-
cal models inspired by real musical instruments, Section 6
will present the results on CPU usage and evaluation and
discuss this and finally, in Section 7, some concluding re-
marks appear.

2. MODELS

In this section, the PDEs for the damped stiff string and
plate will be presented. The notation used will be the one
found in [12] where the subscript for state variable u de-
notes a single derivative with respect to time t or space x
respectively. Furthermore, to simplify the presented phys-
ical models, non-dimensionalization (or scaling) will be
used [12].

2.1 Stiff string

A basic model of the linear transverse motion of a string of
circular cross section may be described in terms of several
parameters: the total lengthL (in m), the material density ρ
(in kg·m−3), string radius r (in m), Young’s modulusE (in
Pa), tension T (in N), and two loss parameters σ0 and σ1.
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The PDE for a damped stiff string may be written as [12]

utt = γ2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx. (1)

In this representation, spatial scaling has been employed
using a length L, so the solution u = u(x, t) is defined for
t ≥ 0 and for dimensionless coordinate x ∈ [0, 1]. Further-
more, parameters γ =

√
T/ρπr2L2 and κ =

√
Er2/4ρL4

and have units s−1.
In this work, the string is assumed clamped at both ends,

so that
u = ux = 0 where x = {0, 1}. (2)

A model of a bowed string [12] may be incorporated into
(1) as

utt = . . .− δ(x− xB)FBφ(vrel), with (3a)
vrel = ut|(x=xB) − vB, (3b)

where FB = fB/Ms is the excitation function (in m/s2)
with externally-supplied bowing force fB = fB(t) (in N)
and total string massMs = ρπr2L (in kg). The relative ve-
locity vrel is defined as the difference between the velocity
of the string at bowing point xB and the externally-supplied
bowing velocity vB = vB(t) (in m/s) and φ is a dimension-
less friction characteristic, chosen here as [12]

φ(vrel) =
√

2avrele
−av2rel+1/2. (4)

Furthermore, δ(x − xB) is a spatial Dirac delta function
selecting the bowing location x = xB. The single bowing
point can be extended to a bowing area [12]. More detailed
models of string dynamics, again in a bowed string context,
have been proposed by Desvages [18].

Another, and more simple way to excite the string is by
extending Equation (1) to

utt = . . .+ EeFe (5)

using an externally-supplied distribution function Ee =
Ee(x) and excitation function Fe = Fe(t). In this case,
the excitation region is allowed to be of finite width.

2.2 Plate

Under linear conditions, a rectangular plate of dimensions
Lx and Ly may be parameterized in terms of density ρ (in
kg· m−3), thickness H (in m), Young’s modulus E (in Pa)
and a dimensionless Poisson’s ratio ν, as well as two loss
parameters σ0 and σ1.

In terms of dimensionless spatial coordinates x and y
scaled by

√
LxLy , the equation of motion of a damped

plate is a variant of the Kirchhoff model [19]

utt = −κ2∆∆u− 2σ0ut + 2σ1∆ut. (6)

Here, u(x, y, t) is the transverse displacement of the plate
as a function of dimensionless coordinates x ∈ [0,

√
a ],

y ∈ [0, 1/
√
a ], where a = Lx/Ly is the plate aspect ra-

tio, as well as time t. Furthermore, ∆ represents the 2D
Laplacian [12]:

∆ =
∂2

∂x2
+

∂2

∂y2
. (7)

The stiffness parameter κ, with dimensions of s−1, is de-
fined by κ =

√
D/ρHL2

xL
2
y whereD = EH3/12

(
1− ν2

)
.

As in the case of the stiff string, we chose to use clamped
boundary conditions:

u = n · ∇u = 0 (8)

over any plate edge with outward normal direction n and
where∇u is the gradient of u.

2.3 Connections

Adding connections between different physical models, fur-
ther referred to as elements, adds another term to Equation
(3a), (5) or (6). Assuming that element α is a stiff string
and β is a plate, the following terms are added to the afore-
mentioned equations:

utt = ...+ Ec,αFα, (9a)
utt = ...+ Ec,βFβ , (9b)

with force-functions Fα = Fα(t) and Fβ = Fβ(t) (in
m/s2) and distribution functions Ec,α and Ec,β which have
chosen to be highly localised in our application and reduce
to δ(x − xc,α) and δ(x − xc,β , y − yc,β) respectively, but
can be extended to be connection areas [13]. We use the
implementation as presented in [13] where the connection
between two elements is a non-linear spring. The forces it
imposes on the elements it connects are defined as

Fα = −ω2
0η − ω4

1η
3 − 2σ×η̇, (10a)

Fβ = −MFα, (10b)

where ω0 and ω1 are the linear (in s−1) and non-linear (in
(m·s)−1/2) frequencies of oscillation respectively, σ× is a
damping factor (in s−1),M is the mass ratio between the
two elements and η is the relative displacement between
the connected elements at the point of connection (in m).
Lastly, the dot above η denotes a derivative with respect to
time.

3. FINITE-DIFFERENCE SCHEMES

To be able to digitally implement the continuous equations
shown in the previous section, they need to be approxi-
mated. In this section, a high-level review of a finite differ-
ence approximation to a connected system of strings and
plates is presented. For more technical details, see [13].

In the case of the stiff string, state variable u(x, t) can be
discretised at times t = nk, where n ∈ N and k = 1/fs is
the time step (at sample-rate fs) and locations x = lh, with
l ∈ [0, . . . , N ] where the total number of points is N + 1
and grid spacing h. We can now write the discretised state
variable as unl , representing an approximation to u(x, t).

In the case of the plate, u(x, y, t) is discretised to un(l,m)

using x = lh where l ∈ [0, . . . , Nx] with Nx + 1 being the
total horizontal number of points and y = mh where m ∈
[0, . . . , Ny] with Ny + 1 being the total vertical number of
points.

In a general sense, when discretising PDEs as presented
in Equations (1) and (6), we will need to solve for un+1,
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i.e., u at the next time step, where u is a vector of sizeN−
1 containing values of ul ∀l for a string and (Nx−1)(Ny−
1) containing values of u(l,m) ∀(l,m) for a plate. Note that
the vector sizes are smaller than the total number of grid
points as we do not include the values at the boundaries
(which are always 0). For a PDE expressed as a function
of utt, its FDS will be of the form

un+1 = 2un − un−1 +KFn, (11)

where

K =
k2

1 + σ0k
, (12)

and Fn is a combination of the discretised PDE (exclud-
ing terms containing un+1) together with connection and
excitation terms.

3.1 Stiff String

In the case of the stiff string, Fn in Equation (11) is a com-
bination of the discretised PDE (1) fnα , connection term
(9a) and bowing (3a)

Fn = fnα + Ec,αF
n
α − J(xnB)FnB φ(vrel), (13a)

or excitation (5) term

Fn = fnα + Ec,αF
n
α + EeF

n
e , (13b)

where Ec,α contains the discretised distribution function
for the connection (1/h at connection index lc,α, rest 0’s
[12]), Ee contains the discretised distribution function for
the excitation (which will be presented in Equation (25) in
the next section) and J(xnB) is a spreading operator con-
taining the discretised bowing distribution (1/h at time-
varying bowing position xB). If xB is between grid points,
cubic interpolation is used to spread the bow-force over
neighbouring grid points [12]. All vectors are columns of
size N − 1.

It can be useful to talk about the region of operation of a
FDS in terms of a ‘stencil’. A stencil describes the number
of grid points needed to calculate a single point at the next
time step. The stiff string FDS has a stencil of 5 grid points.
In other words, two grid points at either side of l – and l
itself – are necessary to calculate un+1

l . See Figure 1 for a
visualisation of this.

In order for the scheme to be stable, the grid spacing
needs to abide the following condition [12]

h ≥

√
γ2k2 + 4σ1k +

√
(γ2k2 + 4σ1k)2 + 16κ2k2

2
.

(14)
The closer h is to this limit, the higher the quality of the
implementation. The number of points N can then be cal-
culated using

N = floor
(

1

h

)
. (15)

3.2 Plate

In the case of the plate, u is a column vector of concate-
nated vertical ‘strips’ of the plate state as in [13] of size

space

ti
m

e

space

ti
m

e

Figure 1. Stencil for a stiff string FDS with grid spacing h
and time step k. The point l at the next time step (yellow)
is calculated using 5 points at the current time step (blue)
and 3 at the previous time step (dark blue).

(Nx − 1)(Ny − 1) and Fn in Equation (11) is a combi-
nation of the discretised PDE (6) fnβ and connection term
(9b)

Fn = fnβ + Ec,βF
n
β . (16)

Here, Ec,β contains the discretised distribution function for
the connection (1/h2 at connection index (lc,β , mc,β), rest
0’s [13]) and is a column vector of size (Nx− 1)(Ny − 1).
For the plate, the stencil will consist of 13 grid points as
can be seen in Figure 2.

Figure 2. Stencil for a plate FDS. The point (l,m) at the
next time step (yellow) is calculated using 13 points at the
current time step (blue) and 5 at the previous time step
(dark blue).

The grid spacing needs to abide the following condition
[13]

h ≥ 2

√
k

(
σ2
1 +

√
κ2 + σ2

1

)
, (17)

(again, the closer h is to this limit the better) from which
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Nx and Ny can be derived using

Nx = floor

(√
a

h

)
and Ny = floor

(
1

h
√
a

)
. (18)

3.3 Connections

In the following, we discretise the equations in (10) as
shown in [13]. However, as these equations are not ex-
pressed as a function of utt, their FDS counterpart will be
different. Moreover, instead of solving for un+1, we need
to solve for ηn+1, i.e., the relative displacement at the next
time step, which will be in the form of

ηn+1 = pnFnα + rnηn−1, (19)

where pn = p(ηn) and rn = r(ηn) are functions of the
relative displacement η if ω1 6= 0 and constants if ω1 = 0.
Again, assuming that element α is a stiff string and β is a
plate, η can be calculated using

ηn = hαu
n
α,lc,α − h2βunβ,(lc,β ,mc,β)

. (20)

In other words, this is the difference between the state of
element α at lc,α and the state of element β at (lc,β ,mc,β)
scaled by their respective (for plates, squared) grid spac-
ings hα and hβ . The next step is to obtain Fnα , which can
be used to easily calculate Fnβ . We first obtain values for
un+1 by solving (11) using (13a), (13b) or (16) (without
the connection term!) for a string or plate respectively. As,
at this point, no connection forces have been added yet,
this state will be referred to as an intermediate state uI.
This intermediate state can be used to obtain ηn+1 using
(20)

ηn+1 = hα(uI
α,lc,α+KαF

n
α )−

[
h2β(uI

β,(lc,β ,mc,β)
+KβF

n
β )
]
,

(21)
whereKα andKβ are as described in (12) using the damp-
ing coefficient σ0 of their respective element. This can then
be set equal to (19). Using Equation (10b), solving for Fα
yields

Fnα =
rnηn−1 − (hαu

I
α,lc,α

− h2βuI
β,(lc,β ,mc,β)

)

hαKα +Mh2βKβ − pn
. (22)

4. IMPLEMENTATION

In this section, we elaborate more on the chosen values for
the parameters described in the previous two sections and
present the system architecture of the real-time application.
The values for most parameters have been arbitrarily cho-
sen and can – as long as they satisfy the conditions in Equa-
tions (14) and (17) – be changed. We used C++ along with
the JUCE framework [20] for implementing the physical
models and connections in real-time. The main hardware
used was a MacBook Pro with a 2.2 GHz Intel Core i7
processor.

4.1 Stiff String

As many string properties stay constant, we chose to set
the following parameters directly, rather than calculating

them from their physical properties: κ = 2, σ0 = 1, σ1 =
0.005. An interesting parameter to make dynamic is the
fundamental frequency f0 (in s−1) of the string. According
to [12], the fundamental frequency can be approximately
calculated using

f0 ≈
γ

2
. (23)

However, as the grid spacing h is dependent on the wave
speed γ according to the condition found in (14), we must
put a lower limit on the number of points N if we plan to
dynamically increase γ.

Another way to change frequency is to add damping to
the model at specific points acting as a (simplified) fretting
finger. The advantage of this is that the condition (14) will
never be violated. On top of this, a tapping sound will be
introduced when fretting the string making it more realistic
than changing the wave speed. If the string is fretted at
single location xf ∈ [0, 1] and lf = floor(xf/h) we use

unl =





0, l = lf − 1 ∨ l = lf

(1− αεf )unl , l = lf + 1

unl , otherwise
(24)

where αf = xf/h − lf describes the fractional location of
xf between two grid points. Note that the grid point at
the finger location and the grid point before are set to 0 to
(recalling the stencil) prevent the states at either side of the
finger to influence each other. The disadvantage of using
this technique over regular linear interpolation, is that the
effect of damping between grid points does not linearly
scale to pitch. We thus added ε = 7 as a heuristic value to
more properly map finger position to pitch.

In some cases, N is fixed to a certain value (as opposed
to calculating it from Equations (14) and (15)) for multiple
strings of different pitches. Even though some bandwidth
will be lost (in the higher frequency range), this will allow
the strings to be perfectly tuned to each other.

4.1.1 Bowed String

Parameters for the bowed strings abide the following con-
ditions: |vB| ≤ 1 m/s and 0 ≤ FB ≤ 100 N. It was chosen
to discretise Equation (3b) implicitly making it necessary
to use an iterative root-finding method such as Newton-
Raphson [21].

4.1.2 Excited string

If simply excited, we set the distribution function to a raised
cosine with width we (in grid points)

Ee(l) =

{
1−cos( 2π(l−(le−we/2))

we )
2 , le − we

2 < l < le + we
2

0, otherwise
(25)

scaled by the excitation function over time with excitation
duration de (in samples)

Fe(n) =

{
1−cos(π(n−ne)

de )
2 , ne ≤ n < ne + de

0, otherwise
(26)

A visualisation of this can be found in Figure 3.
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Figure 3. A visualisation of the excitation used in our im-
plementation presented in Equation (5). The location of
excitation xe is shown in green, excitation width we in red
and excitation duration de in blue (also see Equations (25)
and (26)).

4.2 Plate

For the plate, the damping coefficients have been decided
to be σ0 = 0.1 and σ1 = 0.005 and the aspect ratio is set to
a = 2. The plate stiffness κ has been left as a user parame-
ter to be changed dynamically and will be between the fol-
lowing bounds: 0.1 ≤ κ ≤ 50 s−1. In Equation (17), the
grid spacing is calculated using the maximum value of κ to
prevent stability issues. Using a sample rate of 44,100 Hz
results in a plate with dimensions Nx = 20 and Ny = 10
(in grid points).

4.3 Connections

Increasing ω1 & 100, 000 (m·s)−1/2 while keeping 0 <
ω0 . 100 s−1 will cause audible non-linear behaviour,
such as pitch-glides and rattling sounds. These effects will
be more dominant when the plate stiffness is higher. In our
implementation we set ω0 = 100 s−1 and ω1 = 100, 000
(m·s)−1/2. The spring-damping σ× = 1 s−1 is kept to a
minimum (0 ≤ σ× ≤ 10 s−1).

4.4 System Architecture

The system architecture can be seen in Figure 4. The top
box denotes the Sensel Morph (described in more detail
in the next section) controlling the application, and the
white boxes show the different classes or components of
the application. The black arrows indicate instructions that
one class can give to another and the hollow arrows show
data flows between classes. All arrows are accompanied
by a coloured box indicating which thread the instruction
/ dataflow is associated with and at what rate this thread
runs.

The lowest priority thread, the graphics-thread, is shown
by green boxes and runs at 15 Hz. This draws the states of
the strings, connections and the plate on the screen.

Checking and retrieving the Sensel state happens at a rate
of 150 Hz and is denoted by blue boxes. The parame-
ters that the user controls by means of the Sensel, such
as bowing position, force and velocity, will be updated in
the models at this rate as well.

The highest priority thread is the audio-thread and runs at
commonly-used sample rate 44,100 Hz. The main appli-
cation gives an ‘update’ (u) instruction to the instrument,

u
I
xc

 
 

 

  

 

 

Instrument

 

GUI

 redraw15 Hz44100 Hz update

check 
150 Hz 

state

 u & o  

Main 
Application

output

Sensel

 redraw 
 conn  
 state  

redraw un
 u & o  

Strings Plate

set 
parameters 

Conn

Fα Fβ

Figure 4. System architecture flowchart. See Section 4.4
for a thorough explanation.

which in turn updates the FDSs in its strings and plate. Af-
ter the FDS update is done, the intermediate state at the
connection points uI

xc
(where xc = lc,α for the string or

xc = (lc,β ,mc,β) for the plate) are sent to the connection
(Conn) class which calculates the force-functions Fα and
Fβ . These values are then sent back to the string and plate
classes and added to their respective states after which their
outputs (o) (at arbitrary points) are sent back to the main
application. See Algorithm 1 for this ‘order of calculation’.

5. INSTRUMENTS AND USER INTERACTION

In this section, the Sensel Morph (or simply Sensel) and
user interface will be described in more detail. Further-
more, several configurations of strings, plates and connec-
tions that are inspired by real-life instruments will be pre-
sented. A demonstration of one of the instruments can be
found in [22].

5.1 Sensel Morph

The Sensel Morph is a highly accurate touch controller that
senses position and force of objects [17] (see Figure 5).
We use the Sensel as an expressive interface for interacting
with the instrument configurations. Right above the touch-
sensitive area, the Sensel contains an array of 24 LEDs that
can be controlled from the application.

5.2 User interface

Strings are shown as coloured paths (see Figure 6 for a de-
scriptive visualisation). The state un of the string is visu-
alised using the vertical displacement of the paths. Bowed
strings are shown in cyan on the top left. The bow is shown
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while application runs do
for all elements do

calculate intermediate state uI using previous
state values (as in Equation (11))
uI

s = 2un − un−1 +KF
end
if element is excited/bowed then

calculate excitation term E and add to interme-
diate state of the element
uI

s+e = uI
s + E

end
for all connections do

calculate connection forces and add connec-
tion term C to elements to obtain the state at
the next time step
un+1

s+e+c = uI
s+e + C

end
update state vectors

un−1 = un

un = un+1
s+e+c

increment time step
n++

end

Algorithm 1: Pseudocode showing the correct order of
calculation. The subscripts for state vector u shows what
it consists of (‘s’ for previous state, ‘e’ for excitation and
‘c’ for connection).

as a yellow rectangle and moves on interaction. The fret-
ting position is shown as a yellow circle. Plucked strings
are shown in purple in the top right, underneath which the
sympathetic strings are shown in light green. The plate is
shown in the bottom using a grid of rectangles (clamped
grid points are not shown). Its state is visualised using a
grey-scale. Furthermore, connections are shown using or-
ange circles/squares for the points of connection and dot-
ted lines between these points. Lastly, all parameters that
are controlled by the mouse such as output-level and plate-
stiffness are located in a column on the right side of the
application.

5.3 Instruments

We subdivide string-elements into three types: bowed, plucked
and sympathetic strings. All strings will be connected to
one plate acting as an instrument body of which the user
can control the plate-stiffness. Furthermore, the user can
change the output-level of each element type. Apart from
these parameters, which are controlled by the mouse, the
instruments are fully controlled by two Sensels. The in-
struments we have chosen as our inspiration are the sitar,
the hammered dulcimer and the hurdy gurdy.

5.3.1 Bowed Sitar

The sitar is originally an Indian string instrument that has
both fretted strings and sympathetic strings. Instead of
plucking the fretted strings, we extended the model to bow
them. Our implementation consists of 2 bowed strings

Figure 5. Player using the Sensel Morphs to interact with
one of the instruments.

(tuned to A3 and E4), 13 sympathetic strings (tuned ac-
cording to [23]) and 5 plucked strings (tuned A3-E4 fol-
lowing an A-major scale) as it is also possible to strum
the sympathetic strings. See Figure 6 for a visual of the
implementation. One Sensel is vertically subdivided into
two sections; one for each bowed string. The first finger
registered by the Sensel is mapped to a bow and the sec-
ond is mapped to a fretting finger controlling pitch. The
horizontal position of both fingers is visualised using the
Sensel’s LED array. The frets are not implemented as such
(the pitch is continuous), but they are visualised for refer-
ence. The horizontal position of the first finger is mapped
to the bowing position on the string, the vertical velocity
to the bow velocity vB and the finger force is linked to the
excitation function FB (both in Equation (3a)). The other
Sensel is subdivided into 5 sections mapped to the plucked
strings. These sections are visualised by the LED array for
reference.

The mass ratio for the bowed/plucked string to plate con-
nections has been set toM = 2 and ratio for the sympa-
thetic string to plate connections has been set toM = 0.5
to increase the effect that the playable strings have on the
sympathetic strings.

Figure 6. The bowed sitar application. The descriptions of
the different elements and other objects are shown in the
image, but will (naturally) not be visible in the application.
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5.3.2 Hammered Dulcimer

The hammered dulcimer is an instrument that can be seen
as an ‘open piano’ where the musician has the hammers
in their hand. Just like the piano, the strings are grouped
in pairs or triplets that are played simultaneously. In our
implementation, we have 20 pairs of plucked strings. Even
though most hammered dulcimers have more strings, we
decided that this configuration has the highest number of
strings while maintaining playability. One of each pair is
connected to the plate which slightly detunes it, creating
a desired ‘chorusing’ effect. See Figure 7 for a visual of
the implementation. In order for the excitation to more re-
semble a strike of a hammer than a pluck, the contents of
the cosine in (26) will be multiplied by 2 for the excitation
to have a less abrupt ending, something desired for a ham-
mered interaction. Moreover, the excitation-length can be
changed to simulate short and long hammer-times.

The Sensels are placed vertically next to each other (see
Figure 5). The pair with the lowest frequency will then be
located in the bottom right and the highest in the top left,
as in the real instrument. As with the plucked strings of the
bowed sitar, the LED array is used to visualise the way that
the Sensel is subdivided, which is especially useful here as
one Sensel controls 10 string-pairs.

The mass ratio is set relatively high (M = 100) to am-
plify the non-linear interaction between the strings and the
detuning of the strings connected to the plate.

Figure 7. The hammered dulcimer application.

5.3.3 Hurdy Gurdy

The hurdy gurdy is an instrument that consists of bowed
and sympathetic strings. The bowing happens through a
rosined wheel attached to a crank and bows these strings
as the crank is turned. It is possible to change the pitch of
a few bowed strings - the melody strings - using buttons
that press tangent pins on the strings at different positions.
The other strings, referred to as drone strings, are mostly
tuned lower than the melody strings and provide the bass
frequencies of the instrument. The musician can place the
bowed strings on rests that keep the wheel from interacting
with it.

Our implementation consists of 5 bowed strings subdi-
vided into 2 drone strings tuned to A2, E3 and 3 melody
strings tuned to A3, E4 and A4 and 13 sympathetic strings
tuned the same way as the sympathetic strings in bowed

sitar. Furthermore, the mass ratios have been set the same
as in the bowed sitar application. See Figure 8 for a visual
of the implementation.

The Sensel is vertically subdivided into 5 rows that con-
trol whether the strings are placed on the wheel. The bow-
ing velocity is mapped to the average pressure of the fin-
gers. The fundamental frequency (in the model γ/2) of the
melody-strings is changed by a Sensel with a piano-overlay
acting as a midi controller. A demonstration of this instru-
ment can be found in [22]. It is interesting to note here that
the sympathetic strings that are in tune with the harmonics
of the bowed strings resonate most, which is expected to
happen in the real world as well.

Figure 8. The hurdy gurdy application.

6. RESULTS AND DISCUSSION

Table 1 shows the CPU usage (on the same MacBook Pro
2.2 GHz i7 as described before) for the three instruments
presented in the previous section. As the Sensel thread
contributes a negligible amount to the CPU usage, this is
not shown in the table.

Application No Sound No Graphics Total
Bowed Sitar 32 63 85

Dulcimer 30 66 85
Hurdy Gurdy 28 58 78

Table 1. CPU usage (in %) for the instruments found in
Section 5. Values show usage of one (virtual) thread and
have been taken as an average (with a margin of ~5%) over
a short period of time. The two middle columns show us-
age when the sound or graphics thread has been turned off.

As can be seen from the table, all instruments use about
the same amount of CPU and none of them have audi-
ble dropouts (CPU < 100%). It can be observed that the
graphics use about 20% of the CPU, indicating that there is
still much room to increase the complexity of the instrument-
configurations before dropouts will occur. On the other
hand, should the instruments be used in parallel with other
audio applications or plug-ins, the CPU usage has to be
greatly reduced. The first step towards this would be to
vectorise the FDSs using AVX instructions.

While our instruments have been not formally evaluated
yet, we have performed some qualitative evaluations with
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sound and music computing experts. The goals of the eval-
uations were to explore the playability of the instrument,
sonic quality and intuitiveness of control. These evalua-
tions showed that especially the bowing interaction feels
intuitive and creates a natural sound. The overall sound
of the instruments was generally judged to be interesting,
but not “sounding like a real-life instrument”. This makes
sense, as we did not seek to perfectly model each instru-
ment, but rather used them as an inspiration for the config-
urations of the physical models. The next step for sound
quality would be to replace the thin plate with a more real-
istic element, such as a wooden instrument body.

7. CONCLUSION

In this paper, a real-time modular physical modelling syn-
thesis environment structured as a network of connected
strings and plates has been presented. Several instruments
have been created in the context of this environment which
can be played by a pair of Sensel Morphs allowing for
highly expressive control of these instruments. Informal
evaluations with professional musicians have confirmed that
the interaction is found natural and the output sound inter-
esting. Further steps to improve this project are to optimise
the algorithm and to replace the plate with a more realistic
instrument body.

Acknowledgments

This work is supported by NordForsk’s Nordic University
Hub Nordic Sound and Music Computing Network Nordic-
SMC, project number 86892.

8. REFERENCES
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ABSTRACT

Rhythm-based auditory cues have been shown to signifi-
cantly improve walking performance in patients with nu-
merous neurological conditions. This paper presents the 
design, implementation and evaluation of a gait training 
device capable of real-time synthesis and automated ma-
nipulation of rhythmic musical stimuli, as well as audi-
tory feedback based on measured walking parameters. The 
proof-of-concept was evaluated with six healthy partici-
pants, as well as through critical review by one neurore-
habilitation specialist. Stylistically, the synthesized music 
was found by participants to be conducive to movement, 
but not uniformly enjoyable. The gait capture/feedback 
mechanisms functioned as intended, although discrepan-
cies between measured and reference gait parameter values 
may necessitate a more robust measurement system. The 
specialist acknowledged the potential of the gait measure-
ment and auditory feedback as novel rehabilitation aids, 
but stressed the need for additional gait measurements, su-
perior feedback responsiveness and greater functional ver-
satility in order to cater to individual patient needs. Fur-
ther research must address these findings, and tests must be 
conducted on real patients to ascertain the utility of such a 
device in the field of neurorehabilitation.

1. INTRODUCTION

This paper presents a novel application capable of mea-
suring gait parameters and delivering interesting, time-
evolving auditory stimuli based on gait quality for rehabil-
itation purposes. The primary goal is to increase engage-
ment and enjoyment of therapy, improving patient motiva-
tion and adherence to frequent therapy, thereby leading to 
more favorable clinical outcomes. Brain damage from dis-
ease, infarction or infection frequently compromises gross 
motor function, resulting in impairments to essential ac-
tivities like walking. Gait (walking) quality and mobil-
ity are important predictors of survival [1], cognitive de-
cline [2], fall risk and perceived quality of life among older 
adults [1]. Besides age-related deficits, neurological con-
ditions such as Parkinson′s Disease (PD), stroke, Acquired 
Brain Injury (ABI) and others have the capability to destroy 
gait function in an either acute or chronic manner. Prompt

Copyright: c© 2019 Prithvi Kantan et al. This is an open-access article distributed 
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and regular rehabilitation has been found to be a critical
determinant of long-term deficits [3]. While exercise helps
preserve physical function, exercise protocols are typically
not readily accessible in homes [4] and novel cost-effective
rehabilitation strategies are needed [5]. In this context, the
auditory modality can be advantageous over the visual and
haptic ones in terms of hardware requirements and compu-
tational burdens [6]. Moreover, music-based interventions
are being increasingly studied [7] and are attractive in that
they can heighten enjoyment during exercise and, in turn
increase exercise adherence [2].

Given the ability of rhythmic music to motivate humans
and induce bodily movement [8], we propose a gait train-
ing system generating evolving musical stimuli in real-
time, as well as spontaneous auditory feedback based on
measured walking performance. The unique contribution
lies in the direct influence of walking quality on the be-
havior of discrete entities within the composite auditory
stimulus. Equally critical is an interface that is simple
and intuitive enough for operation by a therapist, and ver-
satile enough to tailor stimuli to a diversely afflicted pa-
tient group. The gait measurements collected are stored
after each session to provide valuable information on pa-
tient progress. In the following sections we will discuss re-
lated research and present the design and implementation
of multiple cohesively interacting systems for gait data ac-
quisition, analysis and audio synthesis. As evaluation, the
device was tested with six normal-walking individuals and
critically reviewed by one neurorehabilitation specialist.

2. RELATED WORK

2.1 Rhythmic Auditory Stimulation (RAS)

Rhythmic Auditory Stimulation (RAS) is a rehabilitation
technique of rhythmic motor cuing to facilitate training of
movements that are intrinsically and biologically rhythmi-
cal, such as walking. RAS has been used in the rehabili-
tation of patients suffering from strokes [9], PD [10], ABI
[11], and several other neurological conditions [12]. Es-
sentially, it is the application of a rhythmic pulse (or beat)
to organize periodic bodily movements in a process that oc-
curs below conscious perception and functions to improve
movement efficiency. The pulse often takes the form of a
metronome click, or rhythm-based music. In PD [4] and
stroke rehabilitation [9], RAS has been shown to improve
numerous gait performance parameters [13]. RAS efficacy
may depend on individual characteristics, disease sever-
ity and impaired beat-synchronization ability [12]. The
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beneficial effects of RAS reverse themselves over time if
therapy is not adhered to [13]. Different individuals have
different preferred movement tempi in general [2, 7] and
the degree of entrainment drops significantly if the cuing
tempo is over 2.5% greater or 3% less than the preferred
tempo [14]. The daily administration duration of RAS is
10-30 mins, once or twice. The frequency of administra-
tion depends largely on patient endurance. A tempo in-
crease of 5% is attainable without compromising normal
walking patterns.

2.2 Movement Sonification

Sonification may be defined as the transfer of data and
data relationships into non-speech audio for communica-
tion and interpretation [15]. In the rehabilitation con-
text, the main advantage of sonification is its ability to en-
hance self-awareness of physiological processes and phys-
ical motion. Sonification makes it possible to be cognizant
of, and control motor performance output parameters that
efface themselves from conscious experience in most be-
havior [14]. The goal of a sonification-based system is
to make distinct performance parameters explicit in corre-
sponding auditory biofeedback systems. The 3Mo model
proposed by Maes et. al. [14] suggests the use of musical
biofeedback due to the potential that music has, to moti-
vate physical activity, monitor physiological processes and
modify these processes. A good example of this is the
robotics-based system developed by Zanotto et. al [16]
in which hip and knee angles during gait were sonified in
real-time using formant synthesis. Previous studies have
demonstrated that music listening can activate the human
reward system. In line with the idea of reward-based re-
inforcement learning, Maes et. al. argue that pleasant and
rewarding states promoted by music may function as an at-
tractive force of motor behavior. Reward and punishment
are hence considered constraints, guiding motor behavior
to specific goals [14]. Optimal sonification strategies as-
sociate wanted motor behaviors to pleasant auditory states
and vice versa. Musical expressiveness, novelty and sur-
prise, along with tension and uncertainty are important el-
ements for the sustainment of reward responses [14]. Au-
ditory feedback may be successfully used in the rehabilita-
tion context because it can be perceived without requiring
patients to pay attention to a screen, and can be processed
with relatively little cognitive effort [6].

2.3 Measures of Gait Performance

Human gait involves alternating sequences in which the
body is supported first by one limb, which is contacting
the ground, and then by the other [17]. For each limb, the
period of support is referred to as the stance phase, and
that of non-support is the swing phase. These events are
separated by the instants at which the foot contacts and
leaves the ground, and gait cycles are usually defined rel-
ative to these instants. A more comprehensive overview
of the subject is presented in [18]. One approach to gait
measurement involves a broad structural group of param-
eters that captures both spatiotemporal and dynamic char-
acteristics. Lord et. al. [19] describe a 5-domain concep-

tual model. They identified 16 core variables explaining
84.6% of the variance between controls and 121 PD pa-
tients, which inform the measurement mechanisms of our
application. Currently, only temporal parameters are con-
sidered, namely step time, stance time and swing time, as
well as their temporal variability and asymmetry.

2.4 Applications for RAS-based gait rehabilitation

In recent years, some technological applications targeting
gait rehabilitation based on RAS principles have been de-
veloped. The IM Gait Mate is a therapy modality to assess
and treat motor planning, sequencing, coordination and
balance [20]. The device targets patients suffering from
PD, spinal cord injury, ABI and other related conditions.
Wireless insoles are inserted in the patient’s shoes to de-
tect heel-strikes. The patient hears a beat through wire-
less headphones or speakers and is asked to match their
cadence (steps per minute) to the tempo provided. Real-
time speech-based audio feedback is provided related to
step rate, dictated by how closely the cadence matches the
auditory stimulus. A slightly different approach is used in
D-Jogger, an interactive music player that aligns recorded
music to the user’s gait [21, 22]. Rather than asking the
user to match their cadence to the music, D-Jogger adjusts
the tempo of the music so that each beat coincides with
a footfall. User cadence is determined in real-time using
sensors, and the system automatically selects a song with
similar tempo and continuously adjusts it to match cadence
in an imperceptible fashion. If the user cadence changes
markedly, the system switches to a different song.

The D-Jogger and similar systems are advantageous in
situations where spontaneous gait synchronization does
not occur [22], and can be categorized as closed-loop
where the stimulus tempo adjusts itself to the user’s ca-
dence [12]. Conversely the IM Gait Mate would be an
open-loop system. For both IM Gait Mate and D-Jogger
the level of interaction between the user and the stimulus
itself is quite limited, given the pre-recorded nature of the
stimuli. Furthermore, only cadence is measured, limiting
their ability to capture finer-grained gait impairments. We
argue that the dynamic generation of evolving rhythmic
music based on several dimensions of gait quality would
be more motivating for rehabilitation, and versatile enough
for useful administration to multiple patient groups.

3. DESIGN AND IMPLEMENTATION

Walker Sensory Subsystem Analytical Subsystem

UI
Stimulus Generation

Force Sensors Force Data

Auditory Stimulus

Gait Parameters

Slider ControlsMusic Sonification

Figure 1. Block diagram displaying the overall system
with its subsystems.

The design of the application is informed by prior re-
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search, and must fulfill the following requirements:
• Real-time generation of activating and motivating

musical stimuli.
• Sonification of important gait parameters to provide

real-time auditory feedback having customizable in-
tensity.

• Non-invasive measurement and storage of clinically
relevant gait parameters, for the monitoring of pa-
tient performance and progress.

The application is designed as a combination of function-
ally distinct but highly interdependent and cohesive sub-
systems, illustrated in Figure 1 and described as follows:

3.1 Sensory Subsection

The sensory subsystem is the data-acquisition system tar-
geted towards gait measurement. The approach used is
that of foot-based FSR sensors (force-sensitive resistor).
The primary hardware used is the Trigno EMG System by
DelsysTM, which consists of a USB-controlled Base Sta-
tion unit and a wireless Trigno 4 Channel FSR SensorTM

with an operating range of 20m. The Base Station acts as a
receiver, and force data is transmitted to the application via
TCP/IP [23]. Two force data channels are captured, from
a 15 mm2 FSR membrane on each heel. The signals are
sampled at 148 Hz, and quantized to 10 bits per sample.

3.2 Gait Feature Extraction

The analytical subsystem handles the real-time extraction
of clinically important gait features from the force time se-
ries supplied by the sensory subsystem. It performs foot-
step detection, stance/swing detection as well as gait pa-
rameter calculation and storage. It relays these values to
both the user interface and the control channels of the
stimulus-generation subsystem, effectively acting as the
central information hub of the application. It is imple-
mented in C++ using a JUCE timer to fetch new force sam-
ples for periodic analysis.

3.2.1 Footstep Detection

Given the implicit periodicity of walking, heel force con-
tours appear as a series of evenly spaced amplitude fluctu-
ations, corresponding to the support duration of that foot.
Each step period can be measured as the interval between
two contour points in the same phase, or simply two con-
tour maxima. However, since the force variations across
steps are neither smooth nor identical; step peaks often
appear spiky with multiple local maxima per support pe-
riod. Therefore, second-order IIR Butterworth lowpass fil-
ters with their -3dB frequency set at 0.5 Hz are used to
smooth the force contours prior to peak detection. Peaks
exceeding 14% of the maximum force range are detected
as valid steps. The phase delay incurred by the IIR filter
causes heel-strikes to be detected approximately 300 ms
after they occur, delaying all gait parameter calculations as
a result. A more recent perspective views the smoothing
filter as a capacitor which accumulates force while foot
contact is maintained. Correspondingly, the local mini-
mum preceding each of the maxima may be detected as the

instant of foot-contact, and the maxima themselves repre-
sent instants of non-contact. This approach neutralizes the
filter phase delay.

3.2.2 Stance and Swing Detection

The unfiltered force time series of each foot is segmented
into stance and swing phase by simple thresholding, at an
empirically determined level of 20% of full-range force, to
prevent false detections due to noise.

3.2.3 Parameter Calculation and Storage

The duration of each step, stance and swing period is cal-
culated in real-time post detection and stored in separate
vectors. As motivated in Section 2, the mean-normalized
variability and L-R asymmetry for each of these (along
with average stance/swing ratio) are recalculated with ev-
ery newly completed step, at two different timescales:
Long Term: This timescale spans the entire training ses-

sion from the first detected step. The trajectory
of long-term measurements across multiple training
sessions can be used by therapists to assess improve-
ment or deterioration in patient gait.

Short Term: The same gait parameters are computed over
an empirically determined window of only the five
most recent steps, thus more numerically sensitive
to new measurements. These are input to the control
channels of the stimulus-generation subsystem for
sonification purposes.

3.3 Stimulus Generation Subsystem

This subsystem generates and manipulates auditory stimuli
for gait entrainment. This process involves the sequenc-
ing, arrangement and expressive interpretation of time-
evolving musical layers that culminate in a well coordi-
nated ensemble of rhythmic instrumental music. Also, the
synthesizer sonifies gait performance, for which it moni-
tors specific short term parameters and modifies the stimu-
lus accordingly. Stylistically, the music is closest to the
electronic dance music genre, which has been found to
be most conducive to movement in related studies [8].
The synthesizer itself is implemented in FAUST (Func-
tional Audio Stream), which is an audio domain-specific
functional programming language. Although there exists
a wealth of easily available high-quality music loops, the
real-time synthesis approach is attractive due to its poten-
tial for fine parameter control and overall sonic versatil-
ity. The Faust2Api library was used to create a JUCE-
compatible C++ class for the synthesizer, enabling com-
munication with the analytical subsystem. It also allows
direct user manipulation of synthesizer parameters from
the same interface that displays gait parameter values, al-
lowing for convenient operation and monitoring.

3.3.1 Structure of Musical Content

The core ensemble consists of typical percussive ele-
ments found in electronic music, as well as multiple pre-
composed melodies that reinforce the underlying rhythm.
The time signature is 4/4 throughout, and the tempo is
user-adjustable, depending on the preferred cadence of the

161

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Track no. Instrument Basic Excitation Synthesis Method Bandwidth (Hz) Effect Chain
1 Bass Drum Sine Sweep Subtractive 60-200 3dB Boost @ 70 Hz

White Noise Subtractive 1500-5200 Cubic Soft Clipper
2 Snare Drum White Noise Subtractive 100 - 8000 -
3 Hi-Hat White Noise Subtractive 10000 - 16000 -
4 Crash Cymbal White Noise Subtractive 9000 - 20000 -
5 Bass Synth Sawtooth Subtractive 50 - 200 8 dB Boost @ 110

Hz
6 Bass Staccato Sine FM 150 - 2000 -
7 Main Melody Sine FM f0 - 1000 Dotted Echo, Haas

Delay, Hard Clip
8 Secondary Melody Sine FM f0 - 5000 -

Table 1. Synthesis methods and effect chains of each instrument in the ensemble (’f0’ refers to the note fundamental
frequency and FM stands for Frequency Modulation).

walker. The underlying rhythmic pattern remains uniform
throughout, and musical variation is realized in the manip-
ulation of secondary rhythms and melodic patterns. The
musical characteristics are designed to match those found
in [8] to be the most activating in terms of walking vigor.

3.3.2 Clocking and Musical Timekeeping

1
2

3
4

5
6

0 0.2 0.4 0.6 0.8 1

7

Figure 2. An illustration of how the Master Clock (1, top
panel) serves as a triggering mechanism for some of the
instruments (2-7) described in Table 1.

At the core lies a continuous, isochronous impulse train,
whose frequency is governed by the externally configured
tempo. This acts as the primary clocking and triggering
mechanism and orchestrates the synchronized playback of
every instrument. Its frequency is precisely four times the
beat interval to enable the use of eighth and sixteenth note
subdivisions in the music. External changes to the tempo
alter the impulse train frequency, in turn altering the trig-
gering rate of all instruments at once. This master clock is
generated using a FAUST impulse train function. For mu-
sical time-keeping, there are counters monitoring the mas-
ter clock to count elapsed measures and the current posi-
tion within a measure. Their state is referenced during au-

dio synthesis to determine whether to mute a track, audio
effect automation, and instantaneous melody note parame-
ters.

3.3.3 Introduction of New Instruments

Effort of walking is rewarded regardless of gait perfor-
mance. The total footstep count indicates the physical
work performed by a patient. The music commences with
only the bass drum and the bass synth and each new in-
strument is added as its minimum step count condition is
satisfied (snare drum, hi-hat, etc.). Boolean variables in
FAUST take values of either 0 or 1, enabling step count
conditions to double as instrument on/off switches. To
gently fade each new instrument in as its step condition is
satisfied (rather than a discontinuous and un-musical 0-to-
1 transition), the Boolean variables are smoothed using a
one-pole filter with a 4 second integration time. This filter-
ing helps achieve a gradual gain increase from the instant
the step condition is satisfied.

3.3.4 Percussion Synthesis

Most percussive rhythm patterns may be viewed as peri-
odic arrangements of distinct impulsive sounds in a spe-
cific temporal order. The mechanism for percussion syn-
thesis is a filtered steady-state excitation multiplied by a
temporal envelope triggered by the master clock. The trig-
gering occurs at sub-multiples of the clock frequency de-
pending on the rhythm. An example of this is the bass
drum, whose envelope is triggered every four clock pulses,
or more precisely, triggered by ’the first of every four
pulses’. It therefore plays on every beat. In contrast,
the snare drum envelope is triggered by the fifth of ev-
ery eight pulses, thus playing on the second and fourth
beats of a measure (visualized in Figure 2). A large va-
riety of rhythms can thus be easily generated. The excita-
tion and envelope parameters vary among the percussion
instruments to achieve the desired timbres. All parameters
were iteratively determined using an analysis-by-synthesis
method.

162

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



3.3.5 Melody Synthesis

The paradigm employed is inspired by MIDI-based sym-
bolic notation, in which note/velocity information is stored
in relative music time. This information may then be re-
produced by the synthesizer. In the current context, note
number, on/off, and velocity for each melody are stored
chronologically in look-up tables. Counters deriving from
the master clock keep track of the number of elapsed 8th
and 16th notes in the current measure. The instantaneous
state of these counters is used to iterate through the look-
up tables, fetching note information for each instrument.
The output is a specific timbre with the required instanta-
neous fundamental frequency. The note on/off table spec-
ifies note onset positions within a bar, effectively serving
as a trigger condition for envelope generation. Because
note triggering is orchestrated by the master pulse coun-
ters, melody tempo and note length vary proportionally
with the master tempo, ensuring grid-locked synchroniza-
tion among all instruments. This is important in a scenario
where timing precision is paramount. Overall mix clarity,
transient impact and spectro-temporal separation between
individual timbres are critical to the user experience. Indis-
tinct, unclear or harsh sound can quickly become fatiguing
and unpleasant, which is undesirable for training sessions
over ten minutes in length. Therefore, special attention is
paid to the interaction of sound sources, leveraging modern
production strategies to deliver a well-balanced stereo mix.
Table 1 offers a more detailed description of the synthesis
methods of all musical instruments.

3.3.6 Sonification Synthesis

Aside from the generation of the musical elements, the
Stimulus Generation subsystem also handles the sonifica-
tion of various measured gait parameters. The sonification
philosophy is as advocated by Maes et. al. [14], with the
addition of unpleasant stimuli, or detrimental modification
of the existing music stimuli, to ’punish’ sub-optimal gait
performance. In practice, this is achieved by mapping a
subset of the short-term gait parameters to ’user sliders’
on the synthesizer program, that control the intensity of
each sonification type. Thus, the intensity is a continu-
ous quantity, and varies in real-time with the temporal gait
parameter mapped to it. The interface has a slider to scale
the overall strength of punishment to optimize usability for
differently severe impairments.

The applied sonifications are described as follows:
Rhythm Salience: The reduction of step-time variability

through rhythmic entrainment is an important out-
come of RAS therapy. Beat clarity is critical to ef-
fective entrainment, and the primary beat is largely
carried by the percussion instruments. An increase
in short-term step time variability causes an increase
in the relative level of the percussive instruments
with respect to the melody instruments. The pun-
ishment lies in the resulting attenuation of melodic
content in the mix. This also serves to strengthen
entrainment, ultimately improving step regularity.

Annoyance Notes: The analytical subsystem compares
the measured average stance/swing time ratio with

the documented ratio for normal walking - 1.61
[24]. A large discrepancy indicates sub-optimal sup-
port time distribution and is sonified in the form
of random-frequency annoyance notes from a saw-
tooth wave generator. The intensity is directly pro-
portional to the squared deviation from the nor-
mal stance/swing ratio. The triggering frequency of
these notes is dictated by the master clock, so that
they do not affect rhythm perception.

Melody Detuning: Increases in Swing Time Asymmetry
(STA) are sonified by directly mapping it to the depth
control of a ring modulator in the signal path of
the main melody synth. The modulation frequency
is not in the key of the music, so the effect of in-
creased STA is increased dissonance in the repro-
duced melody. Symmetric walking translates to a
very low asymmetry quotient, and therefore negligi-
ble modulation.

Noise: Short-term increases in Swing Time Variability are
sonified using a white noise generator, punishing
increasing variability by increasing noise intensity.
The noise is processed with a high-intensity flanger
with tempo-dependent sweep rate, giving it a rhyth-
mic quality.

4. EVALUATION

To ensure that the application exhibited both the expected
sonic behavior and gait measurement ranges, a walking
test was conducted on unimpaired, healthy participants.
Aside from this experimental evaluation, the application
was demonstrated to a neurorehabilitation specialist to as-
sess its utility as a rehabilitation tool.

4.1 Experiment

4.1.1 Participants

Six individuals (one female, mean age 24.8 years) with no
documented neurological conditions or gait disorders vol-
unteered themselves as participants for this study. The par-
ticipants all had a prior music background and were stu-
dents at Aalborg University. Informed consent was ob-
tained, and refreshments were provided as compensation.

4.1.2 Experimental setup

The experiment took place in a large, quiet room with the
measurement system set up in the center of a roughly cir-
cular demarcated walking track. The music was played
back at a comfortable level over a set of full-range stereo
loudspeakers. Due to the cyclic nature of the track, the par-
ticipants heard the music at a roughly consistent loudness
level throughout their traversal.

4.1.3 Procedure

Each participant individually tested the system in two
phases. The first phase was a trial run to determine their
preferred cadence. Once securely fitted with the sensor ap-
paratus, they were instructed to walk freely, at a comfort-
able pace along the path. The music was played, and the
tempo was adjusted manually until it matched the gait of
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Gait Parameter Measured Reference
Mean Step Time (ms) 539 (2) 537(47)
Step Time Variability
(%)

9.68 (1.07) 3.05 (1.10)

Mean Stance Time (ms) 599.7 (60.70) 688 (72)
Mean Swing Time (ms) 366 (61) 386 (30)
Stance/Swing Time Ra-
tio

1.695 (0.414) 1.782 (0.188)

Stance Time Asymmetry
(%)

12.30 (7.76) 1.29 (1.35)

Swing Time Asymmetry
(%)

7.20 (2.97) 2.30 (2.43)

Stance Time Variability
(%)

12.30 (4.50) 2.87 (1.16)

Swing Time Variability
(%)

43.15 (41.37) 3.93 (1.42)

Table 2. Measured gait parameter values with reference
values derived from [25], shown as Mean and Standard De-
viation SD (in parenthesis).

the participant. After this calibration phase, the new tempo
was initialized, sensor measurement was commenced, and
the participant was signaled to begin walking from a des-
ignated starting point. The instruction this time was for
footsteps to be actively timed to the music. Feedback soni-
fication was enabled at the nominal intensity level without
participants being informed of what it was. The duration
of each trial spanned the time taken by the participant to
complete 400 steps, and this was dependent on individual
preferred cadence. The listed long-term temporal gait pa-
rameters were automatically measured and systematically
stored at the end of the 400th step, simultaneously conclud-
ing the experiment. Following each trial, participants were
interviewed in structured fashion, and key questions were
put forth regarding the distinct aspects of the experiment.
They were asked to rate the comfort and freedom of move-
ment (from 1, not at all comfortable/very low freedom to
5, very comfortable/very high freedom) while wearing the
apparatus. Pertaining to the music, key questions con-
cerned appropriateness of tempo, beat clarity, enjoyability,
musical evolution, and conduciveness to movement. They
were asked if they noticed any unusual sounds, and if so,
what their impression was of them.

4.1.4 Results

All participants reported the task simple and the pre-
calibrated tempo easy to walk to. The musical beat was
clearly perceived by all participants, and temporal evolu-
tion in the music was noticed. Four out of six partici-
pants found the music encouraging to move to, but half
of them did not find the music enjoyable. Four of six no-
ticed sounds that were not part of the music and one found
these sounds unpleasant. Mean rating for comfort while
donning the sensor apparatus was 3.92 (ranging from 3 to
4.5) while mean rating for freedom of movement was 4.42
(ranging from 4 to 5).

Table 2 shows the measured gait parameters, averaged

across participants and compared to reference values de-
rived from literature [25]. No false step detections were
observed in any trial. Measured Mean Step Time showed a
high level of agreement with reference figures, and Mean
Stance, Swing Time and Stance/Swing Ratio were within
range. On the other hand, Long term Asymmetry and Vari-
ability measures were significantly exaggerated as com-
pared to reference values, although this discrepancy was
not observed on the short-term timescale.

4.2 Expert Interview

In addition to the gait experiment, the application was
demonstrated to a neurorehabilitation specialist by means
of a walking test, simulating both normal and impaired gait
modalities. The following key questions were put forth and
a thorough assessment was obtained.

Clinical Role (Target Group and Use Case):
The specialist stated that the main target group would con-
stitute PD, stroke and ABI patients, and that the most con-
venient therapy setting would be a treadmill protocol.
Main Benefits from a Therapist’s Perspective:
The specialist envisioned the gait measurement and real-
time feedback to have potential as novel aids to perfor-
mance evaluation and patient self-awareness.
Detection of Impaired Gait Modalities:
The inability of the application to evaluate foot roll-over
quality(owing to only a single heel sensor) was pointed out
by the specialist. He also enumerated several phenomena
that cannot be captured by temporal measures alone, such
as low gait speed, crouch gait and limb circumduction. The
use of accelerometers and force membranes with greater
surface area was suggested.
Presentation of Auditory Stimuli:
The specialist pointed out problems with the sonification
philosophy of punishing any deviations from parametri-
cally normal gait, mainly rooted in the wide range of
pathologies and principal gait problems exhibited by pa-
tients. He not only stated the importance of safety and
balance in the short term, but also the need for individual-
ized performance baselining and customizable sonification
mapping to cater to diverse individuals. He added that the
subjective definition of the term unpleasant would create
ambiguity between the perceptual notions of punishment
and reward, especially for cognitively damaged patients.
The mapping of gait parameters to auditory manipulations
was also not seen as intuitive by the specialist. Lastly, he
noted the time-lag between a gait event (eg. an asymmet-
ric stride) and its respective sonification, which would lead
to uncertainty and confusion for the patient while exper-
imenting with gait technique, damaging the delicate re-
learning process.

5. DISCUSSION

The objective of this study was to design an interactive
music-based gait training application based on RAS in or-
der to improve patient motivation and adherence to gait
therapy. We presented and tested the implementation of the
proof-of-concept application, generating a time evolving
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musical ensemble controlled by measured temporal gait
parameters. It is acknowledged that an important limita-
tion of this study is the lack of clinical trials conducted.
Compared to existing systems such as D-Jogger [22] and
IM Gait Mate [20], the merits of this application are seen in
the detailed calculation of numerous relevant gait parame-
ters apart from cadence and step-time variability, as well
as the multidimensional influence of walking quality on
the auditory stimulus. These are reinforced by the special-
ist’s acknowledgement of the potential of the application to
help individuals from our original target group, as well as
the benefits of the gait measurement and real-time auditory
feedback mechanisms. In practical terms, the experimental
evaluation broadly showed that the application functioned
as intended with multiple individuals. The suitability of the
stimulus for interactive gait entrainment was corroborated
by the perceived intuitiveness of walking to the generated
music, the easy discernment of temporal evolution and the
conduciveness to movement. High ratings of comfort and
freedom encourage the future use of a force-sensor based
gait measurement system.

One concern stems from the lack of agreement among
participants regarding whether the music itself was enjoy-
able. Although this disagreement was expected due to the
diversity of individual music preferences, it necessitates
the design of a music synthesis system with the capabil-
ity of morphing seamlessly between distinct styles while
maintaining its movement-inducing quality. The average
age of the target group is also higher than that of the test
group used, so it is important that the trends in musi-
cal preference of target individuals are studied in greater
detail. Because the test group mainly comprised normal
walking individuals, there were very few instances where
gait sonification was audible in the stimulus, pointing to
mostly correct triggering of sonification mechanisms (or
lack thereof). However, among the participants who did
perceive some sonification effects, the general disposition
towards these effects was neutral. Although these were
designed to sound unpleasant, this disposition could be as-
cribed to sonic expectations in the electronic genre, where
timbres are inherently noisy and bright, with more tol-
erated inharmonicity. Alternative sonification strategies
must therefore be considered. Firstly, to cater to the wide
range of principal gait problems and severity, individual-
ized performance baselining is a necessary addition. A
possible sonification alternative is to conceive of sonic re-
ward and punishment purely in terms of musical complex-
ity, such that good gait performance with respect to the
baseline is rewarded with more interesting rhythms and
melodies, and the opposite effect for deteriorating perfor-
mance. Additionally, melody and percussion envelopes
can be triggered by step onsets, encouraging tight synchro-
nization and giving the user a greater sense of agency and
control. This could potentially solve the problems of tem-
poral spontaneity and reward/punishment ambiguity pre-
dicted by the specialist. Furthermore, pleasantness and
relative discernibility of each sonification strategy must be
investigated in more detail through experiments. Discretiz-
ing sonification intensity levels based on the measured just-

noticeable difference could potentially make variations in
auditory feedback more explicit.

The next topic is the automated gait parameter measure-
ments. The noted discrepancies between measured val-
ues and reference values may have been caused by dif-
ferences in exact sensor placement, spikes in asymmetry
during turning or outliers created by initial shuffled steps.
Regardless, the high step detection latency (300 ms) must
be addressed; the capacitor analogy described in Section
3.2 has shown promise in initial tests. Temporal spon-
taneity of gait sonification is critical to the effectiveness of
the application, and the short-term measurement window
may be shortened to improve this. Additional membranes
must be introduced to represent the forefoot for evaluat-
ing roll-over. An adjustable measurement prototype must
be fabricated to ensure accurate sensor placement and re-
duce setup time. The initial step measurements must be
discarded to obtain more accurate long-term figures for
evaluation. Periodic automated cadence detection is also
a necessary provision for setting music tempo. The path of
traversal should be straight, to prevent turning-related inac-
curacies. Accelerometers to capture gait speed and crouch
gait, along with the design of a treadmill protocol for test-
ing and therapy have been added to the scope of future
studies.

6. CONCLUSIONS

The goal of this study was to develop a music-based in-
teractive gait training device for patients suffering from
neurological conditions, creating an organic and enjoyable
setting capable of improving motivation and adherence to
therapeutic exercise. A proof-of-concept was designed
and implemented, and subsequent tests and evaluation pro-
cesses on normal test participants revealed both merits and
deficiencies in the auditory presentations. Practical diffi-
culties and inaccuracies in some of the gait measurement
mechanisms also came to light. The expert interview pro-
vided us with much needed feedback and insight into the
rehabilitation process. Taking into account the infancy of
the project in its current state, the work carried out here
serves as a useful foundation for future investigation driven
by the experimental findings. Given the increasing need for
affordable and accessible exercise protocols for neurolog-
ical patients, an interactive device wielding the universal
appeal and therapeutic prowess of music may be instru-
mental in the recovery and maintenance of physical func-
tion and mobility among community-dwelling individuals
afflicted by debilitating neurological conditions.
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ABSTRACT

This paper explores how notation developed for the repre-
sentation of sound-based musical structures could be used
for the transcription of vocal sketches representing expres-
sive robot movements. A mime actor initially produced ex-
pressive movements which were translated to a humanoid
robot. The same actor was then asked to illustrate these
movements using vocal sketching. The vocal sketches
were transcribed by two composers using sound-based no-
tation. The same composers later synthesized new sonic
sketches from the annotated data. Different transcriptions
and synthesized versions of these were compared in order
to investigate how the audible outcome changes for differ-
ent transcriptions and synthesis routines. This method pro-
vides a palette of sound models suitable for the sonification
of expressive body movements.

1. INTRODUCTION

In this paper we present work conducted within the scope
of the SONAO project, introduced in [1]. SONAO aims to
improve the comprehensibility of robot non-verbal com-
munication (NVC) through an increased clarity of robot
expressive gestures and non-verbal sounds. The purpose
of the SONAO project is to incorporate movement soni-
fication in Human Robot Interaction (HRI), i.e. to use
movement sonification to produce expressive sounds. Up
to this point, movement sonification has only been used
to a very limited extent in social robotics (see e.g. [2, 3]).
Despite the fact that sounds produced by robots can affect
the interaction with humans, sound design is often an over-
looked aspect in HRI. Although some research has focused
on developing sounds for humanoid robots such as NAO 1

(see e.g. [4–6]), sounds used in HRI have traditionally
been based on rather simple synthesis methods, or on pre-
recorded samples. Design decisions as well as mapping
strategies are rarely described and motivated in these con-
texts. Moreover, those who design the robot sounds often
lack musical training.

1 https://www.softbankrobotics.com/emea/en/nao
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In the study presented in this paper, a framework for
sound design in HRI is proposed, based on a work-flow
starting from recordings of expressive gestures performed
by a mime-actor, translated into non-linguistic sounds
through vocal sketches, which in turn are annotated using
a music annotation system. By incorporating composers in
the design process, we hope to gain insight into how vocal-
izations could be used as a design material in the context of
Human Robot Interaction (HRI), through translations into
abstract musical representations.

2. BACKGROUND

The current study makes use of vocal sketching as a proto-
typing tool for exploration of sound design in HRI. Vo-
cal sketching involves the use of the voice and body to
demonstrate the relationship between actions and sonic
feedback [7] and has successfully been used in a wide
range of different projects, for example in SkAT-VG [8].

The notation system used for transcription in this study is
part of an ongoing research project at KTH Royal Institute
of Technology and KMH Royal College of Music, explor-
ing the possibilities of representing pitch-based and sound-
based music for composition [9,10]. By using notation that
combines the possibilities of electroacoustic music analy-
sis with traditional music notation, we can describe sound
structures with great detail. The notation symbols were
adapted from concepts and symbols by Thoresen and Hed-
man [11], whose notation system for music analysis com-
bines Pierre Schaeffer’s ideas on sound classification [12]
with Denis Smalley’s theories of spectromorphology [13].
Placing symbols, aimed for phenomenological analysis,
over a fixed time-frequency grid enables the transcription
and re-synthesis of sound structures. The notation system
presented in [9,10] had previously been successfully tested
with several students at KMH Royal College of Music,
where findings suggested that different composers could
synthesize very similar sonic results starting from same no-
tation.

Up to this point, there has been relatively little research
on how musical transcription could be used in the context
of sonification. In particular, few attempts have aimed to
merge the fields of electronic music with HRI. In semi-
nal work by choreographer Åsa Unander-Scharin, expres-
sive robot movements have been used for choreographing
contemporary versions of classical music compositions by
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SCENARIO 
(vocal sketch)

Transcription by C1

Synthesis by C1  
(with SuperCollider)

Transcription by C2

Synthesis by C2  
(with Logic Pro)

Synthesis by C1  
(with SuperCollider)

Synthesis by C2  
(with Logic Pro)

Figure 1. Flow chart of the transcription and synthesis pro-
cess for composers C1 and C2, for each of the three sce-
narios (vocal sketches).

Monteverdi 2 and Tchaikovsky [14].

3. METHOD

3.1 Procedure

The current paper emanates from material presented in the
dataset described in [15]. This dataset consists of videos,
motion capture data and audio recordings of a mime-actor
portraying five inner states and emotions. A subset of these
videos was used in a workshop with the same mime-actor,
in which he vocalized sounds associated with respective
emotion (and corresponding expressive gesture). Videos
of the mime actor performing the three gestures used in
this study are available online 3 . An example of the mime-
actor performing one of the gestures is displayed in Fig. 3.
We also interviewed the mime actor about which parts of
the body that were essential in the communication of the
emotions through respective gestures. In the current study,
a selection of recordings from this vocal sketching session
was used as basis for a composition task. Vocalizations ex-
pressing the following emotions were opted for: frustrated,
relaxed and sad.

Two composers, author 1 (C1) and author 2 (C2), listened
to the vocal sketches and transcribed them using the nota-
tion system described in section 2. Each composer worked
on the transcription independently, resulting in a total of
two transcriptions per scenario. Then, all the transcrip-
tions where used by both composers as a starting point for
synthesis of new sonic sketches. Every composer produced
two different sonic sketches per scenario, one for each tran-
scription. This methodology was used to ensure that the
composers did not only re-synthesize their own transcrip-
tions. In the end, the number of sonic sketches was four for
respective scenario, giving us a total of 12 sonic sketches.
This process in outlined in Fig. 1. The final synthesized
sketches were then compared in order to investigate how
they were affected by the transcription and the different
synthesis routine adopted by the two composers.

3.2 Material

Three of the vocalizations performed in the vocal sketching
experiment described above were used in the current study:
one vocalization of a frustrated gesture (called ”Scenario

2 http://www.operamecatronica.com/node/1171
3 https://kth.box.com/v/robotsonification
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Figure 2. Spectrograms of the vocalizations for scenario
1-3.

Figure 3. Mime-actor performing a “frustrated” gesture.

1”), one vocalization of a relaxed gesture (called ”Scenario
2”), and one vocalization of a gesture going from sad to
reassuring (called ”Scenario 3”). The three scenarios in-
cluded the following dialogues:

Scenario 1 Actor: ”Everyone can you please line up to the left.”

Scenario 2 Actor: ”Everyone can you please line up to the left.”

Scenario 3 Actor: ”Sorry I broke this glass.”
Interlocutor: ”No problem, I’ll fix it.”

The same phrase was used for Scenario 1 and 2, however,
the level of emotional expression was different for the two.
Sound files are available online 4 . Spectrograms of respec-
tive vocal sketch are shown in Fig. 2.

4. RESULTS

4.1 Transcriptions

The two composers transcribed all three vocal sketches in-
dependently, resulting in a total of six scores. Compar-
ing the two transcriptions for each scenario, we could ob-
serve that the transcriptions were similar in terms of the
overall gestures, rhythm and pitch. Fig. 4 shows the two

4 https://kth.box.com/v/robotsonification
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Figure 4. Transcriptions of Scenario 1 by the two composers.

analyses of Scenario 1: both composers agreed in notat-
ing the initial glissando pitched sound followed by another
short glissando in the middle register and then in notating
five pitched sounds with a complex onset; the two analysis
both end with a short glissando in the low register over-
lapped with a complex sound. However, there are some
differences in the notation of the spectral width. These dis-
crepancies with regard to timbre were to be expected since
notating the spectral content of a sound over a fixed time-
frequency grid is not a standardized method of analysis for
composers, even in the field of electroacoustic music. In so
saying, the notation method leads to some approximations
in the graphical representation that affects the synthesis.
As a matter of fact, the two transcription of Scenario 3 are
the ones that show the most significant differences, as can
be seen in Fig. 5: the original vocal sketch was indeed com-
posed by a high number of non-pitched throat sounds with
a complex timbre, which are hard to notate in an univocal
way. As can be noticed, there were different notation solu-
tions for the vocal sketches’ more growling sounds, where

C1 choose to notate them as inharmonic sounds with dia-
mond noteheads, while C2 used the comb-like symbol that
signifies a granular energy articulation. Nevertheless, the
two composers agreed on the rhythmic transcription and
on the general trend of the sonic structure of Scenario 3
(starting in the middle register, going to the low, then rais-
ing to the high register and ending with an iterated sound
in the low register again).

4.2 Sound Synthesis

Both composers realized sound synthesis from all six
scores, resulting in a total of 12 synthesized sound files.
Composer C1 realised them using only the SuperCol-
lider programming environment 5 ; composer C2 used only
Logic Pro 6 .

5 https://supercollider.github.io/
6 https://www.apple.com/logic-pro/
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4.2.1 Synthesis with SuperCollider

For the synthesis in SuperCollider, three main Synths
were built in order to recreate the three main categories
used in the analysis. The noise-based sound was cre-
ated using different instances of subtractive synthesis; the
pitched sound was realized using a filtered sawtooth; the
pitched sound with inharmonic spectrum was designed us-
ing an inharmonic additive synthesis of filtered noise gen-
erators.

All the Synths had the possibility to be shaped with
a parametric envelope and to be granularized using the
GrainIn unit generator. The output of each Synth was
sent into a reverberation module.

The score was then created on the client side using the
Task, that is a pauseable process. Two arrays were initial-
ized with the durations and the main pitches found in the
analysis step, and they were used to schedule all the sound
events. For each of them, one or more Synths were initial-
ized with all the appropriate parameters. This process is

summarized in the code presented in Listing 1.
The SuperCollider patches are available online 7 .

Listing 1. SuperCollider patch structure.

//Definition of Synths
SynthDef(\noise, {... }).send(s);
SynthDef(\pitch, {...}).send(s);
SynthDef(\dystonic, {...}).send(s);
SynthDef(\rev, {...}).send(s);
//
(
//Score
˜durations = [...];
˜pitch = [...];
t = Task({

... //Sound events//...
}).start;
)

7 https://kth.box.com/v/robotsonification
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4.2.2 Synthesis with Logic Pro

For the synthesis in Logic Pro, three instances of the ES2
virtual analog synthesizer plugin were used. The layout of
the ES3 is similar to that of the Minimoog, but with some
digital advantages such as 100 single-cycle waveforms for
the oscillators. The sound objects of the notation were syn-
thesized using combinations of filtered sawtooth oscilla-
tors and noise generators. For articulation and dynamics,
the ES2 volume envelope was used for short durations and
Logic’s track volume automation was used for longer du-
rations. For more flexible control and also automation of
spectral width, separate channel EQs with low-pass and
high-pass filters were added, mainly for instances playing
the non-pitched noise-based sounds. Iteration and gran-
ularity were generated using LFOs controlling amplitude
modulation in the ES2 modulation matrix.

4.2.3 Results

Despite the differences in choices of sound synthesis soft-
ware, the produced sound files showed great similarities.
Many of the vocal sketch sounds were either pitched or
complex (non-pitched) sounds, which for both sets of the
synthesized scores translated into filtered saw-tooth waves
and filtered noise. Fig. 6 shows the original vocal sketch
compared to the two sound synthesis of Scenario 1 made
by C1 and C2. Moreover, there is also great compatibility
between these sound synthesis and the ones the composers
realized from the transcription of the other: C1’s synthe-
sis of C2’s transcription is really similar to C1’s synthesis
of his own transcription, and vice-versa. This shows that,
starting from the same transcription, the different synthe-
sized versions sound the same, proving the effectiveness of
the notation system.

Similar results could be observed for Scenario 2: the tran-
scriptions were similar and there were no doubts in identi-
fying the sound events as complex or pitched. The sound
synthesis results were very similar as well.

Interestingly, the case of Scenario 3 was a bit different
from the prior scenarios. The original vocal sketch was
harder to notate in regards to the spectral content. The
two transcriptions lead to synthesized sounds that barely
resemble the original vocal sketch. Despite this, when the
composers synthesized over the other’s transcription, the
results are again compatible with the previous synthesis,
as expected.

5. DISCUSSION

The challenge in transcribing non-musical sounds is sim-
ilar to that of analysing electroacoustic music. One must
decide what parameters to account for and with what level
of detail. Clearly audible onsets of purely pitched or noisy
sounds are easier to describe (as shown in the cases of
Scenario 1 and Scenario 2) than intricate combinations of
sound where elements of pitch and noise are intertwined
and transformed over time (case of Scenario 3). Still the
”musical identity” of the vocal sketches remained intact as
they were translated into scores and back into synthesized
sound. This was also noted when the same notation system
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Figure 6. Spectrograms of the vocalization for Scenario 1,
and synthesized versions by the two composers from their
own transcriptions.

was used for the interpretation of musical structures [10].
Indeed the synthesized versions of each scenario made by
the two composers were judged to be perceptually very
similar in informal listening tests made by expert listeners
at KTH. Still, there are discrepancies between the vocal
sketches and the synthesized versions. There are two ways
of dealing with them: one is to aim for transcriptions with
much greater detail in an attempt to capture the voice more
fully, the other is to think of the notation’s function as the
preserver of a sound structure’s basic identity and consider
some features of the vocal sketch the interpretations of the
sound structure itself.

The new method presented in this paper, based on the
sonic rendering of transcriptions of vocal sketches of body
movements, provides a palette of sound models suitable
for the sonification of expressive body movements. In par-
ticular, in the framework of the SONAO project [1] we are
interested in identifying a set of sound models which can
be used as a starting point for the design of real-time sonic
representation of humanoid-robots expressive movements.

6. CONCLUSIONS

We have showed how notation developed for sound-based
musical structures can be used for representing vocal
sketches depicting robot movements. Traditional mu-
sic notation will typically capture the fundamental sound
structure of the music, leaving interpretation and emo-
tional expression to the performer. Similarly, what con-
stitutes a sad vocal sound structure will not necessarily
translate into a sad synthesized version of its score. This
depends on what vocal features that were used to convey
the feeling and with what level of detail the sound passage
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was notated. However, using notated sound structures as
blueprints for sonified movements is conceptually differ-
ent from other forms of sonification in that the movements
are not directly sonified, but connected to notated struc-
tures in the form of a scores to be interpreted. This way of
working opens a space for the sonic interpretation of the
movements where certain structural relations between spe-
cific movements and their sounding counterparts remain
the same while other features are interpreted depending on
the context.

7. FUTURE WORK

The study presented in this paper will be followed by for-
mal and extensive listening experiments focusing on the
perceptual distance between vocal sketches and their syn-
thesis. Some possible applications and future work are de-
scribed below.

7.1 Sonification of Robot Gestures

During the interview with the mime-actor, he emphasized
that the following parts of the body were important in the
communication of the sad gesture in Scenario 3 were the
hands, and possibly also the shoulders. For the frustrated
and relaxed gestures in Scenario 1 and 2, he also mentioned
that the hands should be emphasized. This connection be-
tween the body movement and the vocal sketch will be
used in a future stage of the project: having all the Mo-
Cap data of the mime gestures, it will be possible to use
them to control the sound synthesis, i.e. sonification, fo-
cusing on the parts of the body that was indicated by the
mime actor himself as being the most important ones.

7.2 The Notation of Movement and Sound

Expanding on the possibilities of notation with regard to
a robot’s expressive movements and sounds, there is the
possibility of also notating the movements, placing both
gesture and sound on the same conceptual level. There
is a rich tradition of notating both movement and sound
in dance, and notation systems like Labanotation [16], of-
ten used for notating dance movements, have already been
used in the design of movement-based interaction [17] and
in interactive dance performances (see for example recent
works by Daniel Zea 8 ).

Acknowledgments

The authors would like to thank Simon Alexanderson and
Alejandro Bonnet for their valuable contributions to the
SONAO project. We also thank the three anonymous re-
viewers for very helpful comments that contributed to im-
prove the quality of our paper. This project was funded by
Grant 2017-03979 from the Swedish Research Council and
by NordForsk’s Nordic University Hub ”Nordic Sound and
Music Computing Network - NordicSMC”, project num-
ber 86892.

8 http://danielzea.org/works/

8. REFERENCES

[1] E. Frid, R. Bresin, and S. Alexanderson, “Perception of
Mechanical Sounds Inherent to Expressive Gestures of
a NAO Robot-Implications for Movement Sonification
of Humanoids,” in Proceedings of the Sound and Music
Computing Conference, 2018.

[2] R. Zhang, M. Jeon, C. H. Park, and A. Howard,
“Robotic sonification for promoting emotional and so-
cial interactions of children with ASD,” in Proceedings
of the Tenth Annual ACM/IEEE International Confer-
ence on Human-Robot Interaction Extended Abstracts.
ACM, 2015, pp. 111–112.

[3] J. Bellona, L. Bai, L. Dahl, and A. LaViers, “Empir-
ically Informed Sound Synthesis Application for En-
hancing the Perception of Expressive Robotic Move-
ment,” in Proceedings of the International Conference
on Auditory Display. Georgia Institute of Technology,
2017.

[4] J. Monceaux, J. Becker, C. Boudier, and A. Mazel,
“First Steps in Emotional Expression of the Humanoid
Robot NAO,” in Proceedings of the 2009 International
Conference on Multimodal Interfaces. ACM, 2009,
pp. 235–236.

[5] M. Häring, N. Bee, and E. André, “Creation and Eval-
uation of Emotion Expression with Body Movement,
Sound and Eye Color for Humanoid Robots,” in Ro-
Man, 2011 Ieee. IEEE, 2011, pp. 204–209.
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ABSTRACT

We present a method for tempo estimation from audio re-
cordings based on signal processing and peak tracking, and
not depending on training on ground-truth data. First an
accentuation curve, emphasising the temporal location and
accentuation of notes, is based on a detection of bursts of
energy localised in time and frequency. This enables to
detect notes in dense polyphonic texture, while ignoring
spectral fluctuation produced by vibrato and tremolo. Pe-
riodicities in the accentuation curve are detected using an
improved version of autocorrelation function. Hierarchical
metrical structures, composed of a large set of periodicities
in pairwise harmonic relationships, are tracked over time.
In this way, the metrical structure can be tracked even if
the rhythmical emphasis switches from one metrical level
to another.

This approach, compared to all the other participants to
the MIREX Audio Tempo Extraction from 2006 to 2018,
is the third best one among those that can track tempo
variations. While the two best methods are based on ma-
chine learning, our method suggests a way to track tempo
founded on signal processing and heuristics-based peak
tracking. Besides, the approach offers for the first time
a detailed representation of the dynamic evolution of the
metrical structure. The method is integrated into MIRtool-
box, a Matlab toolbox freely available.

1. INTRODUCTION

Detecting tempo in music and tracking the evolution of
tempo over time is a topic of research in MIR that has
been extensively studied these last decades. Recently ap-
proaches based on deep learning have contributed to an
important progress in the state of the art [1, 2]. In this pa-
per, we present a method that relates to a more classical
approach based on signal processing and heuristics-based
data extraction. We previously briefly presented the princi-
ples of the approach [3]. This paper offers a more detailed
description of the method.
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One particularity of the proposed approach is that it en-
ables to track not only one, two or three, but a larger num-
ber of metrical levels. This enables to get a detailed de-
scription of the dynamic evolution of the metrical struc-
ture: not only how the whole structure speeds up or slows
down with respect to global tempo, but also how individual
metrical levels might be emphasised at particular moments
in the music. In order to give an indication of metrical
activity that would not reduce solely on tempo but takes
into consideration the activity on the various metrical lev-
els, we introduce a new measure, called dynamic metrical
centroid.

2. RELATED WORK

2.1 Accentuation curve

The estimation of tempo starts from a temporal description
of the location and strength of events appearing in the piece
of music. This first step consists in inferring an “onset de-
tection curve”, also called accentuation curve [4]. Musical
events are indicated by peaks; the height of each peak is
related to the importance of the related event. Envelope-
based approach globally estimates the energy for each suc-
cessive temporal frame without considering its spectral de-
composition; spectral flux methods estimate the difference
of energy over successive frames on individual frequen-
cies individually, and further summed together [5, 6]. The
envelope approach would work in the case of sequences
made of notes sufficiently isolated or accentuated with re-
spect to the background, corresponding to short bursts of
energy separated by low-energy transitions, as in simple
percussive sequences. Indeed, in such case, the resulting
envelope curve would show each percussive event with a
peak. On the contrary, for dense musical sequences featur-
ing overlapped notes, such as complex orchestral sounds,
the spectral flux method better distinguishes the attack of
individual notes, provided that the different notes occupy
distinct frequency bands. Minor energy fluctuation along
particular frequencies may blur the resulting accentuation
curve in the point of making it impossible to detect the ac-
tual note attacks. The use of thresholding can filter out
energy fluctuation on constant frequency bands (such as
tremolo) and select only significantly high energy bursts re-
lated to note attacks. Still, energy fluctuating in frequency,
such as vibrato, may still add noise to the resulting accen-
tuation curve.
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Figure 1. Comparison between the method in [7] (left) and
our proposed method (right), for the comparison of a given
spectrogram amplitude p(t, f) at time t and frequency f
with amplitudes from previous (and next) frames.

In order to detect significant energy bursts on highly lo-
calised frequency ranges but still filter out the artifacts due
to the possible frequency fluctuation along time of such
localised events, it is necessary to add some tracking capa-
bility. The approach presented by [7] can be considered
as an answer to this problem. It searches for rapid in-
crease of amplitude on particular frequency components,
and evaluates for each detected onset its “degree of onset”,
defined as the rapidity of increase in amplitude. To esti-
mate this increase of amplitude at a given time t for a par-
ticular frequency f , the amplitude p(t, f) is compared not
only to the corresponding amplitude at the previous frame
p(t−1, f), but also to the amplitude at the higher and lower
frequency bins p(t− 1, f − 1) and p(t− 1, f + 1) as well
as p(t − 2, f). These previous points form the contextual
background. The current amplitude p(t, f) is compared
with the maximum of the amplitude at those four previous
points, as shown in Figure 1. Let pp(t, f) be this maxi-
mum. Besides, the corresponding amplitudes at frame t+1
are also compared with pp(t, f).

For a given instant t and frequency f , the degree of onset
is given by

do(t, f) = p(t, f)− pp(t, f) (1)

The degrees of onset are summed over the frequency com-
ponents, leading to the onset curve.

2.2 Periodicity analysis

A pulsation corresponds to a periodicity in the succession
of peaks in the accentuation curve. Classical signal-pro-
cessing methods estimate periodicity using methods such
as autocorrelation, the YIN method, bank of comb-filter
resonators with a constant half-time [8] or phase-locking
resonators. 1 Basically, a range of possible periodicity fre-
quencies is considered, and for each frequency, it is es-
timated whether there exists any periodicity at that fre-
quency. In the following, we will call periodicity function
the representation, such as autocorrelation function, show-
ing the periodicity score related to each possible period (or
alternatively each possible frequency).

2.3 Metrical structure

One common approach to extract the tempo from the peri-
odicity function is to select the highest peak, within a range

1 Cf. [4] for a detailed literature review.

of beat periodicities considered as most adequate, typically
between 40 and 200 BPM, with a weighted emphasis on
best perceived periodicity range. This approach fails when
tracking the temporal evolution of tempo over time, espe-
cially for pieces of music where different metrical levels
are emphasised throughout the temporal development. For
instance, if at a given moment of the piece of music, there
is an accentuated quarter note pulsation followed by an ac-
centuated eighth note pulsation, the tempo tracking will
switch from one BPM value to another one twice faster,
although the actual tempo might remain constant. And as
we may imagine, such shift from metrical level to another
is very frequent in music.

In [4], three particular metrical levels are considered as
core elements of the metrical structure: The tactus is con-
sidered as the most prominent level, also referred as the
foot tapping rate or the beat. The tempo is often identified
to the tactus level. The tatum—for “temporal atom”—is
considered as the fastest subdivision of the metrical hier-
archy, such that all other metrical levels (in particular tac-
tus and bar) are multiples of that tatum. The bar-level or
other metrical levels related to change of chords, melodic
or rhythmic patterns, etc. The tracking of tempo along time
result from a tracking of these three metrical levels using a
Hidden Markov Model (HMM).

The tatum is considered (and modeled) as the minimal
subdivision such that each other metrical level is a multiple
of that elementary level, but this canonic situation does not
describe all metrical cases: for instance, binary and ternary
subdivisions often coexist, as we will see in section 5.

2.4 Deep-learning approaches

Recent deep-learning approches start from the computa-
tion of a spectrogram, eventually followed by a filtering
that emphasises the contrast between successive frames,
along each different frequency [1]. In [1], the successive
frames of the spectrogram are then fed into a Bidirectional
Long Short-Term Memory (BLSTM) Recurrent Neural Net-
work (RNN). This network can be understood as perform-
ing both the detection of events based on local contrast
asnd the detection of periodicity in the succession of events,
along multiple metrical levels. This is followed by a Dy-
namic Bayesian Network that plays a similar role as the
HMM, tracking the pulsation along two metrical levels (cor-
responding to beats and downbeats). In [2], the whole pro-
cess consists in feeding the spectrogram to a convolutional
neural network (CNN).

3. PROPOSED METHOD

The proposed method introduces improvements in the suc-
cessive steps forming the traditional procedure for metrical
analysis that were presented in sections 2.1, 2.2 and 2.3.
Those improvements are as follows. A modification of the
localised method for accentuation curve estimation enables
to better emphasise note onsets in complex polyphony with
vibrato and tremolo (section 3.1). Periodicity detection
is performed using a modified version of autocorrelation
function (section 3.2).
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Besides, we introduce a new methodology for tracking
the metrical structure along a large range of periodicity
layers in parallel. The tracking of the metrical structure
is carried out in two steps:

1. a tracking of the metrical grid featuring a large range
of possible periodicities (section 3.3). Instead of
considering a fix and small number of pre-defined
metrical levels, we propose to track a larger range of
periodicity layers in parallel.

2. a selection of core metrical levels, leading to a metri-
cal structure, which enables the estimation of metre
and tempo (section 3.4).

3.1 Accentuation curve

Our method for the inference of the accentuation curve fol-
lows the same general principle of the model introduced
in [7], detecting and tracking the apparition of partials lo-
cally in the spectrogram, as explained in section 2.1. In
our case, the spectrogram is computed for the frequency
range below 5000 Hz and the energy is represented in the
logarithmic scale in decibel.

We use different parameters for the specification of the
temporal scope and the frequency width of the contextual
background. In [7], the frequency width is of 43 Hz and
the temporal depth of 23 ms. After testing on a range of
musical styles, we chose a frequency width around 20 Hz
and a temporal depth of .8 second (cf. Figure 1). By en-
larging the temporal horizon of the contextual background,
this enables to filter out tremolo effects and to focus on
more prominent increase of energy.

In the proposed model, the second condition for onset
detection specified in [7] —namely, that the energy on the
frame succeeding the current one should be higher than
the contextual background—is withdrawn, for the sake of
simplicity. That constraint seems aimed at filtering out
bursts of energy that are just one frame long, but bursts
two frames long would not be filtered out. And we might
hypothesise that short bursts of energy might still be per-
ceived as events.

Finally, the degree of onset is different from the one pro-
posed in [7]. Instead of conditioning the degree of onset to
the increase of energy with respect to the contextual back-
ground, we propose instead to condition it to the absolute
level of energy:

do(t, f) = p(t, f) (2)

This is because a burst of energy of a given level p(t, f)
might be perceived as strong, and could contribute there-
fore to the detection of a note onset, even if there was a
relatively loud sound in the frequency and temporal vicin-
ity. This modification globally improved the results in our
tests.

In our proposed method, the accentuation curve shows
more note onsets than in [7]. This leads to a more detailed
analysis of periodicity and a richer metrical analysis. This
allows sometimes the discovery of the underlying metrical
structure that was hidden under a complex surface and was
not detected using [7].

3.2 Periodicity analysis

Tempo is estimated by computing an autocorrelogram with
a frame length of 5 seconds and hop factor 5%, for a range
of time lags between 60 ms and 2.5 s, corresponding to a
tempo range between 24 and 1000 BPM. The autocorrela-
tion curve is normalized so that the autocorrelation at zero
lag is identically 1.

A peak picking is applied to each frame of the autocorrel-
ogram separately. The beginning and the end of the auto-
correlation curves are not taken into consideration for peak
picking as they do not correspond to actual local maxima.
A given local maximum will be considered as a peak if its
distance with the previous and successive local minima (if
any) is higher than 5% of the total amplitude (i.e., the dis-
tance between the global maximum and minimum) of the
autocorrelation function.

One important problem with autocorrelation functions is
that a lag can be selected as prominent because it is found
often in the signal although the lag is not repeated succes-
sively. We propose a simple solution based on the follow-
ing property: For a given lag to be repeated at least twice,
the periodicity score associated with twice the lag should
have a high probability score as well. This heuristics can
be implemented as a single post-processing operation ap-
plied to the autocorrelation function, removing all period-
icity candidate for which there is no periodicity candidate
at around twice its lag.

3.3 Tracking the metrical grid

3.3.1 Principles

In the proposed approach, we track a large range of possi-
ble metrical levels. This is done in two successive steps:

• the construction of a detailed set of periodicities in-
herent to the metrical structure, leading to what we
propose to call a metrical grid, where individual pe-
riodicities are called layers,

• the selection among those metrical layers of core
metrical levels, whose periods are in multiplicity ra-
tios. All other layers of the metrical grid are simple
multiples or submultiples of those metrical levels.
One metrical level is selected as the most prevalent,
for the determination of tempo.

For each metrical layer i, its tempo Ti (meaning the tempo
related to the metrical grid by tapping on that particular
metrical layer) and period τi are directly related to the tempo
T1 and period τ1 of the reference layer i = 1:

Ti =
T1
i
, τi = τ1i (3)

For instance, the tempo at metrical layer 2 is twice slower
than the one at metrical layer 1. Although tempo can change
over time, the tempo related to the different metrical peri-
odicities conserve their multiplicity ratio, so that equation
3 remains valid in theory.

The tracking of the metrical grid over time requires a
management of uncertainty and noisy data. Periodicity
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lags measured in the autocorrelogram do not exactly com-
ply with the theoretical lags given by equation 3. For that
reason, each metrical layer i is described by both:

• theoretically, the temporal series of periods τi(n) re-
lated to metrical layer i knowing the global tempo
given by τ1(n).

• practically, the temporal series of lags ti(n) effec-
tively measured at location of peaks in the autocor-
relation function for each successive frame n.

In the graphical representation of the metrical structure,
both actual and theoretical periods are shown: the tempo-
ral succession of the theoretical values at a given metrical
layer is shown with a line of dots, whereas the actual pe-
riods are indicated with crosses that are connected to the
theoretical dot with a vertical line. For instance in Figure
2, we see a superposition of metrical layers, each with a
label indicated on the left side, starting from layer 0.25 up
until layer 4, with also a layer 4.25 appearing around 30
second after the start of the excerpt.

3.3.2 Procedure

The theoretical periods are inferred based on the measured
periods, as we will see in equation 13.

The integration of peak into the metrical grids is done
in three steps, related to the extension of metrical layers
already registered, the creation of new metrical layers and
finally the initiation of new metrical grids.

For each successive time frame n, peaks in the period-
icity function (as specified in section 3.2) are considered
in decreasing order of periodicity score. This is motivated
by the observation that strongest periodicities, correspond-
ing generally to important metrical levels, tend to show a
more stable dynamic evolution and are hence more reliable
guides for the tracking of the metrical structure. Weaker
autocorrelation peaks, on the contrary, may sometimes re-
sult from a mixture of underlying local periodicities, hence
might tend to behave more erratically. For each frame, the
strongest peaks first considered enable to get a first estima-
tion of the tempo T1(n) at that frame, which will be used
as a reference when integrating the weaker periodicities.

Each peak, related to a period (or lag) t is tentatively
mapped to one existing metrical layer i. We consider two
ways to estimate the distance between current peak t and
a given metrical layer i: either by comparing current peak
lag t with the actual lag of the peak associated with this
metrical layer i at previous frame n− 1:

d1(t, i) = |t− ti(n− 1)| (4)

or by comparing current peak lag t with the theoretical lag
at that metrical layer i knowing the global tempo:

d2(t, i) = |t− τi(n)| (5)

For low lag values, small difference in time domain can
still lead to importance difference in tempo domain. For
that reason, an additional distance is considered, based on
tempo ratio:

d3(t, i) =

∣∣∣∣log2
(

t

τi(n)

)∣∣∣∣ (6)

The distance between current peak t and a given metrical
layer i can be then considered as the minimum of the two
distances on the time domain:

d(t, i) = min(d1(t, i), d2(t, i)) (7)

and the closest metrical layer i∗ can be chosen as the one
with minimal distance:

i∗ = argmin
i

d(t, i) (8)

If this metrical period has already been assigned to a stronger
peak in current frame n, this weaker peak t is discarded for
any further analysis. In other cases, its integration to the
metrical period i∗ is carried out if it is close enough, both
in time domain (d(t, i)) and in tempo domain (d3(t, i)):

d(t, i) < δ and d3(t, i) < ε (9)

In a second step, we check whether the periodicity peak
triggers the addition of a new metrical layer in that metrical
grid:

• For all the slower metrical layers i, we find those that
have a theoretical period that is in integer ratio with
the peak lag t:

min

(
τi(n)

t
mod 1, 1−

(
τi(n)

t
mod 1

))
< ε

(10)
where ε is set to to .02 if no other stronger peak in
the current time frame n has been identified with the
metrical grid, and else to .1 in the other case.

If we find several of those slower periods in inte-
ger ratio, we select the fastest one, unless we find a
slower one with a ratio defined in equation 10 that
would be closer to 0.

• Similarly, for all the faster metrical layers, i we find
those that have a theoretical pulse lag that is in inte-
ger ratio with the peak lag:

min

(
t

τi(n)
mod 1, 1−

(
t

τi(n)
mod 1

))
< ε

(11)

• If we have found both a slower and a faster period,
we select the one with stronger periodicity score.

• This metrical layer, of index iR, will be used as ref-
erence onto which the new discovered metrical layer
is based. The new metrical index i∗ is defined as:

i∗ = iR ∗
[

t

τi(n)

]
(12)

Finally, if the strongest periodicity peak in the given time
frame n is strong enough (with periodicity score above a
certain threshold θ) and is not associated with any period
of the metrical grid(s) currently active, a new metrical grid
is created, with a single metrical period (with i = 1) related
to that peak.
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All active metrical grids are tracked in parallel, by ten-
tatively mapping the peaks of the periodicity curve on the
periods of each grid.

A metrical grid stops being further extended whenever
there in no peak in the given frame that can extend any
of the dominant periods. Mechanisms have also been con-
ceived to fuse multiple grids whenever it turns out that they
belong to a single hierarchy.

The global tempo associated to the metrical grid is up-
dated based on the actual lags measured along the different
metrical periods in the current frame n. For each metrical
period i and for the peak lag ti associated to it, we obtain
a particular estimation of the global lag (i.e., the lag at pe-
riodicity index 1), namely ti

i . We can then obtain a global
estimation of the global lag by averaging these tempo esti-
mation at different periods, using as a weight the autocor-
relation score si of those peaks:

τ1(n) =

∑
i∈D si

ti
i∑

i∈D si
(13)

Not all metrical periods are considered, because there can
be a very large number of those, and many of the higher pe-
riods are only redundant information that tend to be unreli-
able. For that reason, a selection of the most important—or
dominant—metrical periods is performed, corresponding
to the set D in previous equation. Each time a new metri-
cal grid is initiated, the first metrical period (i = 1) is con-
sidered as dominant. Any other metrical period i becomes
dominant whenever the last peak integrated is strong (i.e.,
with an autocorrelation score higher than a given threshold
θ) and if the reference metrical period upon which layer i
is based is also dominant.

The actual updating of the global tempo is somewhat more
complex than the description given in the previous para-
graph, because we consider the evolution of the tempo from
the previous frame to the current frame, and limit the am-
plitude of the tempo change up to a certain threshold. This
enables to add a certain kind of “inertia” to the model such
that unrelated periodicities in the signal will not lead to
sharp discontinuity in the tempo curves.

Values used for some parameters defined in this section:
δ = .07, ε = .2, θ = .15.

3.4 Metrical structure

The metrical grids constructed by the tracking method pre-
sented in the previous paragraph are so far made of a mere
superposition of metrical periods. The ratio number asso-
ciated with each metrical level should be considered rela-
tively. For instance, the value 1 has no absolute meaning,
it is arbitrarily given to the first level detected. Level 1.5 is
3 times slower than level .5. For each metrical grid, one or
several of its metrical periods have been characterized as
dominant because of their salience at particular instants of
the temporal development of the metrical grid, and because
such selection offers helpful guiding points throughout the
temporal tracking of the metrical grid. Yet these selected
dominant metrical periods simply highlight particular ar-
ticulation of the surface and do not necessarily relate to the
core metrical levels of the actual metrical structure.

A metrical structure is composed of a certain number of
metrical levels: they are particular periods of the metrical
grid that are multiple of each other. For instance, in a typ-
ical meter of time signature 4/4, the main metrical level is
the quarter note, the upper levels are the half note and the
whole note, the lower levels are the eighth note, the six-
teenth note, and any other subdivision by 2 of these levels.
In the same example, dotted half note (corresponding to
three quarter notes) is related to one metrical period in the
metrical grid, because it is explicitly represented in the au-
tocorrelation function as a possible periodicity, but it is not
considered as a metrical level.

In the graphical representations shown in Figures 2, 3 and
4, the metrical levels are shown in black while the other
metrical layers are shown in gray.

The metrical structure offers core information about me-
ter. In particular, tempo corresponds to beat periodicity at
one particular metrical level. In a typical metre, the main
metrical level could be used as the tempo reference. In our
example, with a typical time signature 4/4, the tempo could
be inferred by reporting the period at the metrical level cor-
responding to the quarter note. However, in practice, there
can be ambiguity related to the actual metre, and especially
related to the choice of the main metrical level.

For each metrical periodicity i can be associated a nu-
merical score Si, computed as a summation across frames
of the related periodicity score si,n for each frame n. The
metrical periodicities i are progressively considered in de-
creasing order of score Si as potential metrical levels.

In a first attempt, we integrate all possible periodicities as
long as they form a coherent metrical structure. The met-
rical structure is initially made of one single metrical level
corresponding to the strongest periodicity. Each remaining
metrical period P , from strongest to weakest, is progres-
sively compared with the metrical levels of the metrical
structure, in order to check that for each metrical level L,
P has a periodicity that is a multiple of L, or reversely. In
such case, P is integrated into the metrical structure as a
new metrical level.

This method may infer incorrect metrical structures in
the presence of a strong accentuated metrical period that
is not considered as a metrical level. This often happens in
syncopated rhythm. For instance, a binary 4/4 metre with
strong use of dotted quarter notes could lead to strongest
periodicities at the eighth note (let’s set this period to i =
1), dotted quarter note (i = 3) and whole note (i = 8).
One example is the rhythmical pattern 123-123-12, 123-
123-12, etc. In such case, if the periodicities related to dot-
ted quarter note (i = 3) is stronger than the periodicities
related to whole note (i = 8), the first method would con-
sider the metre to be ternary, of the form 6/8 for instance.

In order to solve the limitation of the first method, a more
elaborate method constructs all possible metrical structures,
with metrical levels taken from the series of metrical peri-
ods from the input metrical grid. To each metrical structure
is associated a score obtained by summing the score related
to each selected level. The metrical structure with highest
score is finally selected. In our example, alternative met-
rical structures are constructed, both for ternary rhythm—
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Figure 2. Autocorrelation-based periodogram with tracking of the metrical structure for the first 140 seconds of a perfor-
mance of the first movement of J. S. Bach’s Brandenburg Concerto No. 2 in F major, BWV 1047. Each metrical layer is
indicated by a line of crosses extending from left to right, and preceded by a number indicating the index of the metrical
layer. When the line is interrupted at particular temporal regions, the remaining dotted line represents the temporal tempo
at that layer. Metrical levels are shown in black, while other metrical layers are shown in gray. See the text for further
explanation.

Figure 3. Autocorrelation-based periodogram with tracking of the metrical structure for the first 160 seconds of a perfor-
mance of the Scherzo of L. van Beethoven’s Symphony No. 9 in D minor, op.125, using the same graphical conventions as
in Figure 2. As before, numbers, indicating metrical layer indices, are displayed where the metrical layers are first detected.
For instance, layer 0.5, corresponding to the binary division of layer 1, appears at 40 seconds.

Figure 4. Autocorrelation-based periodogram with tracking of the metrical structure for the first 2 minutes of a performance
of the Allegro con fuoco of A. Dvorak’s New World Symphony, Symphony No. 9 in E minor, op. 95, B.178, using the same
graphical conventions as in Figure 2.
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with metrical levels (1, 3, 6), or (1, 3, 9), etc.—and for bi-
nary rhythm—(1, 2, 8), (1, 2, 4, 8), etc. If the periodicity
corresponding to i = 8 is sufficiently strong, the binary
rhythm will be chosen by the model. Although i = 3 is
stronger than i = 8, the combination (1, 2, 8), for instance,
can be stronger than the combination (1, 3, 6).

The resulting metrical structure is made of a combina-
tion of metrical levels, i.e., a subset (i1, i2, . . .) of the met-
rical periods of the metrical grid. One metrical level iR
needs to be selected as reference level for the computation
of tempo. One simple strategy would consists in select-
ing the metrical level with highest score, as defined pre-
viously. However, those scores are based on purely sig-
nal processing method (namely, autocorrelation function),
and do not take into account the fact that certain periodici-
ties are more easily perceived than other. Studies have de-
signed so-called “resonance curves” that enable to weight
the periodicity score depending on the period, so that peri-
ods around typical range of periodicity around 120 BPMs
would be preferred [9, 10]. We follow the same method,
by weighting the metrical level scores Sij using the res-
onance curve proposed by [9], using as input to the res-
onance curve the median periodicity related to the given
metrical level.

4. COMPARATIVE EVALUATION

The original algorithm was submitted to the Audio Tempo
Extraction competition under the MIREX (Music Infor-
mation Retrieval Evaluation eXchange) annual campaign 2

This evaluation is made using 160 30-second excerpts of
pieces of music of highly diverse music genres but with
constant tempo. Listeners were asked to tap to the beat for
each excerpt. From this, a distribution of perceived tempo
was generated [11]. The two highest peaks in the perceived
tempo distribution for each excerpt were taken, along with
their respective heights as the two tempo candidates for
that particular excerpt. The height of a peak in the distri-
bution is assumed to represent the perceptual salience of
that tempo. Each algorithm participating to this MIREX
task should also return two tempo candidates for each ex-
cerpt, with corresponding salience. This ground-truth data
is then compared with the predicted tempo.

In 2013, our proposed model (OL) obtained the fourth 3

highest P-value, compared to models from 2006 to 2013,
as shown in Table 1. It can be noted that these three bet-
ter models are applicable only to music with stable tempo.
Since then, OL has been surpassed by the two aforemen-
tioned deep-learning models [1, 2].

The current improved version of OL was submitted to the
2018 competition. The frequency resolution of the spec-
trogram is decreased without damaging the results. In or-
der to filter out non-relevant peaks, the first peak at the
lowest lag in the autocorrelation function is constrained
to be preceded by a valley with negative autocorrelation.
When comparing pairs of metrical hierarchies, only the
most dominant levels of each hierarchy are selected in such

2 http://www.music-ir.org
3 FW already had a model in 2013 that surpassed OL.

a way that we compare hierarchies with same number of
levels. Finally, a periodicity that is higher than 140 BPM
cannot belong to the two selected metrical levels, except if
that fast pulsation is ternary, i.e., if the pulsation at the next
level is three times lower. OL 2018 does not offer any im-
provement in the results compared to the 2013 submission.

5. METRICAL DESCRIPTION

Tracking a large range of metrical levels enables to get a
detailed description of the dynamic evolution of the metri-
cal structure. For instance in Figure 3, the meter is initially
and for the most part ternary. However between 40 and 50
s. (corresponding to bars 77 to 92), a little before 80 s.
as well as between 120 and 130 s., we see that the ternary
rhythm is actually perceived as a binary rhythm, as shown
by the metrical level 0.5. Reversely in Figure 4, the meter
is initially binary, but turns ternary after 80 seconds.

What is particularly interesting in those examples is also
that the metrical structure changes, but the tempo remains
somewhat constant. This shows that tempo is not a suffi-
cient information for the description of metrical structure.

In order to give an indication of metrical activity that
would not reduce solely on tempo but takes into consid-
eration the activity on the various metrical levels, we in-
troduce a new measure, called dynamic metrical centroid,
which assesses metrical activity based on the computation
of the centroid of the periods of a range of selected metri-
cal levels, using their autocorrelation score as weight. The
metrical centroid values are expressed in BPM, so that they
can be compared with the tempo values also in BPM. High
values for the metrical centroid indicate that more elemen-
tary metrical levels (i.e., very fast levels corresponding to
very fast rhythmical values) predominate. Low values in-
dicate on the contrary that higher metrical levels (i.e., slow
pulsations corresponding to whole notes, bars, etc.) pre-
dominate. If one particular level is particularly dominant,
the value of the metrical centroid naturally approaches the
corresponding tempo value on that particular level.

Figure 5 shows the dynamic metrical centroid curve re-
lated to the Allegro con fuoco of A. Dvorak’s New World
Symphony as shown in Figure 4. The temporal evolution of
the dynamic metrical centroid clearly reflects the change
of rhythmical activity between the different metrical lev-
els, and the transition between binary and ternary rhythm,
which increases the overall perceived rhythmical speed.

6. DISCUSSION

The computational model OL was integrated into the ver-
sion 1.6 of the open-source Matlab toolbox MIRtoolbox
[12]. It also includes Goto’s aforementioned accentuation
curve algorithm [7]. The updated version of OL submitted
to MIREX 2018 is integrated into version 1.8 of MIRtool-
box.

One main limitation of all current approaches in tempo
estimation and beat tracking is that the search for period-
icity is carried out on a percussive representation of the
audio recording or the score, indicating bursts of energies
or spectral discontinuities due to note attacks and changes.
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Contestant SB HS EF FW GK OL AK QH NW DP ES TL GP FK CD ZG AD SP MD DE AP PB GT CB ZL BD
Year 20.. 15 18 13 15 11 13 06 14 10 06 10 10 12 12 13 11 06 11 14 06 06 06 10 13 18 14
Reference [1] [2] [4] [5]
P-score .90 .88 .86 .83 .83 .82 .81 .80 .79 .78 .77 .76 .75 .75 .74 .73 .72 .71 .69 .67 .67 .63 .62 .61 .60 .54
1 tempo .99 .98 .94 .95 .94 .92 .94 .92 .91 .93 .91 .89 .86 .85 .91 .82 .89 .93 .85 .79 .84 .79 .69 .85 .68 .64
both tempi .69 .66 .69 .57 .62 .57 .61 .56 .50 .46 .55 .48 .61 .62 .55 .57 .46 .39 .47 .43 .48 .51 .51 .26 .46 .38

Table 1. Comparison of MIREX results from all contestants of MIREX Audio Tempo Extraction from 2006 to 2018. For
each author, only the model yielding best P-score is shown. The model presented in this paper is shown in bold.
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Figure 5. Dynamic metrical centroid curve for the same performance of the Allegro con fuoco of A. Dvorak’s New World
Symphony analysed in Figure 4.

Beyond this percussive dimension, other musical dimen-
sions can contribute to rhythm. In particular, successive
repetitions of patterns can be expressed in dimensions not
necessarily conveyed percussively, such as pitch and har-
mony. This shows the necessity of developing methods for
metrical analysis related not only to percussive regulari-
ties, but also to higher-level musicological aspects such as
motivic patterns and harmonic regularities.
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ABSTRACT

Augmented mobile instruments combine digitally-
fabricated elements, sensors, and smartphones to create
novel musical instruments. Communication between
the sensors and the smartphone can be challenging as
there doesn’t exist a universal lightweight way to connect
external elements to this type of device. In this paper, we
investigate the use of two techniques to transmit sensor
data through the built-in audio jack input of a smartphone:
digital data transmission using the Bell 202 signaling
technique, and analog signal transmission using digital
amplitude modulation and demodulation with Goertzel
filters. We also introduce tools to implement such systems
using the FAUST programming language and the Teensy
development board.

1. INTRODUCTION

For about a decade, smartphones have been used as mu-
sical instruments [1, 2]. The fact that they combine in
a single entity various sensors (e.g., accelerometers, gy-
roscope, touch screen, etc.), a speaker, a microphone, a
battery, an Analog to Digital Converter (ADC)/Digital to
Analog Converter (DAC), and a powerful processor that
can be used for sound synthesis/processing make them a
great platform to implement standalone Digital Musical
Instruments (DMIs). However, smartphones were never
designed to be used as such and they lack some crucial
elements to compete with their acoustic counterparts. In
previous works, we tried to solve this problem by augment-
ing smartphones with passive [3] and active [4] elements.
While passive augmentations consist of purely acoustic el-
ements free from electronics, active augmentations typi-
cally combine sensors, a microcontroller, and some sort of
casing.

Transmitting sensor data between the microcontroller and
the mobile device is often a source of problems and there
currently doesn’t exist a standard and comprehensive way
to do this.

MIDI is commonly used for this task as it is the only

Copyright: c© 2019 Romain Michon,1,2 Yann Orlarey,1 Stéphane Letz,1 and Do-

minique Fober1 et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original 
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communication standard supported by all smartphones. In-
deed, most external devices must be approved by Apple
before they can be connected to an iPhone/iPad, but that’s
not the case of MIDI devices.

MIDI can be transmitted over USB or via Bluetooth.
USB requires the use of a USB adapter in most cases and
Bluetooth implies more complex circuitry and significantly
increases the price of the augmentation.

Active augmentations also often involve the use of an ex-
ternal speaker/amplifier (i.e., the built-in speakers of smart-
phones are often weak and low quality) that needs to be
connected to the audio jack of the smartphone. In that case,
two cables must be plugged to the smartphone (i.e., one
USB for the microconctroller and one audio cable) which
is far from being an optimal solution (not to mention that
more and more smartphones don’t have a built-in audio
jack). An alternative solution to this is to use an external
USB ADC, which requires complex multiplexing opera-
tions with the micocontroller since the same USB port has
to be used.

In this paper, 1 we present a simple lightweight solu-
tion to this problem where sensor data is transmitted to
the smartphone using its audio input on its four pins au-
dio jack (devices without a built-in audio jack can use an
adapter that would be needed to retrieve the output audio
signal anyway). Two techniques using respectively digital
or analog data are considered:

• digital data transmission using the Bell 202 signaling
technique (i.e., modem),

• analog signal transmission using digital amplitude
modulation and demodulation with Goertzel filters.

The Bell 202 approach has been commonly used for
transmitting digital data from an external device to a smart-
phone through its audio jack input. The Square Credit Card
Reader 2 and the system presented by Kuo et al. [5] (to
only cite a few) all use this technique. On the other hand,
to the best of our knowledge, digital amplitude modulation
has never been used in this context.

Many microcontrollers such as the ARM Cortex-M4 3

used on the Teensy development board series 4 host their
1 Demos and additional information about this project can be

found at this URL: https://ccrma.stanford.edu/˜rmichon/
analog-transmit.

2 https://squareup.com/us/en/hardware/reader
3 https://developer.arm.com/products/

processors/cortex-m/cortex-m4
4 https://www.pjrc.com/teensy
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Smartphone

Virtual Instrument/Effect (DSP)
Speakers/Amp

Sensors/Microcontroller

Augmentation

Figure 1. Smartphone augmentation connection with a 4
pins audio jack.

own Pulse Width Modulation (PWM) DAC. Hence, they
can be utilized to synthesize sound and play it back in real-
time. 5 In a companion paper [6], we introduce a system
where the FAUST programming language [7] can be used
to program Digital Signal Processing (DSP) algorithms for
the Teensy.

In the systems presented in the current paper, the Teensy
DAC is used to transmit data to the smartphone. Both
the Bell 202 and the Amplitude Modulation (AM) trans-
mission techniques are implemented, evaluated, and com-
pared.

2. HARDWARE

All the systems presented in this paper are based on the
same hardware set-up which consists in a smartphone aug-
mentation [4] connected to a smartphone through a 4 pins
audio jack (see Figure 1). The two upper pins are used
to carry the left and right audio channels out of the smart-
phone. The third pin (from the tip) is the ground, and the
fourth pin (from the tip) carries sensor data from the mi-
crocontroller to the smartphone. The impedance between
the fourth pin and the ground is 700Ω. This is important
because the smartphone uses this as the trigger to activate
its line input instead of using its built-in microphone. This
value is also used as a reference to configure the gain of
the built-in preamp.

We used a Teensy 3.2 in our system. It is based on
an ARM Cortex-M4 microcontroller which hosts its own
12 bits PWM DAC running at 44.1KHz by default. The
lack of reconstruction filter is compensated by the use of a
10µF capacitor connected in series between the DAC out-
put and the fourth pin of the audio jack (see Figures 4-5).
While this would not be sufficient to render a good quality
audio signal, this is more than acceptable for the type of
use that we make of it (see Section. 3-4).

3. BELL 202 SIGNALING TECHNIQUE
APPROACH

The Bell 202 signaling technique allows for the serial
transmission of bits at a maximum rate of 1200 baud. It
uses Frequency Shift Keying (FSK) where “digital zeros”
are represented by 1200 Hz tones and “digital ones” by
2200 Hz tones. Tones are typically synthesized using a
square wave, so a simple digital output is theoretically suf-
ficient to generate the corresponding analog audio signal.
Instead, we preferred to use the built-in DAC of the Cortex-
M4 microcontroller in order to implement a comprehen-
sive solution only using FAUST.

5 https://www.pjrc.com/teensy/td_libs_Audio.
html

Figure 2. FAUST-generated block diagram of a program
encoding four streams of data using the Bell 202 signaling
technique.

3.1 Transmitting Data

The bell202_mod FAUST function 6 takes a stream of bits
coded on audio samples and encodes it using the Bell 202
technique (essentially, the value of each bit determines/-
modulates the frequency of the generated square wave).

Continuous sensor values (e.g., retrieved by an analog in-
put on the Teensy) or any other type of data can be con-
verted to 9 bits Universal Asynchronous Receiver/Trans-
mitter (UART) packets coded on a stream of audio sam-
ples using the uart_tx_encoder function (see Figure 4).
uart_tx_encoder takes three arguments: the number of
parallel streams (channels) of data to be sent, a list indi-
cating the channel number of each stream, and a value in-
dicating if data should be transmitted or not (one for true,
zero for false). For example, the following FAUST program
will send four streams of data on channels 0, 1, 2, and 3:

import("stdfaust.lib");
process = cm.uart_tx_encoder(4,(0,1,2,3),1)

: cm.bell202_mod;

The block diagram corresponding to this FAUST program
can be seen in Figure 2.

UART packets produced by uart_tx_encoder contain
a 7 bits value, a start bit, and a stop bit. Since the chan-
nel number needs to be sent along with the corresponding
value, a single value (i.e., sensor) requires a total of 18bits
(two full UART packets: one for the channel number and
one for the value). If the data transmission parameter of
uart_tx_encoder (third argument) is set to false, then
a stream of “one bit” is produced (that’s a standard of the
UART protocol). This might be used for the potential syn-
chronization of the sender device (i.e., Teensy) with the
receiver (i.e., smartphone) in case it is plugged to it after
the receiver program (i.e., app) was launched.

6 All the FAUST functions presented in this paper have been added
to the communications.lib library that can be found in the
FAUST libraries repository: https://github.com/grame-cncm/
faustlibraries.
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Since bits are encoded at a rate of 1200 baud
by bell202_mod, the bit stream produced by
uart_tx_encoder is synchronized to that rate and
several audio samples will likely contain the same bit
value, depending on the audio sampling rate of the system.
uart_tx is a function that automatically associates

FAUST User Interface (UI) elements to streams of values
transmitted with uart_tx_encoder. Its single argument
is the number of parallel stream of data (channels) to trans-
mit. For example:

import("stdfaust.lib");
process = cm.uart_tx_encoder(4) : cm.

bell202_mod;

sends 4 parallel streams that can be addressed on the
Teensy side using the setParamValue method of the
corresponding object generated with faust2teensy or
faust2api [6]. Hence, the loop function on the Teensy
could look like:

void loop() {
int val0 = analogRead(A0)*127/1024;
int val1 = analogRead(A1)*127/1024;
int val2 = analogRead(A2)*127/1024;
int val3 = analogRead(A3)*127/1024;
faust.setParamValue("0",val0);
faust.setParamValue("1",val1);
faust.setParamValue("2",val2);
faust.setParamValue("3",val3);

}

where faust is a FAUST object produced with
faust2api [6], and the first argument of the
setParamValue method the FAUST parameter name
automatically generated by the uart_tx function corre-
sponding to the channel number on which the value should
be transmitted.

Note that it is also possible to write a FAUST program
to carry out the same task without writing a single line of
Arduino code using faust2teensy [6]. In that case,
analog and digital inputs of the Teensy can be mapped to
FAUST UI elements using metadata:

val0 = nentry("val0[io: A0]",0,0,127,1);
process = val0 :

cm.uart_tx_encoder(1,(0),1) :
cm.bell202_mod;

3.2 Receiving Data

Data transmitted by the microcontroller using the tech-
nique presented in Section. 3.1 can be decoded directly
in the FAUST program implementing the app running on
the smartphone (see Figure 4). This app was gener-
ated with faust2smartkeyb [8]. The bell202_demod

function can be used to decode the signal produced by
bell202_mod on the Teensy to turn it into a stream of
bits encoded on a digital audio signal. The decoding al-
gorithm uses zero crossing detection and cross-corelation.
bell202_mod and bell202_demod are configured to
have the same baud so they don’t need to be parametrized.

Figure 3. FAUST-generated block diagram of a program
decoding two streams of data using the Bell 202 signaling
technique.

DAC
Analog Ins

Other 7bits Data
uart_tx bell202_mod

Faust (faust2teensy)

10µF Capacitor

Teensy

Audio Jack
Input

ADCbell202_demoduart_rx

Faust Instrument/
Effect DAC Audio Jack

Output

Smartphone

Speakers, Amp,
Etc.

Params

Faust

Figure 4. Analog audio sensor data transmission between
a Teensy and a smartphone using the Bell 202 Signaling
Technique.

The uart_rx function takes a single argument allowing
us to specify the number of channels to be extracted from
the input bit stream. This number should be the same as the
one used with uart_tx_encode. uart_rx outputs audio
signals (one per channel) containing the transmitted data
for each individual channel. These signals (whose range is
0-127) can be used directly to control some sound synthe-
sis/processing parameter. In the following example, two
sensor data streams are decoded and used to control the
gain and the frequency of a sawtooth wave oscillator:

import("stdfaust.lib");
mapping = /(127),(/(127)*1900 + 100);
process =

cm.bell202_demod : cm.uart_rx(2) :
mapping : *(os.sawtooth);

4. DIGITAL AMPLITUDE MODULATION
APPROACH

This other method consists in carrying continuous sensor
signals on AM bands to the smartphone.

4.1 Transmitting Data

am_tx_encoder is a FAUST function working in a simi-
lar way than the combination of uart_tx_encoder and
bell202_mod (see Section. 3.1). Its first argument con-
figures the number of parallel streams to be transmitted
and its second argument is a list of channel numbers cor-
responding to each data stream input. For example, the
following FAUST program will send four streams of data
on channels 0, 1, 2, and 3:

import("stdfaust.lib");
process = cm.am_tx_encoder(4,(0,1,2,3));
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Figure 5. Analog audio sensor data transmission between
a Teensy and a smartphone using Amplitude Modulation.

One sine wave oscillator is used for each channel. Their
gain is modulated by individual sensor data. The frequency
of each oscillator is determined by the number of bands.
They are distributed between 50 and 20000 Hz (once again,
the sampling rate of the DAC on the Teensy is 44.1 KHz).
Of course, the gain of each sine oscillator is scaled in func-
tion of the number of bands, which means that more bands
means less dynamic range. In addition to that, a calibration
sine tone with maximum gain is constantly transmitted at
20 KHz to normalize the input signal on the smartphone
side in real-time. Hence, if four sensor streams are trans-
mitted, five sine tones will be generated.
am_tx works the same way than uart_tx and takes a

single argument which is the number of channels to be
transmitted. User interface elements are automatically
generated by this function and can be addressed on the
Teensy side using the setParamValue method (see Sec-
tion. 3.1).

4.2 Receiving Data

Data encoded by the am_tx function on the Teensy can be
decoded using am_rx on the smartphone. This function
takes a single argument which corresponds to the number
of data streams to be decoded/demodulated. This num-
ber should be the same as the one used with am_tx on the
Teensy. am_rx outputs audio signals (one per channel)
containing the transmitted data for each individual chan-
nel. These signals (whose range is 0-127) can be used di-
rectly to control some sound synthesis/processing parame-
ter. In the following example, two sensor data streams are
decoded and used to control the gain and the frequency of
a sawtooth wave oscillator:

import("stdfaust.lib");
mapping = /(127),(/(127)*1900 + 100);
process =

cm.am_rx(2) : mapping : *(os.sawtooth);

am_rx uses Goertzel filters [9] to efficiently extract the
amplitude of each band. The filters block/window size is
automatically adapted in function of the number of bands
to be decoded. A greater block size will provide more pre-
cision in the frequency domain but will add more latency.
Hence, more bands means more delay (see Section. 5).

Other demodulation techniques were tested (e.g., band-
pass filters, etc.) but Goertzel filters provided the best re-
sults in this context.

5. EVALUATION

Table 1 compares the performance of the data transmission
techniques presented in Section. 3 and Section. 4 for var-
ious numbers of parallel channels. Latency and bit depth
are the two main parameters that are considered.

A single channel transmitted with the 202 technique cor-
responds to a latency of ∼15ms (18 bits are required to
transmit one value at a bit rate of 1200 bits/s so 1

(1200/18) ).
Hence, every new channel will add a latency of ∼15ms.
On the other hand, latency when using the AM technique
is determined by the block size of the Goertzel filter which
is automatically computed by am_tx_encoder in func-
tion of the number of channels (see Section. 4.2). Note
that overall, this method provides much better latency per-
formances than the 202 approach.

The bit depth of the data transmitted with the 202 tech-
nique is constant (7 bits by default) and can be decided by
the programmer. A greater bit depth means more preci-
sion but will also add more latency. For the AM technique,
the precision/range of the data depends on the number of
channels to be transmitted. Since the built-in DAC of the
Cortex-M4 can produce 12 bits values, the range of data
when transmitting a single channel is 2048 (212/2 where
the division by two corresponds to the number of carriers:
here one for the data and one for the calibration signal).
In practice, the range of the data for the AM technique is
probably slightly smaller because of potential noise in the
signal, but this type of parameter is hard to measure effi-
ciently.

The Goertzel filter demodulation approach used with
the AM transmission technique has proven very effective.
Also, since the carriers are modulated at a rate of approx-
imately 440 Hz, sidebands are not an issue as long as the
frequency of each carrier is more than 880 Hz appart (i.e.,
if more than 20 channels were needed this rate could to be
lowered, etc.).

All in all, both techniques present advantages. The 202
approach is obviously more reliable but it is also less pow-
erful than the AM method, especially when a large number
of parallel streams of data must be transmitted. It is also
technically more complex to implement.

6. CONCLUSIONS

The built-in analog audio input of smartphones provides
a convenient and standard way to acquire sensor data
from a microcontroller to control sound synthesis/process-
ing parameters. This is very helpful in the context of
active smartphone augmentations where “prosthetics” are
mounted on the device to expand its affordances.

In this paper, two transmission techniques usable in this
context as well as their associated tools were presented
and compared. They seamlessly integrate to the existing
panoply of FAUST-based tools to create musical instru-
ments with augmented smartphones.

We believe that this approach solves various issues by
providing a standard universal way to connect to smart-
phones and by offering better performances than other
standards such as USB/Bluetooth MIDI, etc.
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N Channels 202 Latency AM Latency AM Goertzel Block Size 202 Range AM Range
1 ∼15ms ∼6ms 256 128 (7 bits) 2048
2 ∼30ms ∼6ms 256 128 (7 bits) 1365
3 ∼45ms ∼11ms 512 128 (7 bits) 1024
4 ∼60ms ∼11ms 512 128 (7 bits) 818
5 ∼75ms ∼23ms 1024 128 (7 bits) 683

10 ∼150ms ∼23ms 1024 128 (7 bits) 372
15 ∼225ms ∼46ms 2048 128 (7 bits) 256
20 ∼300ms ∼46ms 2048 128 (7 bits) 204

Table 1. Comparison of the Bell 202 signaling technique with the amplitude modulation transmission approach.
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ABSTRACT

Mass-interaction methods for sound synthesis, and more
generally for digital artistic creation, have been studied
and explored for over three decades, by a multitude of re-
searchers and artists. However, for a number of reasons
this research has remained rather confidential, subsequently
overlooked and often considered as the odd-one-out of
physically-based synthesis methods, of which many have
grown exponentially in popularity over the last ten years. In
the context of a renewed research effort led by the authors
on this topic, this paper aims to reposition mass-interaction
physical modelling in the contemporary fields of Sound
and Music Computing and Digital Arts: what are the core
concepts? The end goals? And more importantly, which
relevant perspectives can be foreseen in this current day
and age? Backed by recent developments and experimen-
tal results, including 3D mass-interaction modelling and
emerging non-linear effects, this proposed reflection casts
a first canvas for an active, and resolutely outreaching, re-
search on mass-interaction physical modelling for the arts.

1. INTRODUCTION

This paper intends to express a refreshed vision on the use
of mass-interaction modelling for real-time sound-synthesis
and interactive digital arts. After positioning some general
concepts, we briefly document how a step aside from sound-
based considerations has led to new grounds for investigat-
ing the potential of mass-interaction physical modelling.
We then present multi-dimensional geometry as a starting
point for any kind of mass-interaction model (in terms of
mathematical roots, modelling methodologies and perfor-
mances), and finally discuss the relevance of this approach
for modelling and real-time simulation of virtual acoustical
structures that present emergent non-linear behaviour.

2. PHYSICAL MODELLING: WHY BOTHER ?

When considering the term physical modelling as it is used
in a large number of fields of research, the first and most
fundamental question to arise is :

*Institute of Engineering, Univ. Grenoble Alpes.
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Why would one painstakingly reproduce the behaviour
(phenomenological approach) or a virtual representation

(causal approach) of a real physical object ?

In most of these fields the answer will have to do with
saving lives, or a significant increase in the understanding
our world, from quarks to universe(s?). But when it comes
to sound synthesis, this question might be slightly more
difficult to answer as it becomes:

Why reproduce - and try to play - a virtual instrument that
mimics a real instrument that one could play in real life?

Over the years, the Computer Music community has devel-
oped very serious and meaningful arguments justifying this
approach, such as those recalled by Bilbao and Smith in the
opening chapters of their respective books [1, 2]. Resulting
research has subsequently led to the development of a rich
variety of techniques [3–5], and continues doing so to this
day. However, if we allow ourselves to take a more poetic
stance, the above question could subjectively be qualified
as irrelevant, to the benefit of the following :

How could our most common day-to-day physical
experience of the physical world inspire and ease an

artistic process in its digital counterpart ?

The entire approach described hereafter takes ground here.
Although it is anchored in a physical paradigm, its main
focus is not the common “realistic sound certified by impec-
cable evaluation methodology” achievement. It approaches
physically-based synthesis from a different angle, oriented
mostly towards intuitive, interactive and multisensory ex-
ploration - without excluding methodological questioning
of its validity along the way. Here, physical modelling
consists in designing and experimenting virtual mechani-
cal constructions, with the aim of discovering and crafting
a range of uncanny sound-producing objects that can be
directly explored and interacted with.

3. A WORLD OF INTERACTING MASSES

All approaches for modelling the physics of macro-scale
mechanical systems stem from a common root: Newton
and his laws. The mass-interaction (MI) paradigm is one
out of many ways to transcribe these laws into discrete
time and space algorithms that allow for the computation
of physical dynamics. It does so by representing physical
models as networks of mass-type elements and interaction-
type elements [6].
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3.1 A balancing act

While MI is probably not the most computationally effec-
tive physical modelling approach, nor the most elegant in
terms of mathematical formulation, and - let’s face it - not
the most suited paradigm for synthesising supra-realistic
sounds of legendary acoustic instruments, it possesses four
undeniable qualities: genericity, modularity, ease of use
given an intuitive understanding of physics, and very direct
possibilities for gestural interaction [7]. These traits are
especially important when considering the perspective of
making sound synthesis tools accessible to everyone.

Ultimately, our choice to further investigate mass interac-
tion physical modelling is motivated by the conviction that
it strikes a “good balance”: a generally satisfying compro-
mise that still yields strong potential regarding, on the one
hand, scientific and technological considerations, and on
the other hand, artistic and creative perspectives. And while
such a balance is not always simple to maintain, it is central
to the authors’ research methodology.

3.2 Modular Physical Modelling

3.2.1 Modularity in Artistic Creation

Under general consideration, modularity can qualify any
physical or abstract system regarding the capacity of its irre-
ducible elements to connect to each other and thus achieve
more complex objects or functionalities (cf. fig.1). Max
Mathews [8] said of modularity concept (referring to unit
generator in MUSIC III) :

“It’s a very important concept, and more subtle than it
appears on the surface. I wanted to give the musician a
great deal of power and generality [...], but at the same
time I wanted as simple a program as possible; I wanted
the complexity of the program to vary with the complexity
of the musician’s desires. [...] The only answer I could see
was not to make the instruments myself [...] but rather to
make a set of fairly universal building blocks and give the
musician both the task and the freedom to put these together
into his or her instruments.”

This concept is specifically valued in recreational con-
texts (cf. fig.2) and creative fields. As examples of mod-
ular systems in musical creation, one could cite modular
analog sound synthesis or patching environments such as
Max/MSP, PureData and Chuck. Regarding other creative
fields, such as graphic design and video, one could think of
Processing 1 , Quartz Composer, vvvv 2 , and more recently
NodeBox 3 . All of which have led to the emergence of
novel artistic processes and to the development of impor-
tant user communities.

3.2.2 A modular approach to physical modelling

In the scope of this paper, modularity is the most funda-
mental a priori that the authors will maintain. It is in fact
the central pivot around which revolve all the efforts to find
true meaning to mass-interaction physical modelling. It is
the necessary condition to achieve a vast range of emerging

1 https://processing.org
2 https://vvvv.org
3 https://www.nodebox.net

Figure 1. Different degrees of modularity. Modular
approaches entail higher control complexity but offer a
broader spectrum of possible outcomes and results.

Figure 2. A modular mechanical construction paradigm,
based on two types of elements ( “node” and “links”).

behaviours, and to be struck by surprise (and we are not
referring to numerical instability !) each time the smallest
part of a model is modified.

Of course, such promising perspectives cannot be expected
without a challenging counterpart. It might be a little bit
more complex (what a reassuring euphemism) to handle
fully modular rather than non-modular approaches. But, if
one gives it a little thought, even if the learning curve can be
steep, fully-modular systems can always be approached by
starting from the simplest possible combination of elements
and set of parameters. From there, one can - in his/her
own good time - progressively build a knowledge base
guided mostly by elementary concepts, in our case relating
to mechanical physics.

3.2.3 Does modular physical modelling really pay off?

One might think that this enthusiasm for modularity could
be curbed by the involved computational complexity, as it
generally limits possibilities for optimisation or algorithmic
“shortcuts”. However, with regard to the state of the art of
physical modelling approaches (in terms of computation,
richness of sounds, dealing with non-linearities, etc.) and
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given recent sound synthesis experimentation with 3D mass-
interaction models described hereafter, the position of mass-
interaction physical modelling appears relatively solid.

Moreover, when adopting the modular “creative” mod-
elling mindset, complexity and computation can be lever-
aged by a number of factors. Indeed, while model scale
does have a notable impact (especially for structures such
as dense plates, e.g. the cymbal), there is a good chance
that the sonic essence you (maybe didn’t even know that
you) were looking for can in fact be obtained with a simpler
model than the physical system you would have imagined 4 ,
resulting in much simpler computation than the discretised
solution to a complex mathematical representation of such
a system.

Finally, all of the above considerations bring about yet
another question:

If a modular physical modelling paradigm can faithfully 5

represent any physical system that can be described by
tridimensional point-based Netwon mechanics, shouldn’t it

naturally bring forth many of the emergent non-linear
characteristics found precisely in the spatial and physical

structure of such systems?

If so, could such an approach to non-linearities, crucial
factors in the richness of synthesised sounds [9], be easier
to apprehend, manipulate and pass on to artists than the
common route of advanced mathematical formulations and
finite difference schemes? This discussion will be for a later
section.

3.3 Here is the motto

In short, the authors still see mass-interaction physical mod-
elling as a very fertile ground to explore, especially under
the prism of digital artistic creation. However, unlike much
previous work and already significant discoveries made on
the subject [6, 10, 11], the motto here has to be explicitly
clarified :

1. Each and every core concept, component or experi-
mental paradigm must be openly stated, positioned
and questioned within a global scientific framework.

2. Every model, each line of code, will be shared so as
to allow for a community-driven artistic, scientific
and technological reflection regarding this topic.

4. OBSERVE, THEN INTERACT, THEN - AND
ONLY THEN - LISTEN

4.1 Stepping aside from a sound-based approach

The mass-interaction (MI) approach presented here allows
to address the modelling question from any kind of prelim-
inary phenomenological consideration. In simpler terms,
one could create a virtual physical model with the sole aim
to observe a visual rendering of its motion through time, or
with the intent to explore the properties of an interaction

4 see section 6 for an example regarding chaotic emergence generally
associated with cymbal-like structures - obtained with a relatively small
model that is nothing like a cymbal.

5 well, within the limits of numerical stability.

model, or further still considering the motion of a virtual
mechanical deformation as a sound source. Ultimately, ev-
ery single object designed in MI with a specific idea and
modality in mind can be considered (as it is) for its comple-
mentary modalities.

This property gives MI a strong potential in the fields of
sound synthesis, interaction modelling, visual rendering,
and to create multisensory virtual objects. Of course, the
latter raises questions as to the various contexts in which
one can build and simulate such objects.

The following section describes a scenario followed by the
authors, stemming from visual considerations in a visual
rendering software, and progressively leading to explore the
resulting objects for their acoustical properties and playabil-
ity (including via Haptic interaction) - all within this visual
rendering software.

4.2 Computing and rendering mechanical motion

Mass-interaction physical modelling has long been studied
and used within the domain of visual arts 6 , resulting in a
string of concepts and tools [12, 13]. On the basis of these
visual considerations and the will to increase accessibility
to MI modelling through open-source software, the authors
recently developed miPhysics, a compact JAVA library then
targeted essentially for the Processing environment (a soft-
ware sketchbook & language widely used for prototyping
and creating visual and interactive arts). This tool was
naturally written to allow designing and computing the mo-
tion of point-based models, described as an arrangement of
masses and interactions in up to 3 spatial dimensions, and
each mass possessing up to 3 degrees of freedom.

The flexibility of a framework such as Processing allows
for efficient interactive modelling and naturally leads to
consider aspects such as real-time parameter control, on-
the-fly topology/geometry alterations, as well as numerous
rendering methods for large models. Despite the fact that
it is, by essence, a prototyping environment (therefore not
necessarily well optimised for complex scene rendering),
large-scale models composed of tens of thousands - and
sometimes over a hundred thousand - elements run in real-
time (cf. fig.3) at physics computation rates from 250 Hz
up to several kHz, and visual display rates around 60 FPS.

4.3 From motion and physical interaction to sound

While observing the visual motion such rendered models, a
recurring interrogation quickly became: “wow, how would
that sound?”. Unable to contain ourselves, we then started
cranking simulation rates up to 44.1kHz in an audio thread,
connecting “microphones” into these virtual scenes in the
simplest way possible (applying the motion of one or more
mass elements directly to a loudspeaker - direct output from
very localised listening points with no considerations of
sound propagation through an aerial medium), and there
you have it: multisensory sound and visual objects at your
fingertips, directly within Processing (cf. fig.4).

...well, as such the last statement is not strictly true - ac-
tually touching these objects requires force-feedback inter-

6 see for instance A. Mondot and Claire B.’s creation, Hakanai.
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Figure 3. Snapshots of real-time miPhysics models running
in Processing at 250Hz. The first model counts 100000
modules (50k masses, 50k interactions). The second counts
60000 modules (15k masses, 45k interactions).

action. This was integrated using the Haply 7 open-source
device (shown in fig.5) as detailed in [14].

Figure 4. Snapshot of a miPhysics real-time model running
in Processing at 44.1kHz, containing 708 modules (172
masses, 536 interactions) and playable by mouse control.

This leaves us with an entirely open environment in which
virtual objects can be synthesised in real time in a 3 dimen-
sions and 3 degrees of freedom space, and are accessible to
all of our senses, save for smell and taste. This constitutes a
result in itself, especially given that many of today’s aspects
of sound and music research (interaction mapping, model
visual rendering, VR-reinforced presence...) address larger
considerations than sound alone.

But that’s not all 8 , since another historical [15] and still
very actual state of the art problem in sound synthesis [9]
naturally finds some solutions when Newton’s equations
are finally given some space 9 : non-linearities.

7 http://www.haply.co/
8 insert synthesised sound of drum rolls
9 insert synthesised sound of a heavily-struck cymbal, from which a

vast panoply of non-linear behaviours emerge

Figure 5. Direct haptic interaction with a mass-interaction
model of a 3D string using the Haply device.

5. 3D MASS-INTERACTION 101

5.1 The grizzly details

Now that we have presented our position in regards to a
research dedicated to mass-interaction physics and teased
at some early results, it seems a good time to introduce
(or reintroduce) the scientific and technological concepts
behind mass-interaction physical modelling.

5.1.1 Have you met Newton?

A little while back, a fine gentleman by the name of Isaac
Newton stated the following:

1. In an inertial frame of reference, an object either
remains at rest or continues to move at a constant
velocity, unless acted upon by a force.

2. In an inertial frame of reference, the vector sum of
the forces f on an object is equal to the mass m of that
object multiplied by the acceleration a of the object:
f = ma.

3. When one body exerts a force on a second body, the
second body simultaneously exerts a force equal in
magnitude and opposite in direction on the first body.

These three rules are the basis for resolving just about any
mechanical system, by representing it as punctual masses
and by expressing different kinds of forces (gravitational,
elastic, frictional, etc.) applied to them.

5.1.2 A numerical discretisation scheme

As in any numerical resolution to a set of partial difference
equations, various discretisation schemes may be employed,
from lower order methods (such as Euler) to more complex
schemes (such as Runge-Kutta). The choice of a scheme
results from considerations of numerical stability, computa-
tional complexity and causality.

If finite-difference schemes for lumped methods in the 1D
case are well documented in physical modelling literature
(see [1, 5, 6]), the N-dimensional case has rarely been a
topic of interest within this community. Below, we present
a formulation in which positions and forces are N-D vectors
(3D in the case of the miPhysics library).
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A common starting point for representing and computing
discretised modular mass-interaction systems 10 is to ap-
ply a second order central difference scheme to Newton’s
second law:

f = m.a = m.d2u/dt2 (1)

where f is the force applied to the mass, m is its inertia, a
its acceleration vector and u its position vector. It results in
the following normalised form where discrete-time position
and force vectors are noted U and F, M is the discrete time
inertial parameter defined as M = m/∆T 2, and ∆T is the
sampling interval:

U(n+1) = 2.U(n) − U(n−1) +
F(n)

M
(2)

This leaves interactions (the elements that apply forces
to material points). In most cases of mechanical interac-
tions, the force exerted can be expressed as a function of
position and velocity: as an example, the magnitude of a
visco-elastic force applied by a linear spring (with stiffness
coefficient k, damping coefficient z and resting length of
l0) connecting a mass m2 at the position u2 to a mass m1
at the position u1 is given by:

f1→2 = −k.(||u2 − u1|| − l0)− z.(||v2 − v1||) (3)

Approximating the velocity with the backward Euler scheme,
we obtain Fspring the force scalar value:

dist(n) =||U2(n) − U1(n)||
Fspring(n) =−K(dist(n) − l0)

− Z.(dist(n) − dist(n−1))
(4)

With the discrete-time stiffness parameter K = k, and
the discrete-time damping parameter Z = z/∆T . The
resulting force vector (defined along the direction vector
between both masses) is finally applied symmetrically onto
each mass (Newton’s third law):

Fproj(n) = Fspring(n).

−−−−−−−−−→
U2(n) − U1(n)

||U2(n) − U1(n)||
F2→1(n) = −Fproj(n)
F1→2(n) = +Fproj(n)

(5)

The main difference in regards to the classical “topologi-
cal” 1D algorithms is the explicit use of Euclidian geometry
associated to the spatial attributes of the physical mass-type
elements.

5.1.3 Computing the system dynamics

A step of the discrete physical computation is structured
as follows: masses compute their new positions according
to the discrete-time vector sum of forces F , resulting in an
update of the model positions. Interactions then calculate
applied forces (using the newly calculated positions and po-
sitions from the previous step), resulting in new sum vector
forces for each mass. This is used in the next computation
step for the calculation of new mass positions, and so forth.

10 as in the CORDIS ANIMA formalism.

5.1.4 Modules and properties

Mass modules are defined by an inertia parameter (possibly
infinite, hence representing anchored points) and a set of
spatial coordinates and speed initial values.

Interaction modules are defined by one or both stiffness
and viscosity parameters and a resting length. Theses mod-
ules can also include conditional proprieties naturally lead-
ing to non-linear interactions (such as representing contact
forces between material elements).

5.2 Modelling

Based on the previous elementary concepts and modules,
modelling with MI consists in building a geometrical model
by positioning and connecting material components to-
gether through interactions components, and by specifying
the parameters and initial conditions of each one. Fur-
thermore, every consideration regarding ways of listening,
visualising or interacting with one or several modules, pa-
rameters, or even with topological or geometrical properties
of a model, are up to the user.

5.2.1 Do not fear simplicity

Given that models can contain tens of thousands of ele-
ments, the perspective of configuring physical parameters
and initial states can seem a little daunting. When exploring
larger structures a simple first approach is to consider lo-
cally homogeneous parameters in sections of the object, as
they can always be fine-tuned at a later stage. However, it
is worth noting that richer mass-interaction behaviour does
not always stem from huge homogeneous models (which
take on a role similar to a propagation medium) but often
somewhere in the middleground - where careful parameter
tuning and interaction design meets with sufficiently rich
resonant structure to catch our ear ! More generally, users
can deploy several strategies to build up their models, either
from scratch one module at a time, or through scripting
strategies for geometry or multi-parameter specification.

5.2.2 Figuring out 3D

Even though clear parallels can be drawn between mass-
interaction methods and those of general finite differences
and/or finite element methods, the most notable difference
lays in the way matter and spaciality are considered. FD-
M/FEM methods discretise unidimensional or multidimen-
sional objects, reducing them to numerous small sections
of linear, planar of volumetric geometries. Each section is
literally anchored to a static position in space around which
the matter it represents will evolve locally, allowing wave
propagation. The latter can occur along one or several di-
mensions, while, in most cases, each local section of space
allows the matter it represents to move along one degree of
freedom. But at the global scale, the general geometry of
these objects will never ever change.

On the other hand, 3D mass-interaction do not pre-suppose
any spatial grid or subsections that virtual matter can be
hung to. In MI, masses are free to go wherever they see fit
(and they can move along 3 degrees of freedom!). Hence,
the interactions connecting them, and their properties (par-
ticularly in terms of resting length), are crucial. Ultimately,
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each and every module contributes to the global materiality
of an object, considering both its geometry (and structural
consistency) and its mechanical properties.

In simpler terms, this means that if one creates a cube
with 8 masses and 12 interactions, the slightest blow on
it will make it collapse in on itself : such a cubic mesh
is insufficient to describe a structurally consistent cubic
virtual object (cf. fig.6). You will have to consolidate it and
more generally think “deformable solid” (think of it as if
fig.2’s links could be elastic).

5.3 Efficiency

Even if the 3D mass-interaction engine implemented in
Processing must be regarded as a non-optimised prototype,
it allows to seize the potential of such a method. Figure
7 gathers four scenarios of real-time models, referencing
model complexity (number of mass-type and interaction-
type elements) and involved modalities (visual, audio and/or
haptic). Performance was measured on a single core of a
standard laptop 11 : models pass if there are no image, au-
dio or haptic dropouts 12 during computation. The general
stability of miPhysics is not an obstacle to the wildest ex-
periments. Plus, its boundaries are very well known and
understandable by any user.

6. NON-LINEAR BEHAVIOURS !

6.1 Do the math - or maybe don’t

Within the last 20 years, the emphasis of physically-based
sound synthesis has shifted from exciting (generally) linear
resonators via non-linear interactions towards replicating
complex acoustical behaviours through the modelling of
non-linear dynamics in resonating structures. Modal syn-
thesis [16], Waveguide methods [17], FDTD and even 1D
mass-interaction systems [18] have seen themselves rein-
vented to this end.

Figure 6. Top: a rudimentary MI cubic mesh, and bottom:
a more complex mesh considering “structural consistency”.
Left: initial state, right: state after a little push. The bottom
cube jiggles around and progressively returns to its initial
configuration, whereas the top cube collapses instantly.

Conversely, recent years show a strong increase in finite-
difference-time-domain schemes, as computational limita-
tions lessen, now allowing for off-line synthesis of very

11 Dell Precision 5530 running Ubuntu 18.04 & Processing 3.5.3, Specs:
Intel i7-8850H 4 cores at 2.6GHz, 16GB RAM.

12 since the OS is non real-time, sporadic missed haptic frames can
occur [14] - although not enough to significantly alter haptic interaction.

Figure 7. A quick overview of 3D mass-interaction real-
time capabilities regarding several combinations of auditory,
visual and haptic modalities.

large models, as well as real-time synthesis of small to
medium scale ones. In the dominant literature, systems are
first formalised under linear conditions (from the 1D, 2D,
or more rarely 3D, wave equation - and often considering
vibrations along a single dimension) before adding specific
non-linear formulations to account for phenomena such
as “airy stress”, leading to effects such as pitch glide and
chaotic oscillations in plates [1].

In all of the above, non-linearities present themselves as
mathematical ramifications, incorporated into formulations
primarily rooted in acoustics - taking modal representations
outside of their comfort zone, one could say.

We propose the complete opposite: within a framework
that fully accounts for the tri-dimensional spatial properties
of matter (cf. above), build vibrating bodies, give them a
good smack, and observe. If Newton was right, the pandora
box of non-linear behaviour might just open - without us
ever having to write an equation for it 13 .

6.2 Experiments & Observations

6.2.1 What can we expect?

Many sonic attributes can be attributed to non-linear phe-
nomena in vibrating bodies. Fletcher and Rossing [19] men-
tion : Dependence of vibration mode frequencies upon am-
plitude of excitation (equivalent to “tension modulation”),
the generation of overtones that are exact harmonics of
the fundamental oscillation (“harmonic distortion”), forced
oscillations at submultiples of the driving frequency, and
chaotic oscillations. Below, we present results from simple
3D mass-interaction models, with the aim of (hopefully!)
observing some of these phenomena.

6.2.2 Observation of tension modulation

Experimental measures (cf. fig.9) were conducted on a
simulated string, composed of 32 masses, excited at 1/3 of
its length by varying levels of force impulse. The result-
ing spectrogram: The pitch glide generated by the tension
modulation is immediately apparent, and correlated to the
excitation amplitude.

13 us mass-interaction people hate writing equations.
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Indeed, the purely linear springs exert a recall force pro-
portional to the Euclidian distance between masses and are
therefore dynamically affected by elongation (compression
or distension of the spring): larger excitation means more
elongated springs, resulting in increased tension.

Figure 8. 3D miPhysics string model counting 32 masses
and 31 interactions.

Figure 9. Emerging effect of tension modulation related
to an increasing excitation amplitude, with string model of
fig.8 running in real-time at 44.1kHz.

6.2.3 Observation of chaotic oscillations

In this case, the physical model is a 3D beam (86 masses
and 512 interactions, based on the “structurally consistent”
cubes of fig.6) fixed at both ends and struck by a “plucking”
mechanism with varying levels of speed (cf. fig.10).

Figure 10. 3D miPhysics model of a beam counting
86 masses and 512 interactions, running in real-time at
44.1kHz, excited by a plucking mechanism.

Figure 11 shows, on the one hand a low amplitude excita-
tion, resulting in clear-cut and static vibration modes, and
on the other a high amplitude blow that brings both heavy
pitch glides and chaotic oscillations over a large period of
time (the much sought after “whooooshing” sound). This
example also pinpoints a creative perspective of this kind of
modelling: in real life, it may be impossible to strike a stiff
beam with such force that it enters into a chaotic regime.
However there is no problem in doing so here. It also means

that these rich behaviours can be obtained for almost any
given model topology, which is (to say the least) an exciting
perspective for sound exploration.

Figure 11. Emerging effect of chaos in the beam model
shown in fig. 10. Top: low amplitude excitation. Bottom:
high amplitude excitation.

These preliminary observations confirm that generalised
non-linear behaviour of physical matter - the current hot
topic of physically-based sound synthesis - is present by
essence in multi-dimensional MI virtual objects. Bearing
in mind the potential of such behaviours in the context
of “creative” modelling, we believe that mass-interaction
physics is a highly relevant method with a key role to play in
formally understanding, designing and manipulating virtual
vibrating objects that exhibit non-linearities.

7. CONCLUSION AND PERSPECTIVES

This entire paper has been dedicated to highlighting the po-
tential the authors foresee about 3D mass-interaction mod-
els for sound and music creation. The methodology in itself
is worth mentioning, as a necessary step was to step back
from sound-synthesis in order to consider environments and
tools that include, as a continuous and fully integrated work-
flow, every key aspect for exploring the potential of mul-
tisensory 3D mass-interaction physical models: real-time
computation and rendering of 3D scenes, sound synthesis
capabilities, both control and haptic interaction, a language
that enables scripting for model design and setting, etc.

As a significant outcome of this prototyping tool, exper-
imental validation proves that within the scope of sound
synthesis, such models naturally yield emergent non-linear
physical behaviour and - further still - do so without any
added mathematical or modelling complexity.

More generally, it appears that the scalar world, in which
are built most audio-based DSP environments, might not
be the most suited to elaborate new paradigms for musi-
cal creation based on 3D mass-interaction physical models.
Multi-dimensional geometry is the key. And not simply
as a consideration helping to create meshes whose acoustic
behaviour can then reduced to 1D or 2D, but as a neces-
sary level of description and calculation of virtual physical
matter.
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From this point onward, all is yet to be done regarding :

• Strengthening the genericity of miPhysics in terms
of languages and environments. Processing is an
invaluable prototyping tool but not an end in itself.

• Positioning fully miPhysics considering the litera-
ture of human computer interaction, computer music
and specifically computer graphics previous [20] and
recent [21] problematization and results.

• The exhaustive formalisation and characterisation
of MI multi-dimensional modelling, both through
analytical considerations and empirical studies.

• Reflecting upon how one listens to multi-dimensional
and spatially distributed virtual physical objects.

• Designing model analysis tools for such objects by ex-
tending the topology-based modal analysis approach.

• Taking the geometrical aspect further: all contacts
are currently defined as sphere-to-sphere interactions
between two punctual material elements. Geometri-
cal surface modelling and contact handling from CGI
and haptics should allow to extend the formalism.

As a general conclusion, we affirm that mass-interaction
physics is still a potent framework for sound-synthesis, and
that it should not be put on a shelf as a part of physical
modelling history just yet... but don’t take out word for it -
grab the library 14 and get coding to see for yourself!
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ABSTRACT

The user experience of a virtual reality intrinsically de-
pends upon how the underlying system relays information 
to the user. Auditory and visual cues that make up the user 
interface of a VR help users make decisions on how to pro-
ceed in a virtual scenario. These interfaces can be diege-
tic (i.e. presented as part of the VR) or non-diegetic (i.e. 
presented as an external layer superimposed onto the VR). 
In this paper, we explore how auditory and visual cues of 
diegetic and non-diegetic origins affect a user’s decision-
making process in VR. We present the results of a pilot 
study, where users are placed into virtual situations and 
are expected to make choices upon conflicting suggestions 
as to how to complete a given task. We analyze the quanti-
tative data pertaining to user preferences for modality and 
diegetic-quality. We also discuss the narrative effects of 
the cue types based on a follow-up survey conducted with 
the users.

1. INTRODUCTION

Virtual realities are information-rich environments where 
multiple channels of communication can be formed be-
tween the system and the user. Narrative cues in the au-
dio and visual domains are used to guide the users through 
their experiences in VR. These cues can be presented in the 
form of user interface elements superimposed onto the VR. 
They can also be built into the virtual environment itself as 
objects situated in the implied universe of the VR.

Similar distinctions between the elements of storytelling 
are used in film, theatre and games in service of diverse 
narrative goals. For instance, the conversation between 
the characters in a film can be contradicted by a narra-
tor to warn the audience of a possible deception in the 
story. Such narrative devices have been utilized in video 
games with nonlinear gameplay, where users can make de-
cisions upon conflicting situations that lead to branching 
storylines.

The form in which audio and visual cues are presented to 
the user in VR can be used for similar effects. In this pa-
per, we explore these effects in the context of a VR game

Copyright: c© 2019 Anıl Ç amcı . This is an open-access article distributed under the 
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original author and source are credited.

in which the users are expected to make decisions to exit
a virtual room in light of conflicting audio and visual cues
that are presented diegetically (within the room) and non-
diegetically (as an external layer). We discuss the results
of a study where the users were presented with various
combinations of such cues. The use of concurrent con-
flicting cues allows us to investigate within-subject prefer-
ences based on modality and diegetic quality. Moreover,
we explore the narrative functions that users impart to con-
tradicting cues in terms of their origin and trustworthiness.

In our analysis, we look at decision types and timings,
as well as modality and diegetic-quality pairings. Further-
more, we evaluate the qualitative responses gathered from
a follow-up survey to highlight the ways in which the users
interpreted the various cue types in their decisions and how
these interpretations affected their narrative experience.

2. RELATED WORK

Modern virtual reality systems are constrained by hard-
ware limitations to a much lesser extent than they were
a decade ago. An increasing number of researchers are
therefore able to focus on experiential qualities of VR. Ac-
cordingly, several design guidelines for VR have been pro-
posed in the recent years [1,2]. We are arguably in the early
days of formulating a VR theory akin to that of more es-
tablished art forms; numerous researchers and practitioners
work towards a deeper understanding of how we perceive
modern virtual realities, and how we behave in them.

For instance, Naz et al. explore the links between affec-
tive qualities of a virtual space and its visual design param-
eters [3]. The researchers find that the hue and brightness
of the colors used in a virtual room impacts the user’s af-
fective appraisal of the space in terms of how warm, spa-
cious, intimate or exciting it is perceived to be. Dealing
with a similar research question in a multimodal context,
McArthur et al. argue that the spatial attention of the user
in a virtual environment is coordinated across modalities
that encode information differently, and that the prioriti-
zation of information in a virtual environment relies on
the complex interactions between the individual modali-
ties [4]. Accordingly, the current project adopts a cross-
modal approach in its investigation of how the diegetic
quality of cues in VR can affect the user experiences.

In 1995, Beroggi et al. hypothesized that VR can be
used to support decision-making in emergency manage-
ment, highlighting the potential of VR for training appli-
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Figure 1. An isometric view of the virtual room where the user study was conducted with its surrounding walls removed for
this image. The user is tasked with picking a key and choosing a door to exit the room; while doing so, they are presented
with conflicting suggestions in the form of diegetic and non-diegetic audio and visual cues.

cations [5]. Today, VR is viewed as a suitable platform for
conducting behavioral studies including those that pertain
to psychophysical operations [6,7] and decision-making [8–
10]. Whereas previous projects have utilized VR simula-
tions to study decision-making processes in life-critical sit-
uations [11,12], the current project adopts a user-experience
approach to the study of decision-making in VR.

The distinction between diegetic and non-diegetic sounds
are already used in games as narrative devices and means
of diversifying the modes of interaction for the user [13].
Non-diegetic sounds, for instance, are often used to cue the
players into certain actions, or alert them of state changes
[14]. Summers and Jesse argue that the use of diegetic
and non-diegetic sounds in VR are integral to conveying
elements of narrative [15].

In their study of similar factors in the visual domain, Sa-
lomoni et al. suggest that the appropriate use of diegetic
and non-diegetic visual interfaces in VR can have a signif-
icant impact on the sense of presence in immersive simula-
tions [16]. Accordingly, Nielsen et al. identify the diegetic
nature of a cue as a primary dimension in their taxonomy
of cues for guiding the user’s attention in VR [17].

Exploring methods of guiding user attention in cinematic
VR, Rothe and Hußmann perform an analysis of users’
viewing directions when they are given diegetic sound and
lighting cues. The researchers find that objects connected
with sounds attract more attention and guide the viewing
more effectively [18]. Accordingly, Mateer characterizes
the act of locating diegetic sounds in cinematic VR as a
“natural tendency” [19].

In a study that explores the effects of diegetic and non-

diegetic user interface elements on game immersion, Iaco-
vides et al. find that while removal of non-diegetic inter-
faces can increase the level of cognitive involvement for
expert users, it does not have a notable influence on the
experience of novice users [20]. Exploring similar effects
in VR, Cliburn and Rilea evaluate the impact of signage
on navigation speed in VR. Comparing cases in which the
users were able to rely on either diegetic signs or non-
diegetic maps shown as head-up displays, the researchers
find that subjects who navigate the world based on the
signs are significantly faster than those who use maps [21].
These studies indicate how the diegetic qualities of ele-
ments presented to the users in simulated experiences can
affect performance and engagement.

3. DIEGESIS IN VR

The concept of diegesis is applied to a variety of narrative
forms, such as film, theatre, and games, to explain how el-
ements of narration are situated in reference to the implied
universe of a story [22]. While diegetic elements are those
that belong to this universe, non-diegetic elements are ex-
ternal to it.

Diegesis gains further significance in VR studies due to
the inherent affordances of the medium, such as constant
immersion, dynamic first-person view, and interactivity.
Whereas the user assumes an outside perspective towards
both diegetic and non-diegetic elements in most narrative
forms, VR can situate the user as a diegetic actor in its
implied universe. For instance, in film-making, the per-
spective from which the audience observes a narrative is
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pre-determined by the director. In VR, the user can not
only shift their perspective but also interact with the nar-
rative [23]. The diegetic disposition of audio and visual
elements in a simulation can therefore have an impact on
the user’s experience based on whether they are internal or
external to the virtual space that the user occupies [20].

3.1 Visual Diegesis

In VR, the visual objects situated in the virtual space are
inherently diegetic. These objects are part of the 3D envi-
ronment and maintain their positions relative to the world-
space of the VR. Diegetic visual objects are often affected
by the physical forces implemented in the virtual environ-
ment, and interact with other objects accordingly. The
lighting and other occlusion effects can alter the visibility
of these objects.

On the other hand, non-diegetic visual objects are most
commonly presented in the form of visual overlays. These
can be head-up displays that relay relevant information about
the VR, or user interface (UI) elements such as menus
and buttons. Non-diegetic visual elements persist over the
user’s field of view and are commonly positioned relative
the user rather than the world-space of the VR. These ob-
jects are usually unaffected by lighting and occlusion. Some
non-diegetic UI elements can be spatially mapped into the
virtual environment while remaining external to the im-
plied universe of the VR.

3.2 Auditory Diegesis

Similar to visual elements of the same nature, diegetic au-
dio objects in VR belong to the virtual environment. These
sounds often originate from visual elements in the scene
and are subjected to localization cues based on the user’s
position. These sounds are also affected by room acoustics
and occlusion.

Non-diegetic audio objects in VR are unaffected by the
user’s position, room acoustics or occlusion effects. Much
like non-diegetic visual objects, these are presented in an
additional auditory layer that persists over the virtual world.
These objects can be alert sounds, voice messages relayed
to the user from outside of the virtual space, or backing
tracks similar to the non-diegetic score of a film.

3.3 Sample Scenario: Park Simulation

In a VR that simulates an outdoor park, examples of diege-
tic visual objects could be the trees and the benches in the
park. A non-diegetic visual object would be the map of
the park presented as a head-up display. Whereas the user
can look away from a bench in the scene, the map would
always remain in the user’s field of view.

In the same simulation, an example of a diegetic audio
object would be the sound of a bird chirping. Attached
to the diegetic visual representation of a bird, this sound
would display localization properties relative to the user’s
position as the bird flies around. When the user reaches
their destination at the far end of the park, a non-diegetic
bell sound could indicate the successful completion of a

task. This sound would be detached from the visual objects
in the scene and heard without localization cues.

4. USER STUDY

We conducted a pilot study to evaluate how the modality
and diegetic quality of cues in VR can affect the user’s
decision-making process. The study is designed as a game
where the user is expected to make a series of decisions
to exit a virtual room in presence of conflicting audio and
visual cues of diegetic and non-diegetic nature.

4.1 Study Design

The game is designed with Unity and the HTC Vive Sys-
tem as a room-scale VR in a 5m by 5m open space. The
virtual room seen in Fig. 1 is mapped onto this space. At
one end of the room are two doors. At the other end is a
table with two keys on it. The room is lit with a floor lamp
placed in one of the corners. A loudspeaker is placed be-
tween the two doors above head-level. The purpose of the
game is to pick a key and a door to exit the room.

The keys and the keyholes in the doors are the only in-
teractable elements in the scene. The system registers a
door selection once a key is inserted in one of the key-
holes. When this selection is registered for the first time,
the system resets the environment regardless of the selec-
tion, prompting the user to repeat the task. Once the sys-
tem registers a door selection in the second attempt, the
room is removed from the scene, effectively placing the
user outside. This indicates that the user has successfully
completed the task. We implemented the 2-attempt model
to alleviate the effects of random decisions by encouraging
the users to strategize over their decisions, and to moni-
tor how users evaluate modal and diegetic pairings once a
choice combination is perceived to be inaccurate.

Various combinations of audio and visual cues are pre-
sented in different configurations of the game. These cues
include:

• Diegetic visual (DV) cues: a note on the table be-
tween the two keys, suggesting a key to pick, and a
poster on the wall between the two doors, suggesting
a door to choose;

• Non-diegetic visual (NDV) cues: head-up display
messages that appear at the bottom of the screen
when the user enters the collider around the table
suggesting a key to pick, or when the user enters
the collider around the doors, suggesting a door to
choose;

• Diegetic audio (DA) cues: periodic announcements
made through the loudspeaker in the room, suggest-
ing a key to pick or a door to choose accompanied
by classical music;

• Non-diegetic audio (NDA) cues: voice messages
that are played-back when the user enters the col-
lider around the table suggesting a key to pick, or
when the user enters the collider around the doors,
suggesting a door to choose.
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The diegetic audio cues are spatialized binaurally using
Google’s Resonance Audio SDK for Unity. The cues are
therefore subjected to room and distance effects, and are
spatially mapped to the virtual speaker in the room. To bet-
ter emulate the output of a loudspeaker, these sounds are
given directionality characteristics so that they are heard
more clearly when the user is within the dispersion field of
the speaker. The cues are accompanied by classical music
to give the user a constant sense of localized sound at the
times the announcement is not being repeated. The music
is ducked (i.e. attenuated) with a side-chain compressor
when an announcement is being made in style of radio an-
nouncements. In configurations of the study where diege-
tic audio cues for both the keys and the doors are offered,
the cues are compounded into a single announcement (e.g.,
“Pick the purple key and choose the door on the left”).

The non-diegetic audio cues are played back without any
localization or room effects. They are therefore detached
from visual sources in the virtual room, and are perceived
as originating from the user’s current position. These cues
are triggered each time the user enters one of the colliders
surrounding the table or the doors. Both diegetic and non-
diegetic audio cues are spoken by a neutral female voice.

Timestamps are generated when the user enters and ex-
ist the colliders surrounding the table and the doors. The
times at which the user picks up a key, and inserts the key
in a keyhole are also tracked. Additionally, the global time
at which the game is started, and the time at which the
game is reset for the second attempt are stored.

4.1.1 Scenarios

The study consists of 12 scenarios based on the different
combinations of audio and visual diegetic and non-diegetic
cues. These combinations are shown in Table 1. Between
scenarios 1 and 2, 5 and 6, and 9 and 10, the cue types are
swapped between the key and the door suggestions. In sce-
narios 3, 4, 7, 8, 11 and 12, the cue types are maintained
across the two suggestions to control for within-modality
and within-diegetic-quality conditions. Between scenar-
ios 3 and 4, and 7 and 8, the diegetic quality of the cues
are swapped while modalities are maintained, whereas be-
tween 11 and 12, the modalities of are swapped while diege-
tic qualities are maintained.

4.2 Participants

24 participants (15 male, 9 female; mean age: 23) took part
in the current study. 12 participants described themselves
as experienced VR users. 5 participants reported having
tried VR before, while 7 indicated that this was their first
time trying VR. The participants were evenly distributed
across the 12 scenarios listed in Table 1.

4.3 Procedure

The study takes approximately 15 minutes to complete with
3 minutes for instructions and preparations, 2-3 minutes
for the VR portion, and 10 minutes for the follow-up sur-
vey. In the instructions, the following items are communi-
cated to the user:

Table 1. Distribution of diegetic audio (DA), non-diegetic
audio (NDA), diegetic visual (DV), and non-diegetic visual
(NDV) cues in each of the 12 scenarios. Each participant
is placed into one of these scenarios.

• You will be placed in a virtual room that is mapped
to the physical space of the study area. In this room,
you will find two keys and two doors: only one of the
keys will open only one of the doors, and you will be
given two attempts to find the right combination to
exit the room. There are no hidden clues or puzzles
that can guide you out.

• You might, however, encounter various combinations
of audio and visual cues that guide you in your deci-
sions; these cues might conflict with each other and
it will eventually be up to you to make a decision.
When you insert a key in a keyhole, the system will
register this as a decision.

The use of the Vive Controller to interact with the keys is
demonstrated to the user. The user is then asked to take a
seat in the designated chair, and put on the head-mounted
display. The room-scale VR experience is initiated with
the user seated in the virtual room configured for one of
the 12 scenarios. The virtual chair is precisely aligned with
the one in the real world. Once in VR, the user can explore
the room, and make decisions relevant to the task without
a time constraint. When the first pair of decisions is made,
the game gets reset with the same cues in place, indicating
to the user that they did not make it out of the room. When
the second pair of decisions is made, the user is placed out-
side, indicating that the game is successfully completed.

As a follow up to the VR portion of the study, the user
is invited to respond to a qualitative survey in an interview
format. In this survey, they are asked to identify the au-
dio and visual cues they encountered in the scene, where
they thought these cues might have originated from, and
whether the cues were correlated in any way. They are then
asked to describe their thought process in making each of
their decisions in VR.
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Figure 2. Action timings for each participant with the Y-
axis indicating participant number and the X-axis indicat-
ing time in seconds. The consecutive dots from left to right
indicate the times for: entry to the collider around the ta-
ble, key pick-up, entry to the collider around the doors,
key insertion in a keyhole, scene restart, second entry to
the collider around the table, second key pick-up, second
entry to the collider around the doors, second key insertion
in a keyhole. The dashed lines indicate average times for
each of these actions with the average scene restart time
indicated with a solid blue line.

4.4 Results and Discussion

The users described their overall experience as responsive
and convincing. None of the users reported having experi-
enced discomfort or hard time interacting with the system.
During the post-study interview, all users correctly identi-
fied the cues they encountered in VR.

The timings of the actions performed by each user are
shown in Fig. 2. The average time to complete the study
was 75.8 seconds (SD = 34.2). First-time users have com-
pleted the study in 56 seconds on average (SD = 8.7). Those
with prior experience with VR completed the study in 84
seconds on average (SD = 37.6). The average action times
shown in Fig. 2 indicate that the users spent the most amount
of time during the initial exploration of the VR, and while
making the decision to pick up a key for the first time. The
increased speed in choosing a door observed with some
users can be attributed to the fact that certain scenarios ex-
pose the users to diegetic cues about doors as soon as the
game is started.

In repeated conditions (i.e. scenarios 3, 4, 7, 8, 11, 12

Table 2. Frequency distribution (%) of decisions made in
the first attempts for each conflicting cue pairs where 25%
represents a decision by 1 participant.

seen in Table 1), 9 out of 12 users followed the same cue
type (e.g., DA in Scenario 3) for the first set of decisions,
and followed the other cue type (e.g., DV in Scenario 3) in
their second attempt. All 3 users who followed mixed cue
types in their first attempt (e.g., DA and DV in Scenario 3)
indicated that they thought the system was trying the de-
ceive them. While one of these users followed a matching
cue type in their second attempt, the other 2 users contin-
ued to follow mixed cue types in their second attempts.
These users expressed that even though they imagined dif-
ferent instigators behind the audio and visual cues, they
thought all of these characters were trying to trick them.

Some users interpreted the diegetic visuals as clues left
behind by game characters who had previously gotten out
of the room, and the non-diegetic visuals as originating
from an authority figure who designed the game. Other
users have also expressed that the sense of an external au-
thority was a decisive factor.

Table 2 shows the decision rates for each of the 6 cue
combinations (i.e. conflicting concurrent cues) that were
presented in relation to the key and the door decisions.
A consistent preference is not observed in the conditions
where diegetic qualities are matched (i.e. DA-DV, and
NDA-NDV). In the audio cue combinations (i.e. DA-NDA),
a preference towards non-diegetic cues can be seen. A
strong preference towards diegetic audio cues is observed
in the DA-NDV combination.

Once the initial decisions were found out to be wrong
after the first attempt, the users followed a variety of ap-
proaches in their second attempts: 7 users chose the same
key but a different door, 6 chose a different key but the
same door, and 11 changed both of their decisions. Some
of these decisions were reported to be based on maintain-
ing a diegetic consistency in the first attempt and a modal
consistency in the second. Table 3 shows the instances
where the users have maintained a pairing in terms of modal-
ity or diegetic quality between their decisions about the key
and the door. For instance, User 18 followed the diegetic
(i.e. DV and DA) cues for both decisions in their first at-
tempt, while they followed the visual (i.e. DV and NDV)
cues in their second attempt. Overall, diegetic-quality pair-
ings were more common in the first attempts, whereas vi-
sual pairings were a prominent choice in the second at-
tempts.

The users’ perception of whether the cues were addressed
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Table 3. Modality and diegetic-quality pairings formed by
the participants between their key and door choices in the
first and second attempts. Scenarios highlighted in gray
consist of repeated conditions where modality or diegetic-
quality pairings may not be possible in the first place.

to them privately or in the form of public messages had
an impact on how they evaluated the suggestions. For in-
stance, a user placed in a DA-DV scenario thought the
“silent” note on the table was more trustworthy than the an-
nouncement that others could potentially hear. Conversely,
in every condition where an NDV cue was presented in
conflict with a DA cue, the users preferred the latter, stat-
ing that the NDV cue seemed “robotic”, “inhuman” and
“unidentified”.

Furthermore, NDV was the least preferred cue type for
the first key choice overall with only 3 users following
NDV cues for this choice. One of these users expressed
having trusted the DV cue first but decided that the NDV
cue felt like a more recently updated source. Another user
reported not having paid attention to the NDV cue in their
decision. The third user mentioned having decided to go
with a modal parity; therefore, the DV cue about the doors
motivated their preference towards the NDV cue with the
keys.

Some users expressed a preference for diegetic cues, men-
tioning that these were “actual sources” in the room, whereas
non-diegetic sources were “surreal” or “unidentified”. On
the other hand, after following a diegetic cue for the key
choice, some of these users maintained the modality of this
cue in their door choices, even though this meant following
a non-diegetic cue.

5 out of 18 users who were placed in a scenario that con-
sisted of a diegetic audio cue expressed uncertainty about
whether the diegetic sound was coming from the speaker
in the scene. However, these users described the cue with
such terms as “intercom”, “announcement”, “PA sound”,
and “in the space”, which indicate an association of the
sound with the environment. As in most modern applica-
tions of binaural audio, a standardized head-related trans-
fer function (HRTF) was used for audio spatialization in
the current study. Standardized (i.e. non-individualized)
HRTFs can be prone to localization errors due to disparities

between the head model used in the function and the user’s
anatomical features [24]. This might explain the cases in
which the users were not certain about the spatial corre-
spondence between a diegetic sound and the speaker model
in the scene.

There was a notable preference towards NDA cues when
presented in conflict with the DA cues. The terms used to
describe the NDA cues were “Voice of God”, “narration”,
“exogenous”, “in the head” and “disembodied”. These de-
scriptors indicate an interpretation of NDA cues as orig-
inating from an external source. While this non-diegetic
quality was a cause of disinclination to NDV cues, it served
a reassuring role for some users when presented in the au-
dio domain.

5. CONCLUSION

VR is transforming our relationship with arts and enter-
tainment: whereas the spectators have often been situated
as consumers of such spectacles, VR offers experiences
where they can be users and even performers. This distinc-
tion brings about many new and interesting challenges for
VR researchers and content creators. An increasing num-
ber of studies from a wide range of fields, such as human-
computer interaction, user experience design, psychology
and serious games, are now dealing with such challenges.

The preliminary results gathered from the current study
indicate that the diegetic quality of a cue in VR can have a
noticeable effect on the decisions made by the users when
presented with conflicting cues to complete a task. We be-
lieve that these results can inform the design of interactive
VR experiences, such as those afforded by games and VR
films.

While some users followed modal parities in their deci-
sions, others paired cues in terms of diegetic quality. A
strong preference for diegetic audio cues over non-diegetic
visual cues was observed. Another notable preference was
towards non-diegetic audio cues over diegetic audio cues.
Despite these correlations, a preference was not observed
between non-diegetic cues of different modalities.

We plan to expand our sample size in future iterations
of the study in order to improve the statistical significance
of our results. We also plan to investigate the narrative
function of cues in isolation rather than in conflicting sit-
uations to better understand between-subject preferences
towards modality and diegetic qualities. When paired with
the qualitative feedback from the users, the current results
show that the diegetic quality of a cue can serve as a con-
ceptual indicator that affects the user’s narrative interpre-
tation of a VR experience and how they group elements of
the VR. This affect was observed when users commonly
associated the cues with such concepts as trust, authority,
deception, and privacy.

We hope to further explore such conceptual implications
of the modal and diegetic qualities of the elements in VR
that can facilitate the design of compelling user experi-
ences. Moreover, we plan to incorporate Witmer and Singer’s
presence questionnaire [25] in our survey to control for the
effects of such elements on perceived immersion.
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ABSTRACT

Currently, developing immersive music environments for 
extended reality (XR) can be a tedious process requiring 
designers to build 3D audio controllers from scratch. OSC-
XR is a toolkit for Unity intended to speed up this process 
through rapid prototyping, enabling research in this emerg-
ing field. Designed with multi-touch OSC controllers in 
mind, OSC-XR simplifies the process of designing immer-
sive music environments by providing prebuilt OSC con-
trollers and Unity scripts for designing custom ones. In 
this work, we describe the toolkit’s infrastructure and per-
form an evaluation of the controllers to validate the gen-
erated control data. In addition to OSC-XR, we present 
UnityOscLib, a simplified OSC library for Unity utilized 
by OSC-XR. We implemented three use cases, using OSC-
XR, to inform its design and demonstrate its capabilities. 
The Sonic Playground is an immersive environment for 
controlling audio patches. Hyperemin is an XR hyper-
instrument environment in which we augment a physical 
theremin with OSC-XR controllers for real-time control of 
audio processing. Lastly, we add OSC-XR controllers to 
an immersive T-SNE visualization of music genre data for 
enhanced exploration and sonification of the data. Through 
these use cases, we explore and discuss the affordances of 
OSC-XR and immersive music interfaces.

1. INTRODUCTION

In 1992 Jaron Lanier performed The Sound of One Hand, 
a live improvisation using the three instruments designed 
for the EyePhone (an early virtual reality headset) [1]. A 
remarkable aspect of his performance (aside from the tech-
nologies) was that Lanier was able to simultaneously play 
multiple instruments to perform music that could not easily 
have been performed with traditional instruments. Lanier’s 
work showed the potential for immersive musical perfor-
mances, but since then there has been limited research ex-
ploring the musical interactions afforded by virtual real-
ity (VR) and related extended reality (XR) technologies. 
When Serafin et al. [2] recently surveyed the state of art 
in virtual reality music instruments (VRMIs) in 2016, the 
number of interfaces available was fairly small. The capa-
bilities and relatively few design constraints of XR create

Copyright: c© 2019 David Johnson et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

the potential for a wide array of immersive interfaces based
on any of Miranda and Wanderley’s four categories of mu-
sic interfaces: Augmented Musical Instruments, Instrument
Like Controllers, Instrument Inspired Controllers, and Al-
ternate Controllers [3]. With such broad possibilities,
more research is needed to increase our understanding of
the affordances of immersive environments and interaction
techniques best suited for music control.

To support further research into immersive interfaces for
music, we present OSC-XR, a toolkit for rapidly proto-
typing immersive musical environments in XR using Open
Sound Control (OSC), a communication protocol widely
used in audio software [4]. Influenced by multi-touch OSC
controllers, OSC-XR provides developers with a wide range
of readily available components in order to make design-
ing immersive environment more accessible to researchers
and sound designers. In this paper, we discuss the infras-
tructure of OSC-XR, validate its generated data by compar-
ing with a popular multi-touch OSC controller, and present
three environments developed to demonstrate its capabili-
ties for immersive interface design.

2. RELATED WORK

2.1 XR Music Interfaces

In one of the first research studies on virtual music per-
formance, Mulder, Fels and Mase [5] designed virtual 3D
instruments that users interacted with using CyberGloves
and motion tracking sensors. While the instruments were
not displayed in an immersive environment, they did ex-
plore interactions in 3D desired for immersive performances.
Using a fully immersive environment, Mäki-Patola et al. [6]
developed and analyzed four immersive music interfaces
based on physical models. In their findings, they reported
that because VR is a different medium compared to the real
world, mimicking traditional instruments in immersive en-
vironments may not result in better instruments unless it is
used to augment real instruments with additional control.
Rather than mimicking existing instruments,
Berthaut et al. [7] proposed 3D reactive widgets for mu-
sical performance with interactions that went beyond what
is possible in the real world. The reactive widgets repre-
sented complex multi-process sounds with many parame-
ters that would be difficult to interact with in the real world.
Using VR with carefully designed gestures and audiovisual
mappings allowed the user to easily interact with multiple
widgets to generate an expressive musical interaction. In
these examples, music performance was controlled using
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self contained virtual objects tightly coupled with sound
generation limiting customization or extensibility.

A immersive interface proposed by Moore et al. [8], called
The Wedge, allowed users to not only perform music in
VR but also build and customize their performance en-
vironment. With this interface a user could build a cus-
tomized performance environment by selecting and com-
bining note objects from a palette to form musical chords
and sequences. The interface used two simple gestures
for interaction, one gesture for playing notes and another
gesture for building the interface by placing notes within
the environment. The interface had limited capabilities
for generating sounds as complex as the previously dis-
cussed reactive widgets but showed how XR can be used
to quickly build customized interfaces for musical perfor-
mance. Our work takes inspiration from this previous re-
search while also allowing users to build more complex
sound environments through customizable OSC controllers.

The previous works all rely on interaction with virtual ob-
jects through standard input devices, like hand controllers
or data gloves. Bottcher et al. [9] instead proposed a VRMI
for interacting with tangible music controllers. In this work,
the authors built physical flute and drum like controllers
which were represented in the virtual environment as 3D
objects. Interaction with the controllers was mapped to the
parameters of a physical model. By moving the controllers,
the user was able to change the dimensions of the physical
model, and it’s virtual representation in real-time, while si-
multaneously using it for a musical control. Using tangible
interfaces as controllers for virtual music performance pro-
vided users with a clear understanding of the affordances
and constraints for interaction.

The presented works provide interesting use cases and
examples of immersive environments for musical perfor-
mance that demonstrate the potential of using XR for mu-
sical expression. For a more extensive overview of recent
VRMI see the survey on the current state of the the art
by Serafin et al. [2]. The systems presented, however, are
standalone and have limited capabilities for designing new
environments. OSC-XR provides designers with a more
general toolkit to make building and prototyping new mu-
sical environments more accessible.

2.2 OSC Controllers

During their research on OSC, Wessel and Wright [4] dis-
cussed the affordances of using digitized tablets for musi-
cal control as well as potential mapping strategies for ges-
tural control of music. This work has inspired a number
of multi-touch OSC based control surfaces. TouchOSC 1

is one of the most popular multi-touch controller applica-
tions. It provides users with prebuilt layouts using Tou-
chOSC’s standard control widgets. In addition to the set
of existing control interfaces, users may also use the Tou-
chOSC Editor to build their own interfaces from the pre-
built widgets. The authors of two other multi-touch toolk-
its, Argos [10] and Control [11], cited the influence of Tou-
chOSC on their flexible design.

1 https://hexler.net/software/touchosc

Argos was an application for building multi-touch inter-
faces for musical control using OSC [10]. Using Argos
users were able to design control interfaces from a library
of prebuilt widgets, such as knobs, sliders and buttons. Ad-
ditionally, Argos provided developers a set of C++ classes,
built on openFrameworks, for creating their own widgets.
Similarly, Control, let users design custom interfaces from
a set of prebuilt widgets using JSON to define the interface
structure [11]. Control was set apart from from other in-
terfaces by giving users the ability to add customized func-
tions to their widgets using JavaScript. The popularity of
multi-touch OSC controllers, especially TouchOSC, show
that OSC based applications with flexible design support
needs of designers. While these applications were all de-
signed for multi-touch surfaces, OSC-XR is inspired by
the underlying theme of flexible design through prebuilt
objects and customized scripting.

Multi-touch devices are not the only place OSC has been
used to build control environments. Hamilton [12] used
OSC in the design of UDKOSC, a immersive musical per-
formance environment for the Unreal Development Kit
(UDK). With this system Hamilton was able to perform
in an immersive environment using avatars that interacted
with objects in the virtual environment. Our work differs
from Hamilton’s in that OSC-XR uses a design metaphor
based on standard music control idioms rather than the
game like metaphor seen in Hamilton’s work.

2.3 Audio Programming in XR

Immersive environments for XR are typically developed
using dedicated game engines, such as Unity 2 or Unreal
Engine 3 , which are designed to simplify the process of
developing 3D environments through a suite of tools that
include advanced graphics rendering pipelines and physics
engines. They also include sound engines for playback of
sound files with mixing, added effects and sound spatial-
ization. There is, however, minimal support in game en-
gines for audio synthesis capabilities desired by sound de-
signers. Unreal Engine has an experimental package for
sound synthesis 4 but the limited features of the environ-
ment may not provide sound designers with the full tool
set provided existing audio programing languages. To sup-
port the design of immersive music environments there is
a need for more robust audio synthesis capabilities.

Currently there are a some audio programming languages
that support audio synthesis and processing with Unity.
Faust, for example, can compile to a C library for use as
a Unity Plugin [13] and LibPD has a C# wrapper that can
be integrated with Unity [14]. Most recently, a plugin to
support the use of ChucK within the Unity development
environment, called Chunity, was developed [15]. While
these systems all add support for audio synthesis to Unity,
designers must use Unity scripting to setup parametric con-
trol of the patches. Because OSC-XR uses OSC for con-
trol, it allows designers to directly integrate their favorite
audio synthesis tools into the design process.

2 https://unity3d.com
3 https://www.unrealengine.com
4 http://bit.ly/UnrealSynth
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(a) The OSC Transmitter Interface (b) The OSC Receiver Interface (c) The OSC-XR Slider Interface

Figure 1: Example Unity Inspector Interfaces for OSC-XR

3. UNITY OSC LIBRARY

To implement OSC in Unity, many projects have used Jorge
Garcia’s UnityOSC library 5 . We have found this library to
be somewhat difficult to integrate in new projects. To sim-
plify the process of OSC configuration we present a new
library, UnityOscLib, that builds on Garcia’s core OSC
classes and integrates them into the Unity development
work flow. The new library simplifies configuration by im-
plementing separate MonoBehaviour (a Unity base class
from which all Unity scripts must be derived) classes for
receiving and transmitting OSC messages. The configu-
ration process has also been simplified by exposing OSC
properties in the Unity Inspector as well as through Unity
scripting. At the time of writing, we have not exposed OSC
bundles or timestamps through the UnityOscLib API (but
plan to do so in a later release). This section briefly intro-
duces the new library while complete details, including ex-
amples, can be found on the project’s Github repository 6 .

The OscTransmitManager is a Unity MonoBehaviour
that handles all aspects of transmitting OSC messages. To
send OSC messages from a Unity application, add the OSC
transmit manager to one GameObject and configure con-
nection information for one or more OSC receivers. OSC
receiver configuration details are exposed through the Unity
Inspector, as shown in Fig. 1a, in addition to the scripting
interface using the AddReceiver method. Once config-
ured, the environment is ready to transmit OSC messages
using SendOscMessage or SendOscMessageAll.

The OSC transmit manager also implements an optional
control rate feature, to configure the frequency of OSC
message transmission. Transmitting OSC messages may
be triggered by specific events that only occur periodically,
such as collision events, but they may also be triggered
continuously, for example when an objects position is chang-
ing. This type of continuous data is generally calculated at
a rate specified by Unity’s Update or FixedUpdatemes-
sages. With XR these messages typically occur at around
90 frames per second (FPS) or faster as technologies im-
prove. Audio applications may not be able to handle in-
coming messages at this rate. The UnityOscLib control
rate feature is implemented to limit the rate OSC messages
are transmitted. To use this feature, developers should reg-

5 https://github.com/jorgegarcia/UnityOSC
6 https://github.com/fortjohnson/UnityOscLib

ister a method that transmits OSC messages with the
OnSendOsc event of the OscTransmitManager. Any
methods registered withOnSendOsc will be called at the
control rate specified in the Unity Inspector.

The OscReceiverManger is a Unity MonoBehaviour

class that manages the routing and handling of incoming
OSC messages. To receive OSC messages in a Unity appli-
cation, add the OSC receiver manager to one GameObject
in the scene and configure the receiver with the port to
listen on, see Fig. 1b. OSC address routing is imple-
mented using Unity Events for configuration in the Unity
Inspector as well as using delegate events for C# script-
ing. To route messages based on in the inspector, Uni-
tyOscLib exposes an interface in the inspector to add any
number of OSC addresses and one or more handler meth-
ods for each address, see Fig. 1b. Additionally, the re-
ceiver manager’s RegisterOscAddress method is used
to add OSC addresses and event handlers through Unity
scripting. All OSC event handler methods used should ac-
cept a UnityOscLib OscMessage as an argument. This im-
plementation provides flexible implementation for adding
OSC handling during environment design or at runtime.

4. OSC-XR

The main contribution of this work is the OSC-XR toolkit
for designing immersive XR environments for music con-
trol. It is developed using Unity and UnityOscLib to pro-
vide sound designers a simple interface for prototyping in-
teractions in immersive environments. The OSC-XR toolkit
contains two main components for building environments,
1) a set of scripts that can be attached to any Unity
GameObject to transmit the object’s state via OSC and
2) a set of prebuilt music controller, called controller pre-
fabs, for transmitting control data via OSC, similar in con-
cept to widgets in TouchOSC. With this infrastructure, de-
velopers with limited Unity experience can quickly design
immersive music environments through the use of the con-
troller prefabs. Furthermore, more experienced developers
can easily extend custom GameObjects with OSC capa-
bilities through the scripting interface. Finally, the robust
Unity platform affords customization and extension of any
OSC-XR components to those familiar with Unity and C#.
The flexible design of OSC-XR, combined with the power
of Unity, supports rapid prototyping to make designing im-
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Name Description Example OSC Message
OscSlider A slider prefab with position mapped to a configurable

range, see Figs. 1c and 3a
/slider/value 1 4.5

OscPad A drum prefab with pressed and released events including
an optional velocity, see Fig. 3a

/pad/pressed 1 1.5

OscGyro A virtual gyroscope prefab for sending angular velocities
normalized to a range of 0 to 1

/gyro/velocities 1 .9 .7 .5

OscTransform A script for sending transform data via OSC /trans/local/pos 1 0.5 1.3 2.0

OscTrigger A script for sending Unity Trigger events; includes an ID
and position information for the triggering object

/trigger/enter 1 0.5 0.4 1.0 2

Table 1: Examples of available OSC-XR controller prefabs and scripts. Refer to our GitHub repository for a complete list.

mersive environments quicker more accessible.
OSC-XR was developed using Unity and tested using the

Samsung Odyssey Windows Mixed Reality Headset [16]
with SteamVR [17]. By making use of the well known Vir-
tual Reality Toolkit (VRTK) [18], OSC-XR should work
with any of VRTK’s supported platforms and hardware,
affording multi-platform support. The remainder of this
section discusses the OSC-XR infrastructure. The details
we provide here are intended to give the reader high level
understanding of how the toolkit is structured but we en-
courage the reader to visit the project’s Github repository 7

for complete details, including video examples.

4.1 OSC Controller Prefabs and Scripts

Adding OSC controller prefabs to a Unity scene is the quick-
est way to get started with OSC-XR. To implement a con-
troller simply add the prefab from the OSCXR/Prefabs

folder to the Unity game hierarchy. Once added to the
scene, modify the object’s transform as desired. At this
point the object is ready to use in the environment. For
additional configuration each controller exposes a set of
properties in the Unity Inspector, see Fig. 1c. Table 1 lists
the descriptions of a few of the available OSC controller
prefabs, including an example OSC message for each. De-
velopers can further customize the controller prefabs us-
ing Unity tools. For example, the visual aspects of any of
the controller prefabs can be modified by configuring the
Unity components that comprise each object, such as the
meshes or materials.

The OSC-XR scripting interface allows developers to
quickly add OSC capabilities to any GameObject by at-
taching any of the readily available controller scripts to
the object. Each of the scripts models a predefined be-
haviour for triggering and sending OSC messages. By de-
fault adding an OSC controller script to a GameObject

uses that object’s state for creating and transmitting OSC
messages. This can be overridden on most scripts by up-
dating the Control Object property of the script with
a different GameObject, in which case, the state of the
configured Control Object will be used instead. This is
useful when building a composite object where the tracked
object is not the top level object. For example, the slider
controller prefab implements this design in which case the
state of prefab’s handle is used for control data, as seen

7 http://github.com/fortjohnson/OSC-XR

in Fig. 1c. Table 1 lists the descriptions of a few of the
available OSC-XR controller scripts, including an exam-
ple OSC message for each.

Designers wishing to build their own OSC controller scripts
should extend OSC-XR’s BaseOscController. This class
includes a number of base properties for OSC configura-
tion, the controller ID and the OSC address, as well as
methods for sending OSC messages. Furthermore, the class
automatically registers the method, ControlRateUpdate
to support transmitting OSC messages at the control rate
specified in the OSC transmit manager. Any controller
script that needs to send data at the configured control rate
should override ControlRateUpdate with a method that
generates and transmitting OSC data. Each custom script
should extend these options as needed to achieve the be-
haviour being modeled.

4.2 Control Data Validation

To ensure that data generated by OSC-XR is consistent
with users’ expectations, we employ two simple user tasks
for comparing OSC-XR with TouchOSC. An OSC receiver
is implemented to log data generated by each task for an
analysis of user performance. One task utilizes a slider
controller (or fader widget in TouchOSC) to validate the
control precision of the different applications. The sec-
ond task utilizes a pad controller (or button widget in Tou-
chOSC) to evaluate rhythmic control of the different in-
terfaces. One of the authors, who has intermediate musical
skills, performed the tests to validate that the data sent from
OSC-XR is consistent with existing systems.

4.2.1 Slider and Pad Evaluation

To perform the slider evaluation task, a user sets the po-
sition of the slider to specific values at regular time inter-
vals. For this work, the task requires setting the values of
the sliders to 0.25, 0.75, 0.50, and 1.00 in that order. The
user is required to transition the slider to each value on ev-
ery fourth beat at a tempo of 90 beats per minute (BPM)
indicated using a metronome. To perform a baseline anal-
ysis of the control data, a user performed the task ten times
in both OSC-XR and TouchOSC. The output of the user’s
performance is then compared to signal representing the
expected data, figures 2a and 2b show the results of each
run for both applications overlaid with the expected out-
put. The data is compared quantitatively by calculating
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Figure 2: The results of control data validation for slider controllers and pad controllers.

the euclidean distance between the actual and the expected
output to calculate an error value. This value is averaged
over all iterations for a final error metric. Table 2 lists the
average errors of this task for both interfaces.

To perform the pad evaluation task, a user presses a pad
controller for eight beats at a tempo of 90 BPM using a
metronome to keep time. As in the previous task, baseline
analysis of the data is captured with a user that performs
the task ten times. Results of each iteration are shown in
Figures 2c and 2d, for OSC-XR and TouchOSC respec-
tively. Each iteration is represented as a row of dots where
each dot in the row indicates a pad pressed event. For com-
parison the expected beat times are shown with the green
squares in the bottom row. The error for each iteration is
calculated as ∑N

n=1 | texp − tact |
N

(1)

where N is the number of beats per iteration, texp is the
expected time of the beat, tact is the actual time of the
pressed event from the user. The errors are averaged over
all iterations for the final error metric. The error results for
both interfaces are listed in Table 2.

4.2.2 Discussion

Results of the slider evaluation provide a baseline compar-
ison of OSC-XR with TouchOSC. Initial analysis of the
data shows similar performance between both applications
even though the interactions are slightly different. To move
slider in TouchOSC, a user slides their finger across the
surface to the new location. Whereas, the OSC-XR slider
requires an additional grab interaction to take control of
the slider handle before moving it towards its destination.
Overall, the OSC-XR slider error is slightly greater than
that of TouchOSC. We can compensate for this in OSC-
XR by adding a display prefab to the slider for additional
feedback. While the interactions required for manipulat-
ing sliders are different, this evaluation shows that OSC-
XR sliders may perform as well as multi-touch sliders and
generate data that is consistent with an application sound
designers may already familiar with.

OSC-XR also requires a different technique for interact-
ing with pads due to a lack of haptic feedback. When
pressing a pad in OSC-XR users are not provided the same
haptic response naturally afforded through interaction with
physical objects. Instead users must rely on wrist action

OSC-XR TouchOSC
Slider 3.43 2.98
Pad (ms) 35.2 52.0

Table 2: Average errors for each evaluation task

and hand controller momentum to control rhythm. Ini-
tial evaluation of the pad controller indicates this may not
adversely affect rhythmic performance. Results show that
the user was able to perform slightly more accurately with
OSC-XR. This may be a result of the user relying on wrist
action for control rather than pressing a pad with a single
finger. Although a larger study is needed to confirm any
hypotheses, users may expect rhythmic control from OSC-
XR that is consistent with TouchOSC.

5. OSC-XR USE CASES

In this section, we discuss three prototype use cases for im-
mersive environments developed with OSC-XR. Prototyp-
ing the environments helped inform the design OSC-XR.
Furthermore, the use cases demonstrate the capabilities of
the toolkit in different scenarios providing readers ideas on
how OSC-XR might be used for their own projects.

5.1 The Sonic Playground

The Sonic Playground is an immersive environment that
explores a variety of OSC-XR controllers. The playground
is composed of multiple zones each with a different per-
formance environment. Users are able to navigate between
the zones using teleportation, providing the ability to quickly
move between different performance environments. The
Sonic Playground is designed to explore and demonstrate
musical interaction with OSC-XR controllers that commu-
nicate with an external audio programming environment.

The Sampler Zone, seen in Fig. 3a, is an immersive sam-
pler environment composed of a 3 × 3 matrix of pad con-
trollers, to trigger sample playback, and a corresponding
matrix of sliders, for additional control of the samples.
Pads are configured to send the controller ID as well as
pressed and released with included velocity for mapping to
sample volume. Each slider is configured to send a value
ranging from 0.25 to 5.0 mapped in ChucK to the playback
rate of the corresponding sample. Pad and slider events
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(a) The Sampler Zone (b) Hyperemin (c) T-SNE (d) T-SNE

Figure 3: Three immersive environments built using OSC-XR to explore its affordances

are all mapped to a corresponding sample using the con-
trollers’ IDs. This environment was developed as a proof-
of-concept to demonstrate and explore the affordances of
typical music controllers in immersive environments.

The first thing to notice in this environment is the size of
the objects. Using input controllers for interaction requires
the use of large objects as users lose the dexterity that is
naturally afforded through interactions using the hand. In-
tegrating hand tracking devices, such as the Leap Motion,
may allow for designing dexterous interactions. Another
challenge of performing in XR is the lack of haptic re-
sponse to physical actions, such as tapping a pad. Even
with these challenges, virtual pads in a musical environ-
ment afford their own interaction style with large expres-
sive motions and gestures. The evaluation of the pad con-
troller, discussed in Section 4.2, indicates that rhythmic
control may not be severely affected through the lack of
haptics and in this environment we learned the lack of hap-
tics affords a expressive playing style.

The Sonic Objects zone is an environment for prototyp-
ing interactive sound environments. It is composed of var-
ious OSC-XR controllers that are readily available to com-
municate with an audio programming environment, such
as ChucK. The environment affords the rapid prototyping
of interactive sound design by combining OSC-XR’s abil-
ity to easily add new controllers and interactions with the
power of ChucK’s development environment to quickly it-
erate on sound design.

One of the interesting affordances of immersive music
environments we explore is the combination of real life
physics based interactions with ”impossible” interactions
that ignore physics. For example, using physics we can
toss objects around or stack and lean them on each other to
create interesting soundscapes with generative audio patches.
Sometimes, however, a user may want to have more con-
trol over when parameters of an audio patch stop as they
reach a desired state. By ignoring the physics of an object
we can lock it in space to immediately stop it from send-
ing OSC messages. For example, an OscGyro object will
always send angular velocity data as its being moved, but
a user may want to lock in the sound parameters before re-
leasing the object. With this in mind, we decided to add an
interaction to freeze the OscGyro anywhere in space. Once
frozen the object will be suspended in space until the user

grabs the object to move it again. Another interesting affor-
dance we discovered through prototyping in this environ-
ment is the ability to easily add automation to controllers
through Unity components, such as animation or particle
systems. For example, the strongly timed behaviour of par-
ticle systems allows for particles to collide with an OSC
Trigger controller for initiating musical events at rhythmic
intervals. Furthermore, the movement of particles within
the controller may be mapped to other audio parameters,
such as frequency. These examples show how OSC-XR
supports rapid prototyping for exploring and creating new
musical interaction techniques in XR.

5.2 Virtual Hyperinstruments

In the NIME community it is common to augment a tra-
ditional instrument with sensors to extend its capabilities.
Machover and Chung [19] first presented work on this con-
cept with their hyperinstruments in 1989. Typically hyper-
instruments extend traditional instruments with direct aug-
mentation of an instrument, such as a violin, with physical
sensors [20]. Physical modification of an instrument can be
invasive to it’s design, therefore, non-invasive techniques
have also been developed for augmentation without physi-
cal modification, through the use of cameras and depth sen-
sors [21]. These techniques use gesture detection and ob-
ject tracking for added sound control but provide no visual
signifiers to indicate the location of control objects. This is
seen in the work of Trail et al. [21] in which they augment
a vibraphone with virtual faders that are controlled using
mallet tips tracked by a Kinect. Because there are no com-
puter generated signifiers, the fader locations are mapped
to the vibraphone keys to signify control locations. Inte-
grating XR in their system would have allowed the authors
to add a visual layer to enhance visual feedback.

We have previously explored the virtual hyperinstrument
concept by augmenting a physical theremin with virtual
objects to visualize the pitch space for music tutoring [22].
We extend that work with Hyperemin, a virtual augmented
theremin. OSC-XR controllers are added to the Hyper-
emin environment to provide real-time control of DSP of
the theremin audio. Audio from the theremin is routed to
a ChucK patch for playback and audio processing. An
OSC 3D Grid controller is added to the environment to
control the audio processing, allowing a performer to play
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the theremin while also controlling audio processing pa-
rameters. Currently, the interaction requires a VR headset
and controllers, which may be intrusive to performance but
the addition of a LeapMotion sensor, or use of a HoloLens
with hand tracking, would address this. In addition to
adding sensors directly to the instrument, one of the af-
fordances of XR is the ability to place objects anywhere
in the space allowing users to create a customizable con-
trol interface not limited to pedals, small device displays
or other physical input controllers.

The Hyperemin environment explores the capabilities of
OSC-XR for augmenting physical instruments with virtual
objects. As XR technology improves we expect that aug-
menting more traditional instruments will become more
accessible. For example, with proper tracking technology
it would be possible to attach an OSC Gyro object to the
head of a violin and a set of pads to the body adding addi-
tional control without physical modifications.

5.3 Immersive Vis Control

OSC-XR was designed with music interfaces in mind but
its support for rapid prototyping makes it ideal for proto-
typing other types of immersive environments that require
parametric control and distributed communication. With
the emergence of XR technologies, there has been trend
of research towards immersive environments for informa-
tion visualization [23]. With this comes the need to rapidly
prototype interaction techniques to support the design of
immersive interfaces. In this case, we explore the process
of prototyping with OSC-XR to build immersive visual-
ization environment with sonic interaction and distributed
communication.

To explore interaction needs of immersive analytics envi-
ronments, we implemented a 3D visualization of the
GTZAN music genre dataset [24]. To visualize the high
dimensional data in 3D, 52 spectral and timbral features
of each song in the dataset are transformed into 3D coor-
dinates using T-SNE [25]. To visualize the data, we in-
tegrate OSC-XR with an immersive visualization toolkit,
DxR [26]. Using DxR we were able to quickly develop
an immersive scatterplot visualization of the T-SNE data.
While DxR provides a 3D interface for controlling the vi-
sualization, it is limited to basic point and touch based in-
teractions. Integrating OSC-XR into this environment al-
lows us to quickly prototype new interfaces and interac-
tions to control the visualization as well as augment it with
with additional functionality.

We prototyped a new interface to manipulate the DxR
generated visualization by augmenting the environment with
new control interfaces and interactions using OSC-XR ob-
jects. The interface is composed of two control panels, the
main panel is to manipulate the view of the visualization,
as shown in Fig. 3c, and a second panel controls the T-
SNE parameters, which was not previously possible using
DxR alone, shown in Fig. 3d. The main panel provides
users a set of sliders to directly manipulate view parame-
ters such as zoom and rotation. Since this panel affects the
visualization in real-time and would be frequently utilized
by a user during data analysis, it is oriented such that a user

is facing the visualization while interacting with the con-
troller. The T-SNE control panel, oriented to the left of the
user, allows users to to adjust T-SNE parameters and rerun
the data transformation on a Python server without having
to leave the virtual environment. We also take advantage
of OSC-XR capabilities to interact with the visualization
marks from a distance. Every mark in the visualization is
configured as an OSC Pointer Trigger providing users the
ability to interact with marks using the pointer from an in-
put controller. Using this interaction technique a user is
able to select any mark in the visualization to playback its
associated audio file allowing users to explore the data au-
rally, as we well as visually. Lastly, visualization marks
can be filtered using the pointer by select a genre mark
from the legend. Using OSC-XR controllers we have been
able to quickly prototype new methods for exploring and
interacting with an immersive visualization.

While Unity, DxR, and OSC-XR are all used to build
the immersive environment, other applications are needed
to support it. T-SNE is implemented in Python and au-
dio playback is implemented in ChucK. OSC communica-
tion affords us the ability to easily communicate between
the distributed applications. In addition, OSC-XR also al-
lows for communication within Unity by attaching OSC re-
ceiver methods to Unity GameObjects affording flexible
and extensible event handling. By using OSC-XR, we are
able to rapidly prototype an immersive environment with
complex needs, such as toolkit integration and distributed
communication.

6. CONCLUSION

We have introduced OSC-XR, a toolkit for prototyping im-
mersive musical environments. By providing developers
readily available controllers and scripts enabled with OSC,
OSC-XR reduces the need to build control objects from
scratch, making the development of immersive environ-
ments more accessible to researchers and developers. Com-
bined with the power of Unity for building 3D environ-
ments, developers using OSC-XR are able to easily explore
the affordances of immersive XR environments to find in-
teractions for music control that would not be possible with
other mediums.

The flexibility of OSC-XR creates many opportunities to
further research on immersive music environments. First,
we plan to implement features to spawn any controller pre-
fab from within an immersive environment. This provides
sound designers, with and without Unity development ex-
perience, the ability to build and customize immersive per-
formance environments on the fly. Furthermore, to allow
designers to take full advantage of the large amounts of
data potentially created by such an environment OSC-XR
would benefit from gesture learning capabilities, similar to
those of the Wekinator [27]. Adding these features to OSC-
XR will expand the possibilities of immersive performance
environments and make designing them more accessible.
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ABSTRACT

In this paper we propose a multisensory simulation of pluck-
ing guitar strings in virtual reality. The auditory feedback 
is generated by a physics-based simulation of guitar strings, 
and haptic feedback is provided by a combination of high 
fidelity vibrotactile actuators and a Phantom Omni haptic 
device. Moreover, we present a user study (n=29) explor-
ing the perceived realism of the simulation and the rela-
tive importance of force and vibrotactile feedback for cre-
ating a realistic experience of plucking virtual strings. The 
study compares four conditions: no haptic feedback, vi-
brotactile feedback, force feedback, and a combination of 
force and vibrotactile feedback. The results indicate that 
the combination of vibrotactile and force feedback elic-
its the most realistic experience, and during this condition, 
the participants were less likely to inadvertently hit strings 
after the intended string had been plucked. Notably, no 
statistically significant differences were found between the 
conditions involving either vibrotactile or force feedback, 
which points towards an indication that haptic feedback is 
important but does not need to be high fidelity in order to 
enhance the quality of the experience.

1. INTRODUCTION

In recent years, the availability of relatively low cost vir-
tual reality (VR) hardware devices has seen applications 
also in the music industry. Several VR musical instruments 
have been developed both in the academic and commercial 
world. An overview of design guidelines and applications 
of VR musical instruments can be found in [1].

In the computer music community, the sounds of stringed 
instrument have been simulated for decades, starting with 
the work of Hiller and Ruiz [2], followed a decade later
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by the simulations proposed by Karplus and Strong [3].
Moreover, physics-based simulation of such instruments
has been an active areas of research within the community
(see e.g. [4, 5]). However, this research has predominantly
focused on simulating the sounds generated during inter-
action with strings, and visual and haptic feedback remain
relatively unexplored (for a recent exception see [6]).

In this paper we propose a novel multisensory simula-
tion of a guitar, which uses efficient yet accurate physics-
based synthesis techniques to reproduce the auditory and
haptic feedback accompanying the act of plucking guitar
strings. In the current paper, we use the term haptic in a
broad sense to encompass all somatosensory capabilities;
that is, sensations that qualify as cutaneous (related to in-
teractions at the level of the skin), kinesthetic (related to
movements of one’s body and limbs), and proprioceptive
(related to the position of limbs and the static attitude of
the musculature) [7, 8].

We first describe the system, which simulates the sensa-
tion of plucking guitar strings through a combination of
visual, auditory, force and vibrotactile feedback. Subse-
quently, we present a user study evaluating users’ experi-
ence of plucking virtual strings. The aim of the study was
twofold: (1) It was meant to determine the degree of per-
ceived realism of the system; that is the degree to which
the system was able to replicate the sensation of plucking
a real guitar string. (2) The aim was to explore the rela-
tive importance of force and vibrotactile feedback as ele-
ments for the creation of a realistic experience of plucking
virtual strings. Specifically, it was considered relevant to
determine if a realistic experience can be elicited when the
simulation is devoid of force feedback and only involves
vibrotactile feedback.

2. RELATED WORK

In the last two decades, haptic feedback has received in-
creasing interest from the sound and music computing com-
munity, due to the strong correlation between auditory and
haptic musical signals. In fact, both signals share highly
similar and simultaneous temporal analogies, with a higher
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sampling rate for the audio channel. For a recent overview
refer to the work of Papetti and Saitis [9]. Avanzini and
colleagues [6,10] describe a multimodal architecture, which
integrates physically-based audio and haptic models with
visual rendering. Experiments with stiffness perception
showed how auditory feedback can modulate tactile per-
ception of stiffness. In her PhD dissertation investigat-
ing the role of haptic feedback in digital musical instru-
ments, O’Modhrain [11] pioneered research on multisen-
sory audio-haptic simulations in a musical context. As
an example, she discovered that the playability of touch-
free instruments, such as the Theremin, is significantly in-
creased when haptic feedback is provided. Custom made
devices to provide haptic feedback in a musical context
have been developed together with physics-based audio-
visual simulations in the work of Florens and colleagues
[12]. More recently, Leonard and Cadoz [13] introduced
a system, based on mass-interaction physical modelling,
that supports real-time interaction with multisensory vir-
tual music instruments. The combination of physically
simulated strings and haptic feedback has also been rather
extensively explored by Berdahl [14]. In this context, the
applications have been mostly pedagogical and artistic, rather
than targeted towards perceptual evaluations of auditory-
haptic interactions. Berdahl proposes novel fader-based
controllers where the plucking action can be felt while in-
teracting with a virtual string [15]. The tight multisen-
sory coupling between hearing and touch has also been ex-
plored in the simulations proposed by Liu and Ando [16].

In the context of VR, although research has primarily fo-
cused on providing realistic auditory and visual feedback,
haptic feedback has also been investigated. However, the
focus has to a large extent been on cumbersome and ex-
pensive force feedback devices [17].

Kinesthetic and proprioceptive information is central to
perception of solid objects, but so is cutaneous information
derived from vibrations. The vibrations generated when
an object moves across a surfaces encodes roughness [18]
and the vibrations generated during tapping encodes hard-

Figure 1. A user interacting with the system. On the top
right a zoomed figure of the Phantom Omni device with
attached the vibrotactile actuator. The actuator is inserted
into a 3D printed plectrum.

ness [19]. For these reasons, much research has focused
on increasing the realism of virtual interaction using vi-
brations [20]. For example, it has been shown that the
addition of vibrotactile feedback can enhance low-fidelity
kinesthetic devices [19], vibrotactile feedback affect per-
ceived hardness during tapping of one physical object on
another [21], and vibrotactile feedback can be used to elicit
an illusion of compliance when pressing a stylus against a
rigid surface [22].

3. MULTISENSORY SIMULATION OF PLUCKING
GUITAR STRINGS

The system proposed in the current paper is created with
the intention of eliciting a realistic sensation of plucking
the strings of a virtual guitar. The system consists of three
separate stimuli elements: haptic, auditory and visual. Fig-
ure 2 shows a diagram visualizing how the elements have
been connected, and Figure 1 shows a user interacting with
the system.

Specifically, the haptic feedback is provided by a Sens-
able Phantom Omni haptic device mounting a 3D printed
plectrum on its arm tip. The plectrum is embedded with
a Haptuator Mark II vibrotactile actuator manufactured by
Tactile Labs. Visual feedback is delivered using an Oculus
Rift CV1 head mounted display. Finally, auditory feedback
is provided through a Vox HC30 guitar amplifier.

The signal driving the vibrotactile actuator is produced
by an impact model run by the Sound Design Toolkit for
Max/MSP [23]. Specifically, the contact force depends on
the velocity and displacement of the objects in contact ac-
cording to the following relationship:

f(x(t), v(t)) = kx(t)α + λx(t)αv(t)

for x ≥ 0, and 0 otherwise, where the compression x at
the contact point is defined as the differences between the

Figure 2. Diagram visualizing the software and hardware
integration.
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displacements of the two bodies, and v(t) is the compres-
sion velocity. The parameter k is the force stiffness and is
a function of the mechanical properties of the two bodies,
while λ is the force damping weight, and α is a parameter
whose value depends on the geometry of the contact [6].

The parameters of the impact model were chosen by hav-
ing two guitar players empirically experiment with differ-
ent settings and choosing the parameters that felt closest to
a guitar pluck. For the force feedback, the Phantom Omni
haptic device is driven by a collision algorithm developed
in the haptic plugin for Unity [24]. This plugin uses the
Open Haptics toolkit [25] to render the contact force be-
tween the pen of the Phantom Omni and the virtual string.

The guitar sound is synthesized by an efficient extended
Karplus-Stong algorithm [26], originally developed by Kevin
Karplus and Alex Strong in 1983 [3]. The algorithm sim-
ulates a string in the form of a feedback digital delay whose
length represents the length of the string. Propagation losses
are simulated using a low-pass filter. Jaffe and Smith [26]
proposed improvements towards a realistic guitar sound.
Although this simulation is a simplification compared to
accurate physical simulations, it is efficient enough to run
in real time with minimum CPU load. This fact is es-
pecially important in VR applications. In order to fully
simulate the sound of an electric guitar the output of the
Karplus-Stong algorithm was passed through a Wampler
SLOstortion high gain drive pedal before being played back
through a VOX HC-30 guitar combo amplifier. The pedal
was set on overdrive mode with parameters matching the
sound of the real guitar present in the training session, that
was connected to the same amplifier, but on a different
channel.

The visual stimuli presented an electric guitar which was
created using the Unity 3D and displayed using an Oculus
Rift CV1 head mounted display.

4. METHOD AND MATERIALS

As suggested, the aim of the study was to (1) evaluate the
perceived realism of the proposed system and (2) to ex-
plore the relative importance of force and vibrotactile feed-
back as elements for the creation of a realistic experience
of plucking strings while interacting with a virtual guitar.
To meet this aim, we performed a within-subjects study
comparing four conditions that varied in terms of the hap-
tic feedback provided when users plucked virtual strings:
no haptic feedback (N), vibrotactile feedback (V), force
feedback (F), and a combination of force and vibrotactile
feedback (FV).

4.1 Participants

A total of 29 participants (26 male, 3 female) aged between
19-44 years (M=28.2 years, SD=7.0) took part to the study.
All participants were faculty or students at Aalborg Uni-
versity Copenhagen. On average, the participants had 8.2
years (SD=8.3) of regular, weekly practice playing a mu-
sic instrument, they played 2.4 hours (SD=2.6) each week,
and 21 participants reported being able to play one or more

string instruments. All participants gave written informed
consent prior to participation.

4.2 Procedure and Task

Initially the participants completed a questionnaire cover-
ing demographic information (i.e., age, gender, occupa-
tion, and musical experience). They were then introduced
to the setup and task. They were informed that the study
was exploring the perceived realism of virtual strings and
were instructed to pay particular attention to the haptic sen-
sations experienced during each condition. No information
was provided about the variations in feedback across con-
ditions).

Because the aim of the study was to explore changes in
realism across the four conditions, the participants were
asked to pluck the strings of a real guitar before exposure
to the first condition. They were instructed to pluck all six
strings and were allowed to do so for no more than three
minutes. It was made explicit to the participants that this
task was meant as a baseline for comparison during the
four conditions, and that they should pay attention to the
sensation of touching the real strings, including sense of
stiffness (i.e., the strings resistance to deformation).

During each condition, the participants were required to
pluck each of the six strings twice in randomized order.
The string the participants should pluck was visually high-
lighted. Subsequently, the participants were asked to freely
interact with the virtual strings and they were encouraged
to both pluck individual strings and perform strumming
interactions. After exposure to each condition the partic-
ipants were required to fill out a questionnaire related to
their experience (see Section 4.3).

The participants were exposed to the four conditions in
randomized order, and the study lasted for approximately
20 minutes in total.

4.3 Measures

Because the primary aim of the study was to determine
how realistic the participants found the four conditions,
we primarily relied on self-reported measures. Specifi-
cally, after exposure to each condition the participants were
asked to fill out a questionnaire including eight items re-
lated to their experience of interacting with the virtual strings.
The eight items can broadly be divided into four categories:

• Perceptual similarity: Two items required the par-
ticipants to explicitly compare the real and virtual
strings in terms of (a) overall similarity and (b) stiff-
ness.

• Perceived realism: Three items asked the partici-
pants to evaluate (c) the overall experience of real-
ism, (d) the sensation of touching physical strings,
and (e) the sensation of hearing physical strings.

• Perceived thickness: Two items asked the partici-
pants evaluate (f) the connection between the thick-
ness of the virtual strings and the sensation of touch-
ing them, and (g) the connection between the thick-
ness of the virtual strings and sounds they generated.
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Table 1. The eight questionnaire items and corresponding anchors of the 7-point (1-7) rating scales.
Questionnaire items: Scale anchors:
Perceptual similarity:
(a) The sensation of touching the virtual and real strings was: Completely different / Identical
(b) Compared to the real strings, the stiffness of the virtual strings was: Much lower / Much higher
Perceived realism:
(c) I found the experience of interacting with the virtual guitar realistic. Strongly disagree / Strongly agree
(d) It felt as if I was touching physical strings. Strongly disagree / Strongly agree
(e) I felt like I was hearing physical strings. Strongly disagree / Strongly agree
Perceived thickness:
(f) It felt as if there was a connection between the thickness of the strings and how they felt. Strongly disagree / Strongly agree
(g) It felt as if there was a connection between the thickness of the strings and the sounds. Strongly disagree / Strongly agree
Perceived ease of use:
(h) I found it easy to pluck the strings of the virtual guitar. Strongly disagree / Strongly agree

• Perceived ease of use: Finally, one item (h) asked
the participants to evaluate how easy they found it to
interact with the virtual guitar.

All eight questions were answer using 7-point rating scales,
ranging from 1 to 7. Table 1 presents the eight questions
and the corresponding scale anchors.

In addition to the questionnaire administered after each
four conditions, we also asked the participants to indicate
which of the four the preferred once they had tried them
all. Moreover, the participants were encouraged to explain
their preference.

Finally, to determine whether the addition of more hap-
tic feedback would positively affect the participants ability
to pluck the virtual strings, we logged the number of erro-
neously plucked strings during the part of each trial where
the participants had to pluck predefined strings. Impacts
between the virtual plecturm and strings were considered
errors, if they occurred after the correct string had been
plucked and before a new string was highlighted. We delib-
erately ignored errors made prior to the participants pluck-
ing the correct string, as these errors were more likely to
result from visual misperception. That is, errors occurring
prior to initial contact with a highlighted string were likely
the result of incorrect visuomotor coordination, rather than
the sensation of the haptic stimuli itself. Conversely, er-
rors occurring after a highlighted string had been plucked
could be the result of an inability to perceive the haptic
stimuli produced while plucking.

5. RESULTS

This section presents the results obtained from the self-
reported measures pertaining to the participants’ experi-
ence and the behavioral measure related to the number of
errors performed during exposure to each condition.

5.1 Self-reported measures

The data obtained from the eight questionnaire items were
treated as ordinal and analyzed using Friedman tests. When
statistically significant differences were found pairwise com-
parisons using Dunn-Bonferroni tests were performed.

Perceptual similarity: A statistically significant differ-
ence was found in relation to overall perceptual similar-

ity (X2(3) = 15.152, p = .002) and the pairwise com-
parisons identified a statistically significant difference be-
tween N and F (p = .031), and between N and FV (p =
.004). In both cases N yielded significantly lower scores
(Figure 3a).

Similarly, a statistically significant difference was identi-
fied in regard to stiffness relative to physical strings (X2(3) =
17.831, p < .001), and the pairwise comparisons found
between N and F (p = .003), and between N and FV
(p = .007). N yielded significantly lower scores (Figure
3b). Note that both F and FV had a median score of 4,
suggesting that the two conditions may have provided the
greatest resemblance with the physical string in terms of
stiffness.

Perceived realism: A statistically significant difference
was found between the scores related to overall realism
(X2(3) = 11.757, p = .008), and the pairwise compar-
isons indicated that the participants scored FV significantly
higher than N (p = .026), as apparent from Figure 3c.

The statistical comparison also indicated that the scores
differed significantly with respect to the participants’ sen-
sation of touching physical strings (X2(3) = 18.253, p =
.005), and the pairwise comparisons indicated significant
differences between N and F (p = .008), and between N
and FV (p = .003). Again, N yielded significantly lower
scores than F and FV (Figure 3d). As indicated by Fig-
ure 3e, no significant difference was found in relation to
the item pertaining to the participants’ sensation of hear-
ing physical strings (X2(3) = 1.159, p = .763).

Perceived thickness: A statistically significant differ-
ence was found between the scores related to the perceived
connection between string thickness and touch (X2(3) =
12.641, p = .005), and the pairwise comparisons suggest
that participants rated FV significantly higher than N (p =
.019), as apparent from Figure 3f. No significant differ-
ence was found with respect to the item related to per-
ceived connection between the thickness and the produced
sound (X2(3) = 5.260, p = .154).

Perceived ease of use: No signficant difference was
found between the scores related to percevieved ease of
use ((X2(3) = 2.026, p = .567)), which are summarized
in Figure 3h.

Preference rating: When asked to select their preferred
condition technique 41.4% (12 participants) chose FV, 37.9%
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Figure 3. Boxplots visualizing the results related to the eight questionnaire items in terms of medians, interquartile ranges,
minimum and maximum ratings, and outliers.

(11 participants) chose F, 10.3% (3 participants) chose V,
3.4% (1 participants) chose N, and 6.9% (2 participants)
had no preference. A Cochrans Q test was run to determine
if the percentages of participants who chose each condi-
tion differed. Sample size was adequate to use the χ2-
distribution approximation. The Cochrans Q test suggested
that the difference was statistically significant (χ2(4) =
19.103, p = .001). Pairwise comparisons using Dunn-
Bonferroni tests revealed significant differences between
FV and N (p = .012), and between F and N (p = .033).

5.2 Number of Errors

One participant was excluded from this analysis because
the data obtained during one of the four conditions was
corrupted. The results of the behavioural measure of the
number of erroneously plucked strings was treated as in-
terval data. However, the data did not meet the assumption
of normality, as assessed by Shapiro-Wilk test (p > .05),
and significant outliers were identified, as apparent from
the boxplot in Figure 4. Thus, the data was analyzsed us-
ing non-parametric methods.A Friedman test indicated that
number of errors differed signficantly between conditions
(X2(3) = 11.170, p = .011) and pairwise comparisons
using Dunn-Bonferroni tests indicated that FV yielded sig-
nificantly fewer errors than N (p = .047).

Figure 4. Boxplots visualizing the results related number
of errors items in terms of medians, interquartile ranges,
minimum and maximum ratings, and outliers.

6. DISCUSSION

The results related to overall perceptual similarity suggest
that the sensation of plucking the virtual strings resembled
its real world counterpart the most, when the simulation
involved force feedback (i.e., both F and FV were sig-
nificantly different from N). Based on the distribution of
ratings (Figure 3a) it is apparent that some of the partici-
pants rated FV higher than F. However, no statistically sig-
nificant difference between the two conditions was found.
Moreover, the distributions of scores were relatively simi-
lar for F and V. It should be stressed that the median score
for FV only was 4, suggesting that the participants did not
experience a high degree of perceptual similarity. Future
studies are necessary to determine if more elaborate string
synthesis models yield more convincing results or if the
scores can be attributed to limitations of the haptic render-
ing.

The conditions involving force feedback also provided
the best match to the real guitar strings in terms of stiff-
ness relative to physical strings (Figure 3b). That is, both
F and FV had a median scores of 4, which indicates that the
stiffness of the stings was not perceived as much higher or
much lower than the stiffness of the real guitar strings.

The scores pertaining to overall realism (Figure 3c) in-
dicate that the participants found the experience to be the
most realistic when exposed to FV (FV was the only con-
dition that differed significantly from N). Moreover, when
the participants were asked about the degree to which they
had a sensation of touching physical strings (Figure 3d),
both F and FV yielded the highest median scores (both dif-
fered significantly from N).

The four conditions yielded largely identical and rela-
tively high scores in relation to the self-reported sensation
of hearing physical strings (Figure 3e). We take this to
mean that most participants felt that the auditory feedback
sounded as if it was generated by a physical string rather
than an algorithm. It is hardly surprising that no difference
was found between the four conditions, because the same
auditory feedback was used across all conditions.
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Based on the questionnaire item related to the perceived
connection between the thickness and touch (Figure 3f),
it would appear that the participants may have perceived
the virtual strings as having different thicknesses when ex-
posed to FV. Even though a significant difference only was
found between FV and N, it is worth noting that FV is the
only condition that yielded a median score higher than 4.

The results related to the connection between thickness
and sound (Figure 3g), indicate that the participants to
some extent experienced a connection between the thick-
ness of the strings and the sound that was produced when
they were plucked. However, no significant differences be-
tween conditions were found. Moreover, the spread of the
scores was relatively large with respect to N and V. It is
possible to offer at least two possible explanations for the
large spread. That is, it is possible that the phrasing of
the question prompted some participants to compare the
sound to the visual appearance of the strings, while other
may have compared the sound the haptic sensation of the
strings. For that reason, we are reluctant to draw any con-
clusions from these results.

The finding that the simulations involving force feedback
provided the most compelling experience is corroborated
by the preference ratings and the associated qualitative feed-
back. That is, the majority (23/29) of the participants pre-
ferred the two conditions involving force feedback, but an
almost equal number of participants preferred FV (12/29)
and F (11/29). Notably, 4 out of the 11 participants who
preferred F, explicitly stated that they chose F over FV be-
cause the vibration had been too strong. Of the 11 partic-
ipants who preferred FV, 7 participants remarked that the
vibration either made the haptic sensation of plucking the
strings more realistic or added to the sense that the friction
varied. Thus, the participants were somewhat conflicted
about the contribution of the vibrotactile feedback, sug-
gesting the need for future studies exploring variations in
vibration intensity.

No differences were found in relation to perceived ease of
use (Figure 3h). However, we did observe a significant dif-
ference with respect to the number of erroneously plugged
strings after the correct string had been plucked (Figure
4); namely the participants plucked significantly fewer er-
rors during FV compared to N. Moreover, even though no
significant differences were found between V and the other
conditions, it is worth noting that V appears to have yielded
fewer errors than both N and F. In other words, the two
conditions devoid of vibrotactile feedback resulted in the
highest number of errors. It is possible that the added vi-
brations made the impact between the virtual plectrum and
string more salient, and thus causing the participants to re-
tract their hands more swiftly.

7. CONCLUSION

In this paper we proposed a system that allows users to
pluck virtual guitar strings while receiving multisensory
feedback in response to this interaction. The system was
evaluated in a user study exploring the perceived realism of
the simulation and the relative importance of force and vi-
brotactile feedback. The results indicate that the two con-

ditions involving force feedback provide the highest degree
of perceptual similiarlity to real guitar strings. While no
significant differences were found between the two condi-
tions, the condition including both force and vibrotactile
feedback yielded scores indicating that it was the best at
mimicking interaction with real guitar strings. The self-
reported measures related to overall realism yielded simi-
lar indications. However, the participants scored the two
approaches similarly when they were asked to what extent
they felt that they touched real strings. The absence of
significant differences between the three haptic conditions,
makes it uncertain whether force or vibrotactile is the most
important for a realistic experience. Nevertheless, judg-
ing by the distribution of scores and the preference ratings,
force feedback appears to be central to the participants’ ex-
perience of realism, and we suspect that the combination
of force and vibrotactile feedback may serve as the best
proxy for physical strings. It is encouraging that the vibro-
tactile condition generally scored higher than the condition
devoid of any haptic feedback. However, future studies in-
volving a wider range of vibrotactile feedback are neces-
sary in order to determine if vibrotactile feedback will suf-
fice in and of itself. Particularly, it is necessary to compare
variations in the algorithm rather than just comparing the
presence and absence of vibrotactile feedback. Finally, no
differences were observed with respect to perceived ease of
use, but the behavioral measure provides some indication
that vibrotactile feedback may decrease the risk of acci-
dentally hitting strings after the intended string has been
plucked. Thus, even if vibrotactile feedback may be less
important than force feedback with respect to perceived re-
alism, it is possible that it can help reduce the number of
incorrectly plucked strings.
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ABSTRACT

RaveForce is a programming framework designed for a 
computational music generation method that involves au-
dio sample level evaluation in symbolic music representa-
tion generation. It comprises a Python module and a Super-
Collider quark. When connected with deep learning frame-
works in Python, RaveForce can send the symbolic music 
representation generated by the neural network as Open 
Sound Control messages to the SuperCollider for non-real-
time synthesis. SuperCollider can convert the symbolic 
representation into an audio file which will be sent back 
to the Python as the input of the neural network. With this 
iterative training, the neural network can be improved with 
deep reinforcement learning algorithms, taking the quan-
titative evaluation of the audio file as the reward. In this 
paper, we find that the proposed method can be used to 
search new synthesis parameters for a specific timbre of an 
electronic music note or loop.

1. INTRODUCTION

In a computational music generation task, what is essen-
tially generated? This question leads to a debate on ei-
ther to generate music in symbolic music representation, 
e.g. MIDI (Music Instrument Digital Interface) or to gen-
erate the audio waveform directly. Symbolic music repre-
sentations can generally reflect the idiosyncrasy of a mu-
sic piece, but they can hardly trace detailed music infor-
mation, such as micro-tonal tunings, timbre nuances and 
micro-timing. Signal-based music representations are bet-
ter at preserving micro-level details that are not captured 
well by the symbolic representations. Thus signal-based 
workflows—including raw audio generation—may be a so-
lution for computational music generation. However, since 
raw audio generation requires much more computational 
resources than symbolic representation methods, there are 
still some difficulties for this method to generate long multi-
track music pieces [1]. Furthermore, without a symbolic 
representation, these methods can be too sophisticated to 
explain from a music-theoretical perspective. Hence, our
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motivation is to find a balance between these two forms of
music representation in computational music generation.

Our research question is: how can an A.I system be trained
to consider the music sound while generating symbolic
music representation? Technically speaking, we hope that
the neural network in an A.I system can not only generate
symbolic sequences but also convert the symbolic repre-
sentation into an audio waveform that can be evaluated.
To do so, we need to use non-real-time synthesis for the
transformation from symbolic music representation to an
audio file which will become the input of the neural net-
work, and the output will be accordingly the next symbolic
representation. Compared with pure symbolic generation,
this method also outputs the corresponding audio wave-
form, which may broaden the application fields. Besides,
different from raw audio generation, we fix the transform-
ing function for the neural network, which may make the
computational resource focus more on the target music in-
formation than on the function estimation.

In this paper, we will explain the proposed method and
provide a programming implementation as well as two sim-
plified music tasks as examples. We start with the back-
ground of deep learning music generation in Section 2,
demonstrating the relationship between the data type and
the neural network architecture. In Section 3, we present
our method to improve the symbolic representation and the
reason why we choose to use deep reinforcement learn-
ing. Section 4 introduces the implementation details of our
deep reinforcement learning environment with an empha-
sis on how we optimise it for a musical context. Section
5 describes the reward function design in customised tasks
and explains the evaluation from running time and music
quality perspective. In Section 6, we summarise the inno-
vations and limitations of our method as well as our future
directions.

2. BACKGROUND

Computational music generation has for a long time been
an intriguing topic for musicologists and computer scien-
tists [2]. Of current algorithmic methods, deep learning
seems to be particularly relevant for music generation tasks
[3]. Deep learning is a method that learns from data repre-
sentations, so in terms of music generation, it is essential
to study the background of how the music representation
influences the learning process and result.
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2.1 Symbolic vs signal-based representations

Music can typically be represented as either signals (audio)
or symbols (score representations). Popular symbolic rep-
resentation methods include MIDI, musicXML, MEI, and
others [4]. Among them, MIDI is one of the most popular
data formats being used in deep learning music generation
tasks. In some particular styles of music, and particularly
the ones based on traditional music notation, MIDI data
can be an efficient representation. One example is the pi-
ano score generation in the DeepBach project [5]. Another
example is that of machine-assisted composition applica-
tions, in which MIDI allows for editable features [6]. How-
ever, as mentioned in the introduction, there are also many
cases in which symbolic representations are inadequate in
capturing the richness and nuances of the music in ques-
tion.

One way to address limitations of symbolic representa-
tions is the use of sample-level music generation, as demon-
strated in WaveNet [7] and WaveRNN [8]. However, al-
though some progress has been made, the raw audio gen-
eration requires a lot of computational resources, and it is
too complicated to explain how these samples get organ-
ised from a musicology perspective.

The data format can also influence the design of the neu-
ral network. In symbolic representations, supervised learn-
ing can be found in many applications [9]. For raw audio
signals, unsupervised learning techniques such as autoen-
coder and generative adversarial network (GAN) are fre-
quently adopted [10, 11].

2.2 Reinforcement learning

Reinforcement learning is different from supervised or un-
supervised learning techniques in that its updating strategy
relies on the interaction between an agent and the environ-
ment rather than the function gradient. In a given period—
that is, an episode in reinforcement learning—the agent
will try to maximise the reward it can get. The reward
is calculated in each episode, and it is used to update the
parameters of the agents [12].

The connection between reinforcement learning and mu-
sic generation goes back to the use of Markov models in
algorithmic composition. As one of the pioneers in auto-
mated music generation, in the piece called Analogique A,
Iannis Xenakis uses Markov models for the order of musi-
cal sections [13]. The use of Markov models in composi-
tion reveals its connection with reinforcement learning as
the action of the agent only depends on the current state.
However, in previous research on reinforcement learning
in computational music generation [14], the reward func-
tion calculation is not based on the sample-level evalua-
tion.

Recently, deep learning technology has brought new pos-
sibilities to reinforcement learning as it allows the agents to
examine higher-level information. In deep reinforcement
learning, the agent can be represented by a neural network,
which makes it capable of evaluating the raw audio signal
and then output the decision. Deep reinforcement learning
has been a success during the past few years since it shows
that a virtual agent can surpass human beings in several

tasks, e.g. Atari games [15]. After that, there appear more
and more algorithms such as Proximal Policy Optimiza-
tion (PPO) [16]. For testing these algorithms, there are
many simulation environments, e.g. the OpenAI Gym 1 .
For music, deep reinforcement learning has been used for
the score following [17]. However, there is still no envi-
ronment designed for music generation.

3. DESIGN CONSIDERATION

Though symbolic representations have shown some limi-
tations, generating music at the audio sample level can be
computationally expensive. Therefore, we propose to gen-
erate the symbolic representation first, and then use these
representations to synthesise audio for evaluation.

3.1 From symbolic notation to audio

Our first step is to choose a proper method to convert a
symbolic representation to an audio file. Three options are
considered:

1. to send the generated sequence to an instrument and
record the sound for evaluation.

2. to use other general-purpose programming languages
such as C++ for the sound synthesis.

3. to use music programming languages like Max/MSP,
Pure Data, Csound and SuperCollider for non-real-
time synthesis.

We exclude the first option because it would be too time-
consuming, considering there would be a considerable num-
ber of iterations in the deep learning training process. The
second option is the most efficient in synthesis speed, but
it lacks the extensibility from a music perspective as users
have to be familiar with the C-style programming languages.
The third option best balances the efficiency and usability
as music programming languages have already been ubiq-
uitous in the electronic music field [18].

However, both the second and the third option are faced
with the same challenge—the gradient. In supervised learn-
ing, we need to know all the functions and their gradient.
After comparing the output of the neural network and the
training data, we should fine-tune the parameter of the neu-
ral network to minimise the loss with the help of these gra-
dients [19]. In our proposed method, since we involve the
non-real-time synthesis, back-propagation cannot be done
in this context as the functions used for transforming sym-
bolic representation to audio files are unknown.

3.2 Addressing the gradient problem with deep
reinforcement learning

Deep reinforcement learning can solve the gradient prob-
lem mentioned above as it relies only on the interaction
reward rather than the gradient. Though we cannot get the
gradient from the symbolic-to-audio transforming function,
We can quantitatively evaluate the synthesised audio to get
a reward. Concretely, we train a neural network to output

1 https://gym.openai.com
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a sequence of symbolic music notations (such as the pa-
rameters for a synthesiser) and send the information to an
audio programming language for non-real-time synthesis.
Then, we compare the synthesised audio file with the tar-
get file, or we can use a neural network to grade the audio
file directly. When an action brings a positive reward, the
probability of the action should increase, and vice versa.

There are several important concepts in deep reinforce-
ment learning that need to be defined in the music context
(see Fig. 1):

1 Step refers to the process of executing what has been
decided to do in the next 16 th note or rest.

2 Episode refers to a series of continuous interactions be-
fore the done attribute turns to true, e.g. the end of a
game. In a musical context, we use a total-step attribute
to decide the length of an episode. Thus, it can vary
from one single note to a note sequence.

3 Observation-space refers to the current state. In our mu-
sical context, we set the currently synthesised audio file
to be the observation-space. In other words, the agent
should be “aware” of the previous state (synthesised au-
dio) and take the next step accordingly.

4 Action-space refers to the set of action choices for the
agent. In a musical context, the action-space can be dis-
crete (e.g. a note pitch) or continuous (e.g. the ampli-
tude).

Environment (a step sequencer)

Observe and choose next step action Evaluate and update agent parameters

Agent (a neural 
network)

Figure 1. RaveForce architecure: in each note (step), the
agent (neural network) will choose an action according to
its observation on the current state (currently synthesised
audio).

4. IMPLEMENTATION AND OPTIMISATION

As is discussed above, the key to our proposed method is
to have an environment that can handle the non-real-time
synthesis and evaluate the result. In our implementation of
RaveForce 2 , we follow the OpenAI Gym interfaces in our
Python module, and in SuperCollider, we create a quark
to execute the non-real-time audio synthesis. In order to
connect with deep learning frameworks, some optimisation
is necessary for the observation space.

4.1 The idea from a live coding session

To implement the environment, we refer to a live coding
session [20]. In many live coding sessions, SuperCollider 3

2 https://github.com/chaosprint/RaveForce
3 https://supercollider.github.io

has been used as the audio engine as it tracks the time
and beat accurately [21]. SuperCollider employs a client-
server architecture that contains two parts: the scsynth (Su-
perCollider Synthesiser) and the sclang (SuperCollider Lan-
guage). The sclang will be combined in real-time to a sim-
plified version of Open Sound Control (OSC) messages
[22] and sent to the scsynth to control the sound. This
architecture allows the scsynth server to run alone, while
sclang can be replaced by other domain-specific languages
(DSLs) like TidalCycles 4 . In short, in a live coding ses-
sion, the live coders use DSLs as a client to control the real-
time sound synthesis in the SuperCollider server. For our
need, instead of using SuperCollider to output real-time
audio signals, we use it for non-real-time audio synthesis.

As for the client, we choose to write it in Python be-
cause several deep learning frameworks (such as PyTorch
5 ) have been implemented in Python, and the Python mod-
ule Gym is one of the most important benchmarks for deep
reinforcement learning. By designing the client part in
Python, we can follow the Gym interface and connect with
a deep learning framework, while we move the interaction
part (the audio synthesis) to the SuperCollider server. With
the help of Open Sound Control messages, we link the neu-
ral network training with the audio synthesis (see Fig. 2).

Neural Network 
in Python

Notes and 
parameters

SuperCollider 
Pattern Audio File

Figure 2. Python-SuperCollider communication: a neural
network (agent) is trained in Python; it sends symbolic mu-
sic representations(e.g. notes and synthesiser parameters)
as Open Sound Control messages to the SuperCollider pat-
tern; then the pattern will be synthesised to an audio file in
non-real-time and sent back to Python as the input of the
neural network, forming an iteration.

4.2 Code implementation

The pseudo-code of the implementation is as follows:

1 Use make function in the client to create the required
environment, which will send a message to the server,
asking the server to load related music patterns, synthe-
sise an empty file and return the address of the file to
the client side. On receiving the returning message, the
client should read the action space and the observation
space.

2 Send the reset message to the server side. Empty the
observation space if it is not.

3 According to the observation space, decide what action
to take. Send the step message to the server side with
chosen actions in each step. The server will do non-
real-time synthesis in each step according to the given

4 https://tidalcycles.org
5 https://pytorch.org
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Figure 3. The observation space in each state has the same
length. For instance, the step 1 only has the audio infor-
mation for the first 16th note, but it is padded to have the
same length as the reset state (about 90000 samples).

action message. Also, the server should return the client
with the synthesised file address.

4 The client should use the address to load the currently
synthesised sound file and set it as the observation space.
Calculate the reward by comparing the generated audio
file with the target audio file.

5 Send the reward back to the client for updating the neu-
ral network.

6 Repeat from Step 3 until the limit of episode length is
reached

4.3 Optimisation

In the implementation, a unique strategy is designed for
the observation space. As neural networks typically re-
quire a fixed length input, the observation space needs to
be padded to have the same length in every step. Hence, in
the initialisation stage, we require SuperCollider to gener-
ate an empty full-step (16-step by default) long audio file
corresponding to the beats per minute (BPM) parameter.
The length of this empty file will be set as the total-length
attribute. In the following steps, though the actual output
of the audio file varies in length, it will be padded with
zeros to match the total-length attribute. With this strat-
egy, the observation spaces in each step can share the same
length (see Fig. 3).

5. TASK DESIGN AND EVALUATION

After implementing the environment, it is necessary to ex-
amine what kind of tasks it can handle and evaluate how
the environment performs with the given task.

5.1 Challenges with the reward function design

The reward function in reinforcement learning measures
how well the agent chooses the action in the current step.
Its design is challenging for music generation, especially in
those tasks whose evaluation criteria are subjective. It can

be feasible to evaluate the similarity between the generated
music piece and the songs in a music corpus. At the same
time, pursuing similarity in music can lead to plagiarism,
which is an essential issue to address [23].

Currently, we provide four criteria for evaluation: (1)
mean square error (MSE) of all the samples; (2) MSE of
the Mel-frequency cepstral coefficients (MFCCs); (2) MSE
of the short-time Fourier transform (STFT) coefficients,
both real and imaginary parts; (4) MSE of the constant-
Q transform (CQT) coefficients, both real and imaginary
parts. These four criteria are used to measure the similari-
ties between two audio files. Also, as the whole program-
ming framework is customisable, it can be connected with
other criteria, e.g. a well trained neural network that can
grade a music file.

5.2 The example tasks

Figure 4. RaveForce workflow: first run SuperCollider
code, and then open Python IDE (e.g. Jupyter Notebook)
to train the agent.

In RaveForce, the music task should be defined by the
user (see Fig. 4). We provide two music examples to ex-
plain the environment better.

5.2.1 Drum loop imitation

The example task drum-loop uses music samples from three
drum components (kick drum, snare drum, and hi-hat) to
imitate the target drum loop as much as possible. The ac-
tion space in the example is a discrete set that contains all
eight possible combinations in each note from which the
agent should choose one action, and a reward will be cal-
culated according to the choice (see Fig. 5).

Different from some other reinforcement tasks, the re-
ward in this task is precisely the state value function. If we
use Deep Q-learning (DQN) for this task, the Q function in
each step can be calculated as follows:

Qπ (a|s) = V (st+1)− V (s) (1)

Also, as a specific drum combination only has a fixed
reward, we can use the traditional dynamic programming
method to find the best drum pattern in this case.
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Figure 5. Drum loop combination reward with different
criteria. The green line represents the reward of the opti-
mal drum combination which is closest to the target drum
loop while the rest are random combination rewards. The
MFCC criterion tends to outperform others in this task.
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Figure 6. Different criteria for kick drum simulation task.
MFCC and CQT tend to show poor performance in this
task.

5.2.2 Kick drum optimal frequency search

In this example, we aim to use a sine wave oscillator, con-
trolled by an amplitude envelope to simulate a kick drum
audio sample. To make it easier for visualisation, we fix
the envelop shape and make the frequency of the sine wave
oscillator the only controllable parameter. The relationship
between the frequency and the reward is shown in Fig. 6.
The total-step attribute in SuperCollider can be set to one,
which makes the pattern become a single note. In each it-
eration, the parameter updating of the whole loop is done
for this single note. Also, the example can be extended to
more parameters and more steps.

With the frequency-reward distribution, we can use the
neural network to search for the optimal frequency. First,
we train a critic-network which takes the frequency as in-
put and predicts the reward. When connected with the
critic-network, an actor-network can be trained until it con-
verges to the optimal frequency.

5.3 Evaluation

We will evaluate the environment from two angles: (1)
whether the environment is fast enough for the training;
(2) if the symbolic-to-audio conversion can help the music
generation.

As a support to our method, the programming framework
implementation is the focal point of this paper. In previous
sections, we have introduced our environment design and
the optimisation we have made, which makes it feasible
to use audio evaluation methods for symbolic generation
within an acceptable running time. To illustrate, we pro-
vide the running time of a 16-step task in one episode (see
Fig. 7), which is calculated with the drum-loop task men-
tioned above.

0 2 4 6 8 10 12 14 16
Step

0.5

1.0

1.5

2.0

2.5

3.0

Ti
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e(
s)

Figure 7. The running time of RaveForce example task
drum-loop. Step 0 refers to the reset state and some time
will be spent for calculating the total-length. All 16 steps
will take around 3.2 seconds on an Apple MacBook Pro
13-inch (Mid 2017, i5, without Touch Bar).

Regarding the quality of the music, there are still some
uncertainties, for the generated music quality may change
with different algorithms, tasks and music genres. Cur-
rently, limited by computational resources, we focus mainly
on the programming framework implementation, and only
pay particular attention to electronic music loop or note.

Also, it is arguable that the predefinition of synthesiser ar-
chitecture can be a limitation of music complexity. How-
ever, this trade-off is significant to our proposed method.
With a fixed transforming function, for example, the neu-
ral network will no longer need to organise all the audio
samples to form an audio waveform which is aurally sim-
ilar to an FM synthesis tone. Instead, the computational
resources can be used to focus on optimising the param-
eters of a predefined FM synthesiser. This trade-off may
even bring new possibilities in music creation because mis-
matching the target tone with a random synthesiser archi-
tecture can potentially generate a tone which is similar but
slightly different from the target.

6. CONCLUSION

In this project, we propose a new music generation design
that employs deep reinforcement learning, and we have im-
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plemented an environment for testing the design. It follows
the OpenAI Gym interfaces but moves the interaction to
SuperCollider. It turns out that the SuperCollider is fast
enough in non-real-time audio synthesis, which makes the
reward calculation and the neural network training feasi-
ble. Meanwhile, there are some uncertainties if this method
can improve the music generation, which should be tested
with different tasks, algorithms and music genres. It can
be one of our future directions. Nevertheless, the whole
implementation produces an environment for researches to
explore new algorithms for music generation tasks, e.g.
music sequence generation or timbre parameter searching.
It provides a new perspective to music generation, espe-
cially for those tasks in which users can find a determined
reward function.
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ABSTRACT

It is impossible for one temperament to achieve optimally
both of consonance and modulation. The dissonance level
has been calculated by the ratio of two pitch frequencies,
however in the current homophonic music, the level should
be measured by chords, especially by triads. In this re-
search, we propose to quantify them as Dissonance Index
of Triads (DIT). We select eight well-known temperaments
and calculate seven diatonic chords in 12 keys and compare
the weighted average and standard deviation to quantify
the consonance, and then we visualize our experimental re-
sults in a two-dimensional chart to compare the trade-offs
between consonance and modulation.

1. INTRODUCTION

Nowadays, 12-tone equal temperament is prevalent and
other temperaments has fallen to only historical and math-
ematical interests. However, even now in the actual perfor-
mance, string and wind instruments are played in an ad hoc
adjustment of pitches unless accompanied by keyboard in-
struments. In this age, those electronic instruments ease
us in using any scale more freely. Then, our motivation in
this paper is to give quantitative understanding to the dis-
sonance level in various temperament in terms of triads.

The difference of temperaments has been often mentioned
by the ratio of two pitch frequencies and such web site as
Pianoteq 1 provides us a very convincing interface to ex-
perience the difference of temperaments; however, there
were no mathematical formulation to evaluate the conso-
nance and modulation 2 of a chord.

Consonance and dissonance are ambiguous psychologi-
cal notions. The purpose of this research is to explore the
mathematical model of Dissonance Index of Triads (DIT).
In 1863, Helmholtz [1] proposed the mathematical model
of consonance and dissonance in tones in terms of beats
and roughness. In 1965, Plomp and Levelt [2] defined the
dissonance curve between two pure tones. Later, the math-
ematical formula of the curve has been improved, and Vas-
silakis [3] claimed that the formula he proposed had been
believed to be most reliable; and thus, we employ it also in
this paper, though adding the effect of overtones.

1 https://www.pianoteq.com/
2 In this paper, the modulation means a key transposition.
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Ogata [4] has proposed the idea of consonance value among
chords, calculating the consonance value of each two tones
in the triads and adding them up, and then drew a 3D dis-
sonance curve of the chords. Also, Cook [5] showed the
acoustical properties of triads, claiming the perception of
harmony is not simply a sum of inner consonance. In this
research, we revise the Ogata’s calculation and formalize
the dissonance level in a more rigorous way.

This paper is organized as follows. In the following sec-
tion, we show preliminaries including the introduction of
various temperaments. Thereafter, we propose our formal-
ization and show its visualization. Then, we analyze the
results, and finally conclude.

2. PRELIMINARIES

2.1 Scale and Temperaments

A set of notes employed in a music piece is, when arranged
in a pitch order in an octave, is called a scale. The ratio of
frequency of two pitches is fixed by natural science disci-
plines such as physical science, acoustics, and psychology,
among which mathematics plays the most important role,
and one fixed series of ratios in a scale gives the notion of
temperament.

Pythagoras in ancient Greece discovered that the perfect
fifth interval with the frequency ratio of 3:2 as the most
consonant, next to the octave of 2:1, around 550 BC [6].
The Sanfen Sunyi-fa by Jing Fang in China (BC77–BC37)
is considered to have invented the same temperament with
Pythagorean tuning [7].

Since then, musicologists have been constantly exploring
how to solve the problem of Pythagorean comma, that is
the error which slightly exceeds the octave when the 12th
tone is introduced by multiples of 3/2. If we perempto-
rily regard the 12th locates at the octave, the interval be-
tween the 11th and the 12th becomes narrower than the
other fifths. In later years, Pythagoras pitch was amended
to place the narrow fifth, so called the wolf fifth 3 , between
G] and D] where the fifth is rarely used.

The ultimate temperament for consonance is the just in-
tonation, introducing the multiple by 5 in addition to 3/2,
where the ratio between the intervals can be expressed all
by small integers [8]. However, in contrast, the just intona-
tion is very clumsy in modulation. The scale evolved into
the mean-tone systems [9, 10], well-temperaments by An-
dreas Werckmeister (1645–1706) [11] or by Johann Philipp
Kirnberger (1721–1783) [12], and since then there exist
hundreds or even thousands of music temperaments.

3 It is named after the unpleasant sound like the roaring of wolves.
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C bD D bE E F #F G bA A bB B

Sanfen Sunyi-fa 1 37

211
9
8

39

214
81
64

311

217
729
512

3
2

212

38
27
16

215

310
243
128

Pythagorean Tuning 1 256
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9
8

32
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64

4
3

729
512

3
2

128
81

27
16
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9
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Just Intonation 1 16
15

9
8

6
5

5
4

4
3

45
32

3
2

8
5

5
3
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9

15
8

Quarter-Comma Meantone 1 23

5
5
4

5
1
2

2
22

5
3
4

5
4

2

5
1
4

5
6
4

23 5
1
4

8
5

5
3
4

2
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5
1
2

5
5
4

22

Conventional QC Meantone 1 5
7
4
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5

1
2

2
22

5
3
4

5
4

2

5
1
4

5
6
4

23 5
1
4

52

24
5

3
4

2
22

5
1
2

5
5
4

22

Werckmeister 1 28

35
64
√
2

81
32
27

213 4√2
38

4
3

210

36
8 4√8
9

128
81

210 4√2
36

16
9

128 4√2
81

Kirnberger 1 135
128

9
8

32
27

5
4

4
3

45
32

3
2

128
81

3
√
5

4
16
9

15
8

Equal Temperament 1 2
1
12 2

2
12 2

3
12 2

4
12 2

5
12 2

6
12 2

7
12 2

8
12 2

9
12 2

10
12 2

11
12

Table 1: Ratios of Temperaments in Fractions

The equal temperament has been the product of compro-
mise, which systematically compensated the Pythagorean
comma, defining each half tone to be the 12th root of 2.
Then, the temperament perfectly eased the modulation, that
is, to enable us to change from one key to another freely,
and was applied to the tuning of most modern musical in-
struments around the world. But we can never say that
the equal temperament is satisfactory because it rejects the
original intention of the temperament, viz., the consonance
between intervals. Table 1 lists the frequency ratios of
some typical music temperaments introduced above.

2.2 Helmholtz’s Theory of Beats

In physics, the superposition of two simple sinusoidal waves
with similar but slightly different frequency will cause pe-
riodic fluctuation in strength through time. This phenomenon
is known to piano tuners as beats. Hermann Helmholtz [1]
concluded that dissonance is produced by the beats be-
tween two pure tones (without overtones) or between a pair
of partials of two complex sounds.

When the difference in frequency is small, the beats can
be easily heard. As the difference is increased to 20-30
Hz, the beats will create the impression like ‘jarring and
rough’ described by Helmholtz. Beyond this approximate
point, the beats gradually become too rapid to be identified
and the sensation of roughness disappears.

2.3 Dissonance Curve

In 1965, Plomp and Levelt confirmed Helmholtz’s hypoth-
esis by several experiments [2]. They plotted the disso-
nance curve and proposed the concept of critical band-
width. Note that though the sound produced by the mu-
sical instruments has a complex timbre this psychologi-
cal experiment employed only pure tones with the simplest
spectrum. The combined experimental results is shown in
Figure 1, and nowadays this result is widely accepted.

The figure shows the consonance/dissonance feeling when
the frequency is apart from the fixed base tone. The verti-
cal axis on the right side of the figure represents the degree

Figure 1: Dissonance Curve From a Fixed Tone to Another
Tone [2]

of dissonance, and the interval is from 0 to 1 from top to
bottom. The lower the vertical value is in this figure, the
more dissonant. The horizontal axis is the frequency dif-
ference between higher tone and the base tone, divided by
the value of the critical bandwidth. As the frequency dif-
ference gradually becomes larger, we can observe the re-
sult of the dissonance value d between the two pure tones
varying. The most dissonant position (d = 1) is said to be
about a quarter of the critical band.

When the frequency of the tone is too high or too low
to be heard by human ears, the identification of the tones
becomes not that easy. When the horizontal axis of the dis-
sonance curve only takes the frequency difference (without
divided by critical bandwidth), we need to draw many dif-
ferent graphs according to the difference of base tones.

2.4 Numerical Calculation of Dissonance in Two
Tones

Among various proposals [13–15] on the numerical cal-
culation of dissonance, Vassilakis suggested two principal
studies [16, 17], incorporating the notion of roughness [3].
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Given a signal whose spectrum has two sinusoidal compo-
nents with frequencies f1, f2 and amplitudes v1, v2, where

fmin = min(f1, f2), fmax = max(f1, f2),
vmin = min(v1, v2), vmax = max(v1, v2),

the roughness (dissonance value) of d becomes:

d(f1, f2, v1, v2) = X0.1 · 0.5(Y 3.11) · Z (1)

in which

X = vmin · vmax
Y = 2vmin/(vmin + vmax)
Z = e−b1s(fmax−fmin) − e−b2s(fmax−fmin)

with b1 = 3.5, b2 = 5.75,

s =
0.24

s1fmin + s2
; s1 = 0.0207; s2 = 18.96.

Vassilakis has confirmed that his formula reliably and ef-
ficiently represents the perception of roughness and per-
forms better than the preceding formulae. Therefore, the
temperament evaluation model in this paper is made under
this function of dissonance curve.

We generalize the roughness value (1) to include multi-
ple, more than two sinusoidal partials as the sum of each
pair of two partials. Suppose a spectrum F with fundamen-
tal frequency f is a collection of n sinusoidal waves (or
partials) with frequencies a1f, a2f, ..., anf and amplitudes
v1, v2, ..., vn. Also, we assume that each tone contains
n overtones of [a1, a2, ..., an] = [1, 2, ..., n]. According
to [4], we also assume that v1, v2, ..., vn is a geometric pro-
gression with common ratio of 0.9; that is, v1, v2, ..., vn =
1, 0.9, 0.81, ..., 0.9n−1. So when two notes of F1 and F2

are played simultaneously, the dissonance valueD(F1, F2)
between them is

D(F1, F2) =

n∑

i=1

n∑

j=1

d(if1, jf2, vi, vj) (2)

When F1 and F2 are at interval t and with the same am-
plitude (e.g. F2 = tF1), the transposed version of F can
be defined as tF with partials at tf, 2tf, ..., ntf and am-
plitudes v1, v2, ..., vn. The roughness DF (t) generated by
the spectrum F is defined in function (3) and the shape of
this function is shown in Figure 2. 4 This figure shows the
comparison from a base tone to its seven overtones.

DF (t) =
n∑

i=1

n∑

j=1

d(if, tjf, vi, vj), (3)

3. DISSONANCE INDEX OF TRIADS

Thus far, we have introduced the preceding works con-
cerning the dissonance value between the intervals. In this
section, we propose our new definition of the dissonance
value for triads. Given three tones with the ratio of inter-
vals 1 < t1 < t2, we add up the three values of (3) as
function (4) and draw Figure 3 based on this function.

4 The figure is a reproduction, appearing in [4].

Figure 2: Dissonance Value for Intervals, Dependent on
Base Frequency

Figure 3: 3D Representation of Interval Dissonance in Tri-
ads

DF (t1, t2) = DF (t1) +DF (t2) +Dt1F (
t2
t1
) (4)

where

DF (t1) =

n∑

i=1

n∑

j=1

d(if, jt1f, vi, vj),

DF (t2) =

n∑

i=1

n∑

j=1

d(if, jt2f, vi, vj),

Dt1F (
t2
t1
) =

n∑

i=1

n∑

j=1

d(it1f,
t2
t1
jf, vi, vj).

We have employed twelve major keys and twelve minor
keys, each of which includes seven triads on diatonic notes,
including three major triads, three minor triads, and one
diminished triad (vii◦). In this paper, we have omitted the
harmonic and melodic minor scales. Therefore, since a
pair of parallel keys consists of the same set of chords, we
take 12 group of chords as research objects to evaluate the
music temperaments.

In the first attempt, the average value of 12 group of chords
in each temperament are calculated with our dissonance
value model. According to the ratios in Table 1, we con-
sider the frequencies of an octave starting from the cen-
tral C, for three typical temperaments (Pythagorean tuning,
just intonation and equal temperament) as examples. The
results are shown in Figure 4.
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Figure 4: Relative Dissonance of Chords in a Major Scale,
Compared to Equal Temperament

As we can see, even the equal temperament does not guar-
antee consistent values in different keys. The reason for
this is obviously due to the different frequencies of the base
pitches, resulting in different critical bandwidths. There-
fore, in this paper, we choose to preserve the frequency
ratios and to transpose the base pitch into a certain fixed
value F0. The adjusted model should no longer be called
the dissonance level but an index to compare the conso-
nance degree among different triads, and thus we call it the
Dissonance Index of Triads (DIT) (5), hereafter.

DIT (t1, t2) = DF0
(t1, t2) (5)

We set the frequency of F0 to 263Hz, that is an approxi-
mate frequency of the central C.

4. DIT IN TEMPERAMENTS

This chapter expounds the results of DIT values of triads
in different temperaments. According to Figure 2, this re-
search employs overtones upon the seven diatonic tones.
We fix the ratio of amplitudes to be a geometric progres-
sion with 0.9 as mentioned before.

4.1 The Weighted Chords in Each Key

Prior to the evaluation, we have given the following weights
[0.86 : 0.26 : 0.17 : 0.73 : 0.73 : 0.56 : 0] on each tri-
ads on the diatonic scale, based on the usage of the chords
in 1300 popular songs 5 after transposed to C-major. Note
that our objective here is to compare the average conso-
nant level of various chords in different keys, and not to
assess the human feeling; thus the transposition is a kind
of approximation. The average consonant level is shown
in Table 2, for each key and temperament.

For more intuitive and clear understanding, we compare
the DIT between two triads chosen from the two differ-
ent temperaments. In Figure 5, the horizontal axis of each
graph represents the keys while the vertical axis represents
the DIT value. Since the DIT value is adjusted from the
dissonance value, the lower the DIT value is the more con-
sonant the key is.

The comparison of the Sanfen Sunyi-fa and Pythagorean
tuning is shown in the upper-left graph in Figure 5. We can

5 https://www.hooktheory.com/theorytab/

see that because they share the same process of generation
except for the location of the wolf fifth, the difference of
DIT shifts in parallel. Similarly, the quarter-comma mean-
tone and the conventional quarter-comma mean-tone, shown
in the upper-right graph has the same property.

In the lower-left graph in Figure 5, we can hardly find the
big difference between the two well temperaments along
the horizontal trends. That is to say, the well temperaments
tend to change slightly between adjacent keys, trying to
distribute the dissonance reasonably to keep the balance,
and thus there are no peaks in dissonance. They also espe-
cially ensures some commonly used keys such as C-major,
D-major, F -major, and G-major, are in better consonance.

The lower-right graph in Figure 5shows the comparison
between the just intonation and the equal temperament. We
can see that the equal temperament presents a perfect hori-
zontal line, which proves that it will sound always the same
no matter what key it is. But, its DIT value is also rela-
tively higher with no keys in better consonance. The just
intonation has the lowest DIT value of all the results in a
few keys such as C and A[, but the line goes up and down
steeply and the dissonant keys are also obvious. We can
easily read in this figure that the equal temperament and
the just intonation are the two extremes in modulation and
consonance.

4.2 Consonance or Modulation

In accordance with the position of the wolf fifth or other
adjustments, there are also difference in what keys they
prefer. In fact, there is a difference in the degree of com-
monality of each key, which means we had better take
the weights of keys into consideration. A survey of “The
Most Popular Keys of All Music” 6 on SpotifyTM in 2005
showed the data in Table 3. Here, we put a major key and
its parallel key together because they share a common set
of the diatonic chords.

Taking both the weights of keys and the diatonic chords
into consideration, we visualize the balance between the
consonance and modulation of temperaments as in Table
4, which is plotted in Figure 6. The horizontal axis shows
the average DIT value with weights, which refers to the
consonance level of the temperament, while the vertical
axis represents the average standard deviation of chords
and represents the smoothness of modulation. The lower
the value is, the more easily the temperament can mod-
ulate. It is obvious that just intonation is outstanding at
consonance but worse in modulation, and equal tempera-
ment is the opposite, that is, the easiest in modulation but
the worst in consonance. Pythagorean tuning and Sanfen
Sunyi-fa are staying at a similar level on modulation, and
there are slight difference because of the weights in keys.

At last, the well-temperaments obtained a very good re-
sult; Kirnberger temperament does the best in consonance
than all the other temperaments except for just intonation,
and Werckmeister wins on modulation. Note that they
locate just near on the line linked by just intonation and

6 https://insights.spotify.com/us/2015/05/06/most-popular-keys-on-
spotify/
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SS PT JI ET QM CQM Wm. Kb.

C 0.9407 0.9478 0.8366 0.9276 0.8598 0.8598 0.8861 0.8668
G 0.9478 0.9478 0.8514 0.9276 0.8598 0.8598 0.9084 0.8463
D 0.9478 0.9250 0.9008 0.9276 0.9120 0.8598 0.9251 0.8744
A 0.9478 0.8969 0.9811 0.9276 0.9926 0.8598 0.9261 0.9161
E 0.9478 0.8521 1.0003 0.9276 1.0365 0.9120 0.9325 0.9443
B 0.9478 0.8678 1.0151 0.9276 1.0544 0.9926 0.9385 0.9417
F] 0.9478 0.8956 0.9735 0.9276 1.0055 1.0365 0.9487 0.9435
C] 0.9250 0.9407 0.9215 0.9276 0.9382 1.0544 0.9478 0.9453
G] 0.8969 0.9478 0.8366 0.9276 0.8598 1.0055 0.9433 0.9485
D] 0.8521 0.9478 0.8514 0.9276 0.8598 0.9382 0.9321 0.9478
A] 0.8678 0.9478 0.8560 0.9276 0.8598 0.8598 0.9051 0.9380
F 0.8956 0.9478 0.8720 0.9276 0.8598 0.8598 0.8865 0.9096

Table 2: Average Consonant Level of Chords in Different Keys in Each Temperament

Mjor Keys Parallel Keys Total

C 10.20% a 4.80% 15.00%
G 10.70% e 4.20% 14.90%
D 8.70% b 4.20% 12.90%
A 6.10% f] 2.50% 8.60%
E 3.60% c] 2.10% 5.70%
B 2.60% g] 1.20% 3.80%
F] 2.70% d] 0.90% 3.60%
C] 6.00% a] 3.20% 9.20%
G] 4.30% f 3.00% 7.30%
D] 2.40% c 2.40% 4.80%
A] 3.50% g 2.60% 6.10%
F 5.30% d 2.60% 7.90%

Table 3: Usage of Keys in Popular Music

equal temperament, which implies that they are balanced
between the two criteria.

Here, we have to note that this graph is biased by the us-
age of chords found in SpotifyTM database, i.e., the usage
of chords are more inclined to that in the modern popu-
lar music. On the contrary, the mean-tone, dotted on the
upper-right corner in the figure, was invented to obtain the
clear resonance of the major third preferred in classicist
age. It is easily guessed that if we employ the database of
classical music the tendency would be different. The vari-
ety of distribution of dots in this space would surely reflect
the difference of music genre, and this is our future work.

5. DISCUSSION AND CONCLUSION

We have proposed an index to show the numerical conso-
nance level of triad, DIT, and have compared the differ-
ence of the level in various temperaments. Since chords on
a scale may have different significance, we have weighted
them by the number of appearance. The resultant differ-
ence has been visualized in various graphs.

Nowadays, we do not need to stick to the five-line staff
based on 12-tone equal temperament in composing music

Avg SD

Sanfen Sunyi-fa 0.9245 0.0446

Pythagorean Tuning 0.9277 0.0425

Just Intonation 0.8981 0.0868

Equal Temperament 0.9276 0.0000

Quarter-Comma Meantone 0.9154 0.0917

Conventional QC Meantone 0.9267 0.0972

Werckmeister 0.9227 0.0284

Kirnberger 0.9120 0.0491

Table 4: DIT Results (SD is the standard deviation)

since actual performance should tolerate micro-tones, out-
of-tune tones, portament, vibrating tunes, and so on. This
tendency would be more salient in computer music age in
future. It may be high time for us to reconsider traditional
temperaments, to give special savors in music or to escape
temporarily from the equal temperament, so that we should
know the concrete difference in temperaments.
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Composing space in the space: an Augmented and Virtual Reality sound
spatialization system
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ABSTRACT

This paper describes a tool for gesture-based control of 
sound spatialization in Augmented and Virtual Reality (AR 
and VR). While the increased precision and availability of 
sensors of any kind has made possible, in the last twenty 
years, the development of a considerable number of inter-
faces for sound spatialization control through gesture, their 
integration with VR and AR has not been fully explored 
yet. Such technologies provide an unprecedented level of 
interaction, immersivity and ease of use, by letting the user 
visualize and modify position, trajectory and behaviour of 
sound sources in 3D space. Like VR/AR painting pro-
grams, the application allows to draw lines that have the 
function of 3D automations for spatial motion. The system 
also stores information about movement speed and direc-
tionality of the sound source. Additionally, other parame-
ters can be controlled from a virtual menu. The possibility 
to alternate AR and VR allows to switch between differ-
ent environment (the actual space where the system is lo-
cated or a virtual one). Virtual places can also be connected 
to different room parameters inside the spatialization algo-
rithm.

1. INTRODUCTION AND BACKGROUND

Sound spatialization has been used as a resource for musi-
cal expression at least since Willaert’s production at Basil-
ica di San Marco in Venice (mid 16th century) [1]. More 
recently, since the first implementations of electronic mu-
sic and especially in the past few decades, with the devel-
opment of advanced sound spatialization algorithms (e.g., 
Vector-based Amplitude Panning (VBAP) [2], Higher Or-
der Ambisonics (HOA) [3]), spatial sound has become a 
key element of the compositional syntax for an increasing 
number of composers: “space as a finality in music expres-
sion” (Leo Kupper in [4]) and “space as a compositional 
language”( [5]).

Since the first experiments by Pierre Schaeffer in the early 
50s [1] one of the key aspects has been the control of the 
trajectories of sound sources (i.e., how to manipulate po-
sition coordinates through a “high-level” interface), along 
with the composition of many other parameters that can

Copyright: c© 2019 Giovanni Santini et al. This is 
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affect sound perception (e.g. directivity, aperture of sound
source and room characteristics).

Many solutions have been developed by providing some
form of graphic editing/automations. In order to achieve
intuitiveness and ease of use in a context where a big num-
ber of parameters comes into play, often some specific form
of gestural input has been deployed. Gestural interfaces
include tablets or gamepads ( [6], [7]), gesture recognition
through camera input, both for visible light and infrared
( [8]), [9]), or different sensors ( [10]). More extensive
reviews can be found in [11] and [12].

One further differentiation among systems can be identi-
fied between real-time sound spatialization systems or off-
line studio editing applications: in the latter group can be
inscribed systems responding to the needs of computer-
aided composition, i.e. intuitive controls to be connected
to the development of a musical structure ( [13], [6]). Real-
time control systems can often be referred to as DMI (Digi-
tal Musical Instrument [11], [14]) and more specifically as
Spatialization Instruments, defined as “a Digital Musical
Instrument, which has the capability of manipulating the
spatial dimension of the produced sound, independently of
its capability of producing or manipulating the other sound
dimensions” [12].

Notwithstanding the high differentiation in functionali-
ties and implementation details, all the cited input models
result in some kind of symbolic representation that does
not show the sound source in its exact position in space.
In other words, none of those system lets the user see and
control the sound trajectory “as it is”. Overcoming such
limitations might provide a better control, as “[...] devices
whose control structures match the perceptual structure of
the task will allow better user performances.” ( [15], refer-
ring to [16]).

In the case of Spatialization Instruments, “matching the
perceptual structure of the task” would mean to exactly see
where the sound source is positioned in space 1 .

The recent advancements in VR and AR technologies
provide the background for representing the sound loca-
tion.

2. DESCRIPTION OF THE SYSTEM

The described tool allows to represent and control the be-
haviour of sound sources in a 3D immersive space, as well
as to edit other sound source parameters and store, save and

1 The limitations of direction and distance perception (that would
counteract the idea of clear identification of sound source position and
trajectory) will be discussed later.
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recall those data. Such automations can be modified af-
ter creation. Representation of positioning is in real-world
scale and has a reduced level of abstraction, prioritizing as
much as possible intuitiveness and matching visual objects
to sound behaviour.

The Augmented Reality implementation allows to see and
place sources in the real space. The VR mode provides
interaction with virtual environments. Different (real and
virtual) locations can be linked to different audio room set-
tings inside the spatialization algorithm.

The system is developed through the interaction of two
main components:

• an AR/VR project developed in Unity3D for the HTC
Vive Pro headset;

• a Max/MSP patch dedicated to sound spatialization by
using Spat (Ircam tools).

The two programs talk to each other through OSC (Open
Sound Control) protocol.

The system has been tested in the LIATe (Lab for Immer-
sive Arts and Technology) at Hong Kong Baptist Univer-
sity, with a 24.2 channels setup.

Figure 1. 10 sources distributed over the Sound Spa-
tialization setup in the LIATe shown in the Max object
spat5.oper.

2.1 The Unity Project

The AR session is implemented in Unity for HTC Vive
Pro, currently the only headset allowing both VR and AR
applications.

The input comes from the two controllers for the Vive,
which have 6 DOF (Degrees Of Freedom) motion tracking.

The right controller allows the positioning of one sound
source at a time through parenting (an operation by which
a virtual object is linked in position and rotation to another
object). By moving the controller and pressing the back
trigger, the user can create/modify the trajectory of the se-
lected sound source. Such trajectory is shown as a line
drawn in the air. As a child 2 , a source can be given an
offset respect to the parent controller, thus translating and
magnifying the movement of the controller (for example,
by shifting the sound source one meter above the controller
on the Y axis, a 360 rotation of the controller would create
a 2m diameter circle centered on the controller).

2 A parent is the object providing the reference coordinate system,
while a child is a virtual object whose coordinates are referred to the
coordinates of the parent.

Figure 2. Point of view 1 on a combination of sources and
trajectories.

Figure 3. Point of view 2 on the same combination.

The position of sound sources (update frame by frame) is
sent through OSC to Max/MSP (that performs the sound
spatialization).

In the current state of development, the application allows
to control up to 10 sound sources at the same time.

The left controller can move an additional sound source.
Furthermore, it has a User Interface (UI) attached allow-
ing for the selection of different tools (the UI only sends
OSC commands to Max/MSP, which actually performs the
tasks):

• shifting the sound source from the parent controller (over
the three different axes);

• selecting and soloing (if needed) different sound sources
and assigning different trajectories (recognizable by
different colors);

• changing the aperture and yaw of the selected source;

• choosing the spatialization algorithm;

• changing the room (as a VR room);

• storing and recalling those trajectories; changing trajec-
tories after drawing.
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Figure 4. The Menu attached to the controller.

Sound sources are visualized as spheres of different col-
ors; when they move, either they follow a trajectory or are
moved by a controller. The trajectory is not followed with
a fixed speed: speed is changed according to the original
gesture (every trajectory is, originally, drawn with a ges-
ture). If the sound source’s duration is longer than the tra-
jectory’s one (e.g., the sound source is 3 seconds and the
trajectory is 2 seconds long), the sound source is left static
on the last point of the trajectory. However the gesture
representation can be always edited in real time by press-
ing the trigger of the controller. Thus, the user can freely
adjust a trajectory to the sound source it is related to.

2.2 Sound spatialization

OSC bundles sent out from Unity are received by a Max/
MSP patch based on Spat (Ircam tools). As both Unity and
Spat use a coordinate system where 1 corresponds to 1 me-
ter, the passage from one system to the other does not re-
quire remapping except for coordinate systems alignment.
While the AR/VR project in Unity can be considered the
front-end of the application, all the core functions are ac-
tually implemented in Max/MSP and most of the functions
control Spat parameters (position, sound source aperture,
yaw, etc.).

The system uses different “coll” objects (each one for ev-
ery different sound source), in order to store, save and re-
call trajectory information.

Different spatialization algorithms are available (e.g. 3D
VBAP, HOA and binaural) [17], and their use is left to the
discretion of the user.

Sources moving along trajectories can also be saved as
audio tracks.

3. LOCALIZATION OF SOUND AND VIRTUAL
OBJECTS

The presented application is based on a relation between
virtual object position and sound source position; therefore
a critical issue must be considered: distance estimation and
respondence of visual and aural movements.

As [18] shows, the vision-based distance estimation of
a virtual object presents problems in an AR environment.
While the angular positioning is rather precise, the un-
derstanding of distance tends to be underestimated. The

study evaluates numerous rendering strategies for virtual
objects (such as aerial perspective 3 , cast shadows 4 and
shading 5 ). The authors find, through two specifically de-
signed experiments, that the most effective (by far) ren-
dering strategy to reduce the underestimation of distance
consists of casting shadows on the floor (rendered shadows
are created by a virtual source of light perpendicular to the
floor). In fact, in both experiments, cast shadows proved
to increase accuracy in distance estimation respectively by
90% and 18%.

For audio discrimination, as shown in [19] and [20] many
parameters and spectral cues enter into play: sound level,
direct-to-reverberant ratio (DRR), spectral shape (e.g., low-
pass filtering of frequencies in function of the distance),
binaural cues like Interaural Time Differences (ITDs) and
Interaural Level Differences (ILDs), dynamic cues (mo-
tion) and familiarity with the sound. Even though such
cues are important for giving an idea of distance, a pre-
cise estimation of the perceived distance is problematic. In
fact, given the complexity of the overall perceptual sys-
tem and the dependency of recognition upon many differ-
ent factors, including the conformation of the venue itself,
distance perception is biased and tends to underestimation.

[19] also shows that the presence of a visual cue can help
in focusing the position of a sound source (sometimes pro-
ducing ventriloquism, the phenomenon that occurs when a
listener mistakenely adjusts the perception of sound local-
ization to the position of the visual cue).

Moreover, the discrimination of behaviour of sources is
made problematic by some other effects: for instance, one
sound tends to be more sharply localized when its posi-
tion coincides with the one of a real speaker. Another phe-
nomenon we can take as an example, named as flickering
in [5], consists in the impossibility for our hearing to dis-
criminate position under a very fast source movement, or
better, the tendency to ignore most part of a trajectory, by
focusing only on some discontinuous points in space.

Figure 5. The same configuration of Figure 2 and 3 but in
VR (and with down-cast shadows).

According to [19] and [20] the simultaneous presence of
both visual and aural cues helps in discriminating position,

3 Increased hazyness of colors with the increase of distance.
4 Renderings of virtual shadows on the floor.
5 Defining the reflectance properties of a virtual object.
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distance and behaviour of a sound source; as down-cast
shadows 6 help to have a correct estimation of virtual ob-
jects position, they further increase the precision of sources
localization.

4. USES, LIMITATIONS AND FUTURE WORKS

The presented tool allows to control sound spatialization
in an immersive environment, providing the visualization
of sound sources’ positions and trajectories. It allows fast
testing of spatial compositional solutions and real-time con-
trol over numerous spatialization parameters. It can be
used live as a Spatialization Instrument or off-line as a sort
of (limited) Digital Audio Workstation (DAW).

As pointed out in [6] the limit of some gesture-controlled
(real-time) systems might fall short for what concerns large-
scale conception and compositional organization, especially
in relation to musical structures that might prescind from
bodily gestures. For this reason, a future improvement
should include the possibility to edit trajectories even in
a computer-aided composition context.

The Spatial Instrument described might seem to follow
from a naı̈ve approach: sound trajectories can be perceived
with the same clarity of our visual perception (i.e., the
two representations, visual and aural, of a movement are,
to some extent, precise and identical). As already shown
in [5], [19], [20] even hearing under the most ideal condi-
tions, perceived distances appears to be “a biased estimate
of physical source distance” [19]. As the perception of
distance (but also of behaviour over time) is influenced by
spectral characteristics of sound, the proposed system can
be useful as a way for “fast prototyping”, but cannot solve
the problems inherent to sound spatialization, that in nu-
merous cases require a tailored approach to different sound
sources, sound fields and timbres.

In addition to the source-trajectory approach shown in
this paper, another resource might be found in a spectral
spatialization approach. One possible idea would consist
of distributing different frequency bands of one audio file
across the space as if they were different sound sources
and providing each band with dynamic movements; while
such approach could not have a single-bin accuracy while
maintining intuitiveness of use, bin grouping based on psy-
choacoustic perception (such as Bark bands [21]) would
certainly be possible. Therefore, it would be possible to
obtain a fluctuating timbral environment by organizing the
movement of different Bark bands inside one timbre.

Moreover, a future study will be addressed to the assess-
ment of the usability and usefulness of the tool both with
trained musicians and untrained people.

5. CONCLUSION

The paper has described a VR/AR immersive system for
sound spatialization. It allows real-time control over po-
sition, trajectory and other parameters of different sound

6 Down-casting shadows in AR requires a 3D scanning of the environ-
ment. HTC Pro has the capability to do so, but the range is rather limited
and subject to visual artifacts. In VR shadows are easy to represent prop-
erly.

sources, visualized as spheres. Trajectories are visualized
as virtual strokes.

The Digital Instrument mapping is intuitive, as sounds’
positions and trajectories mirror the gesture of the player.
These gestures can be translated in space and scaled (a
small movement can result in a shift of several meters).
A simple UI attached to the left controller allows the user
to change different parameters and options (spatialization
algorithm, sound source, aperture and yaw etc.). The appli-
cation can be also used as a tool for automating trajectories
and can be useful for electroacoustic composition. Data
about sources movements can be stored as text in “coll”
objects; spatialized soundfiles can also be exported as au-
diofiles.

The switch from AR to VR changes the environment where
virtual sources are visualized from the real world to a VR
landscape. Such possibility to switch makes it easier to
render on the floor shadows of virtual objects represent-
ing sound sources. As [18] shows, such shadows, rendered
under the objects with a virtual light perpendicular to the
floor, increase the accuracy of estimation of virtual objects
positions.

The intuitiveness of the system is enhanced by the simul-
taneous presence of both visual (representation of sound
sources and trajectories) and aural cues. On the other side,
such close mimicking between sound and visual behaviour
might induce a simplistic approach (as if localization of
sound sources could always be perfectly accurate). The
user should always consider some degree of inaccuracy
due to intrinsic characteristic of sound spatialization: the
understanding of source positioning is influnced by many
paraemters, such as intensity, direct-to-reverb ratio, and
spectral EQ. Consequently, in numerous circumstances, a
case by case approach should be considered.
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ABSTRACT

We focus on physical models in which multiple strings
are connected via junctions to form graphs. Starting with
the case of the 1D wave equation, we show how to ex-
tend it to a string branching into two other strings, and
from there how to build complex cyclic and acyclic graphs.
We introduce the concept of dense models and show that
a discretization of the 2D wave equation can be built us-
ing our methods, and that there are more efficient ways of
modelling 2D wave propagation than a rectangular grid.
We discuss how to apply Dirichlet and Neumann boundary
conditions to a graph model, and show how to compute the
frequency content of a graph using common methods. We
then prove general lower and upper bounds computational
complexity. Lastly, we show how to extend our results
to other kinds of acoustical objects, such as linear bars,
and how to add dampening to a graph model. A reference
implementation in MATLAB and an interactive JUCE/C++
application is available online.

1. INTRODUCTION

Recent research in physical models has been directed to-
wards simulating systems using finite difference schemes
[1], which can be used to model the intricacies of many
kinds of vibrating systems and exciters.

As many other physical modelling methods, finite dif-
ference schemes can be used to simulate systems which
are hard to construct in real life. For example, we can
tweak the parameters of models to make e.g., strings that
are extremely long or violin bows that move faster than the
human anatomy allows for. Some research has explored
this idea further by building abstract physical models that
do not have any direct relation to any real world instru-
ments. For example, the work of Stefan Bilbao includes
ways of constructing modular percussion instruments by
connecting vibrating bars and plates [2]. Similarly, the
CORDIS-ANIMA project of ACROE allows one to build
virtual instruments by combining masses, springs, friction
elements and non-linear links, to create novel composi-
tions and matching animations [3].

Copyright: c© 2019 Pelle Juul Christensen et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

This paper will further explore the notions of abstract
physical models by showing a way to build systems of
connected strings that would not necessarily be achievable
or practical in real life. The models described in this pa-
per could possiblly be constructed physically; the goal of
the current study is, however, to build synthesis algorithms
inspired by physical phenomena but without attention to
whether they are realisable in real life or not.

While we are looking at finite difference schemes we should
be aware that many methods of physical modelling for sound
synthesis exists and that they are largely equivalent with re-
gards to which sounds we can produce using them. Related
to the work at hand are waveguides, modal synthesis and
mass-spring systems [4] [5], [6]. For a nice description and
discussion of the various methods see [1, Chapter 1].

We start in Section and 2 by reviewing the one-dimensional
wave equation and how to make a finite-difference scheme
to simulate it. In Section 3 we take a derivation of the reg-
ular 1D wave equation, and show how to get similar results
for a branching topology. In Section 4 we see how to use
these results to build various kinds of models. In Section
5 we investigate the properties of dense models, and show
that a special case of these is equivalent to a discretization
the 2D wave equation. In section 6 we deal with the bound-
ary conditions of our models. Next, in Section 7 we dis-
cuss the computational complexity of various models, and
in Section 8 we give a method of computing natural mode
frequencies and shapes. Lastly in Sections 10, 11 and 12
we end with a description of the reference implementation,
suggestions for future work, and concluding remarks.

2. THE 1D WAVE EQUATION

Before building complex abstract models, we will review
the 1D wave equation, which will be used as the starting
point for further exploration, since it is thoroughly stud-
ied and perhaps the simplest spatial model of musical util-
ity. This section, provided for completeness, is completely
textbook and based on [2], [1], [7], [8], and [9].

The 1D wave equation is defined by the second-order par-
tial differential equation

utt = c2uxx, (1)

where u = u(x, t) is a variable describing the deformation
of the medium at position x ∈ [0, 1] and time t ∈ [0,∞].
The constant c is the normalized wave speed which is de-
termined by the medium under consideration. When dis-
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cretized, Equation (1) looks like

δttu
n
l = c2δxxu

n
l , (2)

where the finite difference operators δtt and δxx are defined
as

δttu
n
l =

1

k2
(un+1
l − 2unl + un−1

l ) ≈ d2u

dt2
, (3)

δxxu
n
l =

1

h2
(unl+1 − 2unl + unl+1) ≈ d2u

dt2
. (4)

To implement this model, we expand the temporal opera-
tor in Equation (2) and isolate un+1

l to get

un+1
l = k2c2δxxu

n
l + 2unl − un−1

l , (5)

3. TWO-BRANCH AND N-BRANCH
TOPOLOGIES

The 1D wave equation can be considered an idealization
of a real physical string (e.g. a guitar string) under low
amplitude conditions. We can represent this using a graph
with two nodes and one edge, as seen in Figure. 1. a).

a)

b)

b b

b b

b

b

Figure 1. a) A line topology model — a string viewed
as a graph with two nodes and one edge. b) A branching
topology model — one string branching out into two other
strings.

Once we look at our system as a graph, a new perspective
arises: if we can build this kind of graph, what other graphs
can we create? In this section we will look at the case of
a branching topology — one string segment connected to
two other string segments through one node, as visualized
in Figure 1. b). We will investigate how to model wave
propagation on such a graph.

ul−1 ul ul+1

h

b b b b b

Figure 2. A section of a line topology string view as a
lumped mass-spring network.

To understand the branching topology we must first look
at the line topology more in-depth. We will be using a
derivation found in [1, Chapter 6] and similarly in [8]. In
Figure 2. we see a section of a string viewed as a net-
work of masses connected via springs. The dynamics of
the mass ul will be defined by the ordinary differential
equation

m
d2ul
dt2

= fl+1,l − fl,l−1, (6)

where m is the mass of the node and e.g. fl+1,l is defined
by

fl+1,l = κ(ul+1 − ul), (7)

which is the force caused by the spring between ul+1 and
ul, where κ is the spring constant.

Combining Equations (6) and (7) we get

m
d2ul
dt2

= κ(ul+1 − 2ul + ul−1). (8)

Defining m = ρAh where ρ is density, A the cross-
sectional area of the string, and h is the distance between
the node. Then setting κ = EA/h, whereE is the Young’s
modulus of the material, we get

d2ul
dt2

=
E

ρ

(
ul+1 − 2ul + ul−1

h2

)
. (9)

Notice that the right-hand side of this equation is equiva-
lent to cδxxu when c =

√
E/ρ.

Now we perform the same derivation, but for the branch-
ing topology. A mass-spring network of the branching
point is shown in Figure 3. For simplicity and for the re-
mainder of this paper we will assume that all connected
strings has the same parameters (h, k and c).

uL−1 uL

1
u1

2
u1

h

b b b

b

b

b

b

Figure 3. The branching point of a branching topology
viewed as a mass-spring network.

The dynamics of uL is described by

m
d2u

dt2
=

1

f1,L +
2

f1,L − fL,L−1. (10)

Notice that we are using L instead of l since we are at the
end of string segment u and that we are using 1 instead of
l for

1
u and

2
u since we are at the beginning of those string

segments.
The spring forces of the branching node is

1

f1,L = κ(
1
u1 − uL), (11)

2

f1,L = κ(
2
u1 − uL). (12)

Taking the same steps as we did to reach Equation (9) but
using Equations (10) through (12) we get

d2uL
dt2

=
E

ρ

(
1
u1 +

2
u1 + uL−1 − 3uL

h2

)
. (13)
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By analogy to Equation (9) we then have a definition for
δxxuL in the case of the branching topology, which is

δxxuL =
1

h2
(

1
u1 +

2
u1 + uL−1 − 3uL). (14)

Of course we are not limited to just two branches. We
can create a N-branch topology as in Figure 4.

...

b b

b

b

b

Figure 4. A model with an N -branch topology.

Using a derivation similar to that of the two-branch model,
we get a definition of δxxuL which looks like

δxxuL =
1

h2


∑

∗
u∈UL

∗
u− |UL|uL


 , (15)

where UL is the set of all the end nodes of the string seg-
ments connected to the branching node u including uL−1.

For now we have only considered a branch at the end of
a string. We could just as well have considered a branch
at the beginning and arrived at a result similar to Equation
(15). We can generalize our rule such that we can apply
that rule to any point in our graph, even the internal nodes:

δ∆Uul =
1

h2


∑

∗
u∈Ul

∗
u− |Ul|ul


 . (16)

Notice that we have changed our notation to δ∆U instead
of δxx. This is to avoid confusion with the one-dimensional
δxx and the |Ul| dimensional δ∆U.

Note that the angle between the strings in a junction are
not considered since the nodes have no freedom of move-
ment in the 2D plane in which we are building our graphs.
Also, when drawing a graph we will usually not care about
getting the distances and angles right, what’s important is
how the strings connect and how many internal nodes they
have.

The notion of a acoustic junctions is not a new concept in
physical modelling. 2D and 3D finite difference schemes
already contains scattering junctions arranged as grid [1,
Chapter 6] [10], however the author has not seen the con-
cept presented as in the current paper where the junctions
do not need to be distributed homogeneously throughout
the model. Likewise, the physical modeling method of
digital waveguides, which has been proved equivalent to
finite difference schemes [11], use scattering junctions to
great extend in order to model room and instrument acous-
tics [12] [13].

4. BUILDING MODELS

Using Equation (16) we are able to connect any number
of strings together. For example we could take a topology

b b

b
b

b

b

b

b

Figure 5. A model with a binary tree-like topology.

like Figure 1. b) and connect another layer to the rightmost
nodes to get a topology like Figure 5.

In graph theory, we would call such a graph a tree. More
generally we can call it an acyclic graph. Any graph we
can build by only adding strings to the end of other strings
will be a tree. So far all models we have looked have been
trees.

We can build more exciting graphs by connecting the
ends of two strings using another string. For example, we
can take the graph in Figure 5 and connect the top right
node to the leftmost node, resulting in the graph in Figure
6, which is a cyclic graph.

b b

b

b
b

b

b

b

Figure 6. A graph with a single cycle

We may also take a string and connect its two ends, thus
creating a loop as seen in Figure 7. This is a compelling
case because it is a model that does not need any boundary
conditions. In general, any graph without pendant nodes
can be evaluated without boundary conditions. Physical
models with looping topology has previously been studied
in the case of Tibetan singing bowls and glass harmonicas
[14].

b

Figure 7. A string with its two ends joined, forming a graph
with a single cycle

5. DENSE TOPOLOGIES

A point that has been implicit so far is that each string in a
given model must be assigned a number of internal nodes,
just like we assign the ordinary 1D wave equation number
of nodes when we discretize it.

If we construct a model in which there are no strings
longer than one between each branching node, we say that
the model is dense 1 .

1 Note that some dense models may have string segments longer than
one at the edges, we will ignore this fact for now since the internal struc-
ture of such a model will be dense
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2,2

u

b b b b

b b b b

b b b b

b b b b

Figure 8. A dense rectangular grid. The zigzag lines, sym-
bolising springs, are drawn to show that the model has no
internal strings.

One well known dense model is the rectangular grid, as
seen in Figure 8. When we wish to update one of the inner
nodes

x,y

u we use Equation (16), which in this case takes
the form

δxx
x,y
u =

1

h2

(
x,y−1

u +
x−1,y

u +
x+1,y

u +
x,y+1

u − 4
x,y

u
)
.

(17)
The two-dimensional version of the wave equation, which
models wave propagation on a non-stiff membrane is de-
fined by [1, Chapter 5]

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
. (18)

A finite difference scheme for this could look like

δtt
x,y

u = c2
(
δxx

x,y

u + δyy
x,y

u
)
. (19)

If we expand the spatial difference operators we get

δxx
x,y

u+δyy
x,y

u =
1

h2

(
x,y−1

u +
x−1,y

u +
x+1,y

u +
x,y+1

u − 4
x,y

u
)
,

(20)
which is equivalent to Equation (17). Therefore, the model
in Figure 8. is equivalent to the discretized 2D wave equa-
tion.

However, since we are building grids using nodes and
not from the definition of the 2D partial derivative, we can
build grids which are not rectangular. For example, Figure
9. shows a hexagonal grid.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b

b

b

b

b

b

b

b

b

b

b

Figure 9. A dense hexagon grid.

Grid configurations are common throughout physical mod-
eling literature. Especially the method of using digital waveg-

uides has investigated various grid configurations and pro-
vide tools for building arbitrary typologies. Since Digital
waveguides has as been proved equal to finite-difference
schemes the result of those studies should be applicable to
graph physical models as well [15] [5] [11].

Say we wanted to model the wave propagation on a 2D
membrane, which kind of grid would be more efficient
with respect to area covered? If we first look at the rectan-
gular grid we see that we cover

R4 =
A

N
=

1

4
(21)

unit area per node. Where A is the area of a grid unit, and
N is the number of nodes in each unit, considering only
inner grid units.

If we do the same for the hexagonal grid we get

R6 =
A

N
=

3
√

3(12)/2

6
=

√
3

4
. (22)

Since we have that √
3

4
>

1

4
, (23)

we can cover more area using the same amount of nodes
when arranging them in a hexagonal grid, compared to a
rectangular grid, giving us a more efficient model.

Furthermore, each node of an inner grid unit in the rectan-
gular grid has connectivity 4 (each node connects to four
other nodes), while the hexagon grid has connectivity 3.
One can infer from the results of Section 7. that if we have
the same amount of nodes, this causes the hexagon grid to
have a lower computational complexity than the rectangu-
lar grid.

The differences between rectangular and hexagonal grids
have been investigated before by Bilbao and Hamilton in
[10], where they arrive at a conclusion similar the one pre-
sented here with the addition of also analysing the disper-
sion of each configuration.

Much is still left to be said about dense configurations.
One does not have limit oneself to regular grids or grids at
all. However, the nuances of various dense configurations
are beyond the scope of the current project and could be
enough work for a separate paper.

6. BOUNDARY CONDITIONS

To evaluate most models we need to decide on which bound-
ary conditions to use for at least the pendant nodes.

When considering a string topology model we need only
apply boundary conditions at the two ends. However, since
graph models can have multiple pendant nodes, we might
need to decide on more than two boundary conditions. In
the case of models with no pendant nodes, we do not nec-
essarily need any boundary conditions.

A non-pendant node may have multiple boundary con-
ditions. Take the example of a rectangular plate which is
clamped at the left and right edges and free to move at the
top and bottom edges. In this case the corners of the plate
will have a ”free” boundary condition in the top-bottom
direction and a ”clamped” boundary condition in the left-
right direction. For our graph models we will similarly
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have to decide on a boundary condition for each direction,
however, our models may have more than two directions.
If a node in our model has boundary conditions we call it
an edge node.

The number of boundary conditions to be decided for an
edge node will be the same as its connectivity. For exam-
ple, if we consider the middle node in Figure 1. b) to be an
edge node, we need to implement boundary conditions for
the directions of each of the three connected strings.

Two commonly used boundary conditions are [1]

u = 0 (Dirichlet), (24)
ux = 0 (Neumann). (25)

For simplicity we will assume for a given node, all direc-
tions will have the same boundary condition.

To implement the Dirichlet condition we introduce a vir-
tual node with a constant value 0 for each direction. This
gives us the update rule

δ∆Uu
n
l =

1

h2


∑

∗
u∈Ul

∗
u− 2 (|Ul|)ul


 . (26)

Implementation of the Neumann condition involves set-
ting δt· = 1

2h

(
unl+1 − unl−1

)
= 0 for each direction, which

amounts to creating a virtual node with the same value as
the real node of that direction, see [1, chapter 5.2.8] for fur-
ther details. Doing this we get an update rule which looks
like

δ∆Uu
n
l =

1

h2


2

∑

∗
u∈Ul

∗
u− 2|Ul|ul


 . (27)

There are lots of other options for boundary conditions
apart from Neumann and Dirichlet, see e.g. [9, chapter 19]
for some choices.

7. COMPUTATIONAL COMPLEXITY

Knowing the computational complexity of a given model
is critical if one wishes to run large models or run mod-
els in real time. Since graph theory is a well studied area
of computer science a lot of existing material will cover
complexity analysis similar to the one of this section (see
e.g. [16]). Despite this we will still go through a basic
complexity analysis specific to the topic at hand.

The complexity of a node will depend on the amount of
connections to it. Evaluating Equation (16) for a pendant
node will take just one operation when disregarding the di-
vision by h2. Connected notes will take |U|+1 operations:
|U − 1| operations for the summation and two for the last
addition and multiplication.

If we disallow cycles, the worst case model is then the
string topology model because it has the lowest amount
of pendant nodes. The complexity of the string model is
3(n− 2) + 2 = O(n). The acyclic model with the highest
amount of pendant nodes has one node connected to every
other node in the model, this has complexity n+(n−1) =
O(n). Thus any acyclic will have complexity O(n).

If we allow cycles we may increase the complexity of our
model. The most complex model is the one where every

node connects to every other node, giving us a complexity
of n(n + 1) = O(n2), which is thus the upper bound of
any model we can build.

8. HARMONIC CONTENT

Finding the harmonic content of a given model can be done
using common methods for computing the natural modes
of a mass-spring system [1, chapter 3]. This method is
completely standard and should be found in any good text-
book on the subject, but is presented here specific to the
topic at hand.

A given mass spring system can be described using the
equation

Mü + Ku = 0, (28)

where M encodes the masses, K the spring constants and
u the displacements of the masses.

We then assume that Equation (28) has a solution of the
form

u = Ueiωt, (29)

which we plug back into Equation (28) to get
(
K− ω2M

)
Ueiωt = 0 (30)

and since eiωt 6= 0 we have that
(
K− ω2M

)
U = 0. (31)

Multiplying through by M−1 we get
(
M−1K− ω2I

)
U = 0, (32)

which is analogous to the canonical form of the eigenvalue
problem

(A− λI)v = 0 (33)

when setting A = M−1K and λ = ω2.
Therefore finding the eigenvalues of M−1K will give us

the frequencies of the natural modes of the system, the cor-
responding eigenvectors v will be the shape of the given
mode.

Since our models are characterized by the wave speed c2

and the topology of the graph, we need a way deriving M
and K from these.

Using the definitions from Section 3. and selectingA = 1
and ρ = 1 we get

κ =
c2

h
and m = h. (34)

Since all nodes in our system have the same mass we have

M = hI. (35)

The shape of K will depend on the topology of the graph.
For example, considering only the center node uL of Fig-
ure 3. we get matrices which look like

Ku =




. . .
κ −3κ κ κ

. . .

. . .







uL−1

uL
û1

ǔ1


 . (36)

This process of building the K matrix can and should be
done using software for models of large sizes.
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9. EXTENSIONS

So far we have looked only at the case of building models
from the 1D wave equation. It is, however, possible to use
the same principles for other acoustic objects.

For example, we can take a linear bar model [1]

d2

dt2
u = −κ2 d

4

dx4
u, (37)

which can be discretized as

δttu
n
l = −κ2δxxδxxu

n
l , (38)

after which we apply Equation (10) instead of δxx to get

δttu
n
l = −κ2δ∆Uδ∆Uu

n
l , (39)

from which we can isolate un+1
l to get our update rule.

For clarity, the operator δ∆Uδ∆U is evaluated as

δ∆Uδ∆Uu
n
l =

1

h2


∑

∗
u∈Ul

δ∆U
∗
u− |Ul|δ∆Uu

n
l


 . (40)

One can also extend models by adding dampening. For
example we can build 1D wave equation based model with
dampening by starting with the equation

utt = c2uxx − 2σ0ut + 2σ1utxx, (41)

where σ0 is a constant controlling frequency independent
loss and σ1 controlling frequency dependent loss [2], and
discretizing it like

δttu
n
l = c2δ∆U − σ0δtu

n
l + 2σ1δtδ∆Uu

n
l . (42)

10. IMPLEMENTATION

A reference implementation in MATLAB is available on-
line 2 , providing a class for building models by creating
strings, connecting them, and adding boundary conditions,
after which one can compute the δ∆U and δ∆Uδ∆U opera-
tors.

Using the main class, an implementation of a 1D wave
equation based model is provided, with and without damp-
ening. An implementation of the linear bar model is also
provided, again with and without dampening, showcasing
the use of the δ∆Uδ∆U operator.

The repository also contains a work in progress — though
usable — interactive GUI application written in C++ / JUCE,
which will serve as a test bed for various model topologies,
extensions and exiters.

11. FUTURE WORK

The most pressing issue for the practical utility of the cur-
rent research is to show stability conditions for a given
graph. This could likely be done using the energy method.
Tree-like graphs seem to have excellent stability conditions

2 https://github.com/PelleJuul/
graph-physical-models

comparable to the 1D wave equation, which is stable when-
ever ck/h ≤ 1 [1, Chapter 6]. However, since we can build
meshes equal to the 2D wave equation, there must also be
a case where the stability condition is ck/h ≤ 1/

√
2 [1,

Chapter 11].
Some feature of the topology of a model must be the

determining factor for the stability condition. Finding a
condition such that the stability of a given graph can be
known before evaluating it is of vital importance if algo-
rithms such as these should ever be used by non-experts.

Like other finite difference models, we need a way of ex-
citing the system. Many choices are available ranging from
simple initial conditions, to advanced bow, hammer or reed
excitation (see e.g. [17]). Any exciter applicable to the 1D
wave equation should be applicable to graph based models.

More work can be done investigating the frequency con-
tent of graphs. For example, how does the relationship be-
tween the lengths of the string in the branching topology
affect the modal frequencies? and what happens when we
introduce cycles into our model? How do models behave
when built using stiff strings or bar models?

Throughout this paper we have considered junctions be-
tween strings of equal stiffness. One could derive rules
similar to the ones in this paper, but for strings with dif-
fering stiffness, which would lead to even more ways of
building graphs.

Lastly, there is of course a lot of time to be spent ex-
ploring the various timbres and artistic uses of graph based
physical models, and related to that, new interfaces for
controlling and performing with such models.

12. CONCLUSION

In this paper we have explored some of the fundamental
concepts of constructing and analysing graph based physi-
cal models for sound synthesis.

Starting with a review of the 1D wave equation and one
of its derivations using mass-spring networks, we showed
how to build a second order difference operator applica-
ble to the end of a string which branches out into N other
strings. Using this we are able to construct any kind of
cyclic and acyclic graph.

When a model is built without string segments longer
than one, we call it dense. We showed that using our new
difference operator, we can build a model which is equiv-
alent to a discretization of the 2D wave equation. We then
created a grid using hexagons and found that it was su-
perior to the rectangular grid with regards to stability and
computational complexity.

Like other finite-difference schemes we needed to decide
on some boundary conditions for the edge nodes in our
models. We reviewed the Neumann and Dirichlet bound-
ary conditions and showed how to implement them for
graph models.

By reasoning about the number of pendant nodes in a
graph, we demonstrated that acyclic models have a compu-
tational complexity of O(N), and that cyclic graphs have
a worst case complexity of O(N2).

Using common methods for analyzing vibrating systems,
we showed how to use the parameters of our model to set
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up a linear system in canonical eigenvalue problem form,
from which we can compute the modal frequencies and
shapes.

Some extensions to our models were examined, including
how to apply our results to a linear bar models and how to
add dampening to a system.

Lastly we discussed topics for future research including
a call for a more rigid mathematical analysis of the mod-
els, experiments with various excitation mechanisms, in-
vestigations of non-homogeneous models, and a wish for
future artistic and interaction related endeavors related to
graph based physical modeling.
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ABSTRACT

One of the biggest challenges in learning how to play a mu-
sical instrument is learning how to move one’s body with
a nuanced physicality. Technology can expand available
forms of physical interactions to help cue specific move-
ments and postures. This cueing can reinforce new sen-
sorimotor couplings to enhance motor learning and per-
formance. Using Mixed Reality (MR), we present a sys-
tem that allows students to share a first-person audiovi-
sual perspective with a piano teacher. Students place their
hands into the virtual gloves of a teacher. Motor learning
and audio-motor associations are reinforced through mo-
tion feedback and spatialized audio. The Augmented De-
sign to Embody a Piano Teacher (ADEPT) application is
an early design prototype of this piano training system.

1. INTRODUCTION

This paper presents the Augmented Design to Embody a
Piano Teacher (ADEPT) system and explains the motiva-
tion for its design to train piano playing. The ADEPT
system is a Mixed Reality (MR) application in which stu-
dents share a first-person, embodied perspective with a pi-
ano teacher to facilitate learning the proper finger, hand,
wrist, and torso configurations to produce various sounds
on the piano. The ADEPT system virtually overlays a
video recording showing the teacher’s hands on top of the
student’s own hands into the students head-mounted head-
set. The ADEPT system is inspired by embodied mu-
sic cognition, which emphasizes the role of human bod-
ily movement in music perception and performance, and
makes muscle memory the main focus of musical training
and analysis [1]. This differentiates the ADEPT system
from the prevailing approaches which often analyses skill
of playing in terms of key press onset and release [2, 3].
Instead, embodied music cognition views piano playing as
a nuanced and specialized bodily knowledge [4]. Previ-
ous technology-enhanced piano training applications aim
to train playing the correct key(s) versus training optimal
sound-producing movements [5]. Rather than memorizing
each individual note to be played, trained musicians use

Copyright: c© 2019 Lynda Joy Gerry, Sofia Dahl, Stefania Serafin et

al. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author

and source are credited.

muscle memory and fine motor skills. Consequently, the
ADEPT system is designed to reinforce muscle memory
rather than rote learning of symbolic musical notation, us-
ing visual and audio perspective-taking as a tool to guide
sensorimotor skills development, combined with motion
tracking and feedback to enhance musical action cueing.

Figure 1. Image showing a user performing piano through
the ADEPT system on the Magic Leap headset.

2. RELATED RESEARCH

The pedagogy of the ADEPT system is based on training
bodily knowledge and sensorimotor skills. The idea of us-
ing virtual overlays to create the illusion of sharing an em-
bodied perspective with the piano teacher is inspired by
the instructional technique of having a piano student place
their hands on top of the piano teachers hands while play-
ing scales or simple tunes [4]. Moreover, the ADEPT sys-
tem aims to to train muscle memory for novice piano stu-
dents, specifically in knowing how to move to produce cer-
tain sounds on the piano. ADEPT is geared towards refin-
ing the students’ experience of their own body and move-
ments towards developing a more nuanced bodily knowl-
edge more akin to that of an expert pianist.

The ADEPT system is inspired by the [?, ?, ?] frame-
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work proposed by Xiao and Ishii [6]. This framework
emphasizes musical expression and takes an experiential
perspective towards developing musical expertise. The tar-
get student users for ADEPT are adult musicians new to
the piano. Thus, ADEPT trains piano playing in a very
imitation-based way, hoping that this can ultimately help
the students to internalize the muscle patterns while play-
ing the piano.

2.1 Music and Piano Trainer Applications

Piano training applications are a subset of technology-
enhanced musical education systems [7]. The goal of
these systems is to enhance the learning environment for
greater individualization, real-time feedback, and multi-
sensory cues. Virtual content augmentations gamify the
experience of learning, and increase motivation and inter-
est in learning the piano [8]. In general, previous piano
training applications have involved three primary compo-
nents: using visual cues to indicate which key(s) to press,
presenting alternative visualizations of musical notation,
and increasing sight-reading proficiency.

The primary augmentation for piano training has been
to present visual cues on top of piano keys to guide key-
board playing. The training emphasis of these systems is
learning to play the correct keys according to the musical
score. For example, key press has been indicated through
line pointers above the key highlighting the next key to be
pressed [8] and a red highlight with incorrect key press [9].
Another variation of training correct keyboard fingering is
to show how long a key should be pressed. For instance,
HoloKeys presents a green glow on the key at the moment
it should be pressed, which disappears as soon as it should
be released [10]. Similarly, the P.I.A.N.O. system involves
highlighting the current and next key to play, and uses a
Guitar Hero approach with dropping lines approaching the
keyboard from a far distance to demonstrate which notes
to play, and for how long they should be played [9]. In
addition to presenting visual cues, some music trainer ap-
plications also present auditory cues to piano students us-
ing real-time sonification to analyze the student’s playing
sounds and provide auditory feedback when the student
plays the wrong note [11].

Visual cues also help to train students’ abilities to imag-
ine some of the sound-movement feedback cycles vital for
playing a musical instrument. Specifically, expressive pa-
rameters might be difficult for a music teacher to commu-
nicate to a student. Hence, for example, the PianoFORTE
system helps to train expressive features of piano playing
by providing visualizations for dynamics, tempo, articu-
lation, and hand synchronization [12]. Similarly, the An-
dante system utilizes visual animations of people of vari-
ous weights walking across the keyboard in sync with the
keys as they are played in sequence [13]. This is designed
to help the student to visualize another aspect of correct
keyboard fingering, which is knowing how hard to press
the keys.

It is important to note that the goal of many technology-
enhanced piano systems is to compliment and to function
as an add-on to traditional piano teaching in-person with

a piano teacher. For example, the Piano Tutor [14] is in-
tended to help students practice in between lessons with the
teacher, and we intend for ADEPT to function similarly.
Additionally, however, technology-enhanced musical edu-
cation has the possibility to make the learning process eas-
ier and more intuitive, as well as to invite new avenues
for personal reflection on one’s own performance and pro-
cess. Specifically, one of the major benefits of these sys-
tems is that they can help the student to develop online
self-analysis skills while playing [14].

2.1.1 Passive Haptic Learning

Another approach of augmentation is to provide haptic in-
formation. For example, the MobileMusicTouch is a pi-
ano training tecnique haptic feedback with vibration mo-
tors inserted at the metacarpophalangeal joints (knuckles)
of a glove to help the student to understand which fingers
to use to play which keys [15]. One advantage of Passive
Haptic Learning (PHL) [16] is that it allows the student to
memorize fingering patterns for playing various short mu-
sic pieces without requiring conscious effort or attention.
Indeed, participants were able to retain fingering patterns
while wearing MobileMusicTouch even when viewing a
film and playing a memory game [15].

Although passively learning finger patterns while attend-
ing other stimuli can be convenient, it raises the question
as to whether it is the right approach to teach the over-
all movement control needed for music performance. As
noted by Xiao [6], most of the technology-enhanced mu-
sical education systems have a focus on the score and the
associated errors.

2.2 Mixed Reality Applications

Mixed Reality (MR) environments present virtual overlays
and augments that directly interact with the users phys-
ical environment, real world objects, and natural move-
ments [17]. Augmented Reality (AR) is a subset of MR,
and the two terms are often used interchangeably. The em-
phasis on MR in this case is to highlight the main inter-
action with real-world objects (i.e., playing a real piano),
which is supported by virtual augments, rather than hav-
ing the primary interaction be with virtual content within
a real environment (i.e., flying a virtual plane that follows
the constraints of the real physical environment), as is of-
ten the case with popular AR applications. Previous educa-
tional benefits have been demonstrated in MR based on its
ability to extend embodied actions with high-fidelity mul-
tisensory stimuli and real-time feedback [18], specifically
by using various types of cueing for different bodily ac-
tions.

Previous piano training MR systems that help cultivate
higher levels of musicianship focus on facilitating playing
a system from memory, and training skills related to mu-
sical improvisation. For example, Handel [19] presents a
visual overlay of sheet music notation on top of the pi-
anist’s fingers while they attempt to play the piece from
memory. Similarly, systems like Stanford’s Pianolens fa-
cilitates learning and rehearsing new music with an inter-
active sheet music display that imitates a piano roll [20].
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More recently, a few MR piano training applications have
projected fingers and hands on top of the keyboard or
on top of the player’s hands to guide piano playing [21].
These systems use various 2D and 3D graphical represen-
tation of an experienced pianist’s hands and fingers. For
example, Teomirn uses the HoloLens display and projects
a geometric 3D display of a virtual hand that the student
can place their own hand into to follow along while play-
ing. However, the virtual hand is not very realistic, and
only roughly helps to guide the student’s movements. The
ADEPT system instead depicts precise finger, wrist, and
upper arm positions, angles, rotations, and movements of
the piano teacher for the student to follow. Moreover, these
MR designs are mostly focused on helping the student to
know which finger to use to play which key.

As noted by Xiao [6] , the primary element that is lacking
in all of these systems is an emphasis on the bodily move-
ments of the piano student, and training how to move the
body in the correct ways as a focus for the training and
technology-enhanced design. MirrorFuge is one excep-
tion [21]. The MirrorFugue system presents a projection-
mapped video stream of a pianists hands on top of a physi-
cal keyboard. Subjects reported that seeing the hands of an
instructor was more helpful than screen-based instruction
or abstract visual cues (a small dot indicated keys pressed
by the expert pianist) [21]. Due to a small sample (5 sub-
jects), the results were not statistically significant but sug-
gest that using the first-person perspective to present the
instructors hands from the same egocentric orientation de-
creased the amount of time that it took for students to learn
simple melodies. These results are promising for the devel-
opment of AR systems focusing on sharing an embodied
perspective with an expert pianist who guides the students
movements, and this is precisely the target of the ADEPT
system. In the next section, we describe virtual embod-
iment and introduce the concept of augmented embodi-
ment, which is a key design principle behind the ADEPT
system.

2.3 Virtual and Augmented Embodiment

Virtual embodiment is a technique used in virtual reality
(VR) to create the illusion of becoming a virtual avatar
[22]. Virtual embodiment allows users to see and hear
from the first-person, embodied perspective of another real
person or a virtual character and perform a task together,
such as hand-drumming [23, 24] Synchronous stimuli pre-
sented to the visual system in VR, combined with the phys-
ical body in reality, create various bodily illusions that
make the user feel that the avatar body is their own body
[25]. This induces strong psychological effects on the user,
specifically identification with the avatar body [26]. Taking
the perspective of an expert in virtual embodiment studies
has been shown to increase confidence and improve per-
formance on related tasks [4, 27–30].

In addition to the strong psychological and learning ef-
fects of virtual embodiment, learning a new task from
a first-person perspective improves retention of instruc-
tional material. For example, sequences of chess move-
ments were more accurately retained when presented in

first-person perspective in VR, as compared to exocen-
tric, screen-based perspective [31]. Memory retention is
stronger when events are presented from an egocentric ver-
sus an exocentric or allocentric point of view [32]. To this
end, egocentric VR has been used in memory rehabilitation
to increase procedural learning in patients with memory
impairments, transferable to real-world environments [33].
Thus, delivering piano instruction in the ADEPT system
should support better retention of the finger sequences in-
volved in playing and better performance outcomes in a
shorter time.

Another reason why virtual embodiment may increase
fine motor skills is that the observation of hand move-
ments elicits motor-evoked potentials in the observer in
the specific muscles that would be involved in executing
the movements [34]. Research on the mirror neuron sys-
tem in humans indicates that during the observation of an-
other persons bodily state, the same neural structures are
activated in the observer [35]. This effect is even stronger
when observing hand movements from a first-person per-
spective, when one’s own hand positions and movements
are congruent with those observed [32]. Moreover, visual
feedback using video is very common for both piano teach-
ers and students to adjust and adopt better postures for
playing, and this has been enhanced with 3D visualization
of postural information [36].

We here introduce the concept of Augmented Embodi-
ment, in which the user’s point of view is not fully over-
taken by that of another virtual avatar or real person, but
is instead augmented with a virtual projection of another
person’s embodied perspective super-imposed on top of
one’s own. This is the core design feature implemented
in the ADEPT system. Augmented embodiment can al-
low a student to perform and observe an action at the same
time, from the same view-point, and in the same way as a
teacher with real-time feedback, a phenomenon not possi-
ble in physical reality [37].

2.4 Embodied Music Cognition

Adaptive and immersive virtual environments involve new
strategies for sensorimotor training and can induce brain
reorganization, presently tested therapeutically in clini-
cal populations recovering from stroke [38]. In one such
study, a Virtual Piano Trainer system found that adaptive
motion feedback providing information about position ad-
justments in the fingers and hands increased the accuracy
and duration of muscle activity, expediting the recovery of
these fine motor capabilities. Motion feedback support has
previously been shown to increase skills ability and reten-
tion while learning technical motor skills [39]. Multisen-
sory feedback can encourage plasticity within the sensory-
motor cortex and enhance motor performance [40].

3. SYSTEM OVERVIEW AND DEVELOPMENT

The ADEPT system is programmed in Unity version
2018.1.9f2-MLTP8.1 with C# and uses the Magic Leap
Package Manager with Lumin SDK v0.19.0 and Device
Driver version 0.94. The setup involves virtually overlay-
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ing a video recording from a head-mounted camera worn
by the teacher into the student’s head-mounted display
(HMD), in our case, the Magic Leap 1 (ML-1, see Fig-
ure 2). The Unity programming environment used the Me-
dia Player example from the Magic Leap Unity SDK and
played the video on top of a spherical mesh. The sys-
tem displays the teacher’s hands on top of the student’s
own hands, and highlights each key when pressed. We
used Real-World Reconstruction in Unity, which uses ML-
1 depth sensors and spatial computing to track the environ-
ment in real-time, which helped for tracking the location of
the user’s physical piano. AR Registration of the physical
piano was accomplished using Vuforia Engine version 8.1
and four fiduciary markers at the four corners of the piano.
The cameras on the ML-1 register the four corners of the
piano and Vuforia image recognition from piano models
registers the approximate positions of the keys.

The system is a a work in progress, and this section re-
views the implementation that has been developed so far
as well as features that are continuing to undergo further
development. For the development we recorded a young
piano teacher with 15 years of experience who had taught
piano for 3 years.

Figure 2. This is the overview of the system. The left side
of the figure shows the piano teacher wearing the head-
mounted camera with the recording microphone directly
behind his head. On the right, we see the user (piano stu-
dent) wearing the Magic Leap headset with spatialized au-
dio. The teacher and the student have the same audiovisual
perspective and orientation on the piano.

3.1 User Experience

Participants were seated at a Yamaha P45 digital piano
with controlled lighting for optimal display of the virtual
overlays, and ability to still see one’s own piano and hands
clearly. In the videos, the piano teacher is seated at an up-
right grand piano. Students were instructed to listen to the
teacher’s instructions, and then to place their hands on top
of hers and play along with her when she instructed them
to do so. The video sequences involved first an observation
sequence in which the teacher showed the fingering move-
ments. Then the teacher would instruct the students to get
ready and place their fingers, and she would count down
from three for when they should start playing along with
her.

3.2 Visual Environment

The visual environment consists of 360 degree video
footage that has been captured using the Garmin VIRB 360
camera with a head-mounted strap (made by Go Pro) to
create a head-mounted camera worn by the piano teacher
(see left panel in Figure 2). Multiple recordings were done
of different short sequences in which the piano teacher
explains how the fingers are numbered, how to place the
hands on the keyboard, and how to play basic scales.

One concern with using overlays is that the visual envi-
ronment quickly becomes cluttered. Even with the virtual
piano and piano keys spatially aligned with the user’s phys-
ical piano (using Vuforia ARCamera and TargetMarkers),
early prototype testing indicated visual clutter. By creat-
ing an alpha channel in Adobe After Effects, we were able
to reduce most of the visual noise from the piano by only
having the virtual hands and the current key note pressed
in the video with a blue shader to highlight it.

The first recordings were done with the top of the grand
piano removed with the intention of allowing the student
to see the hammer-head moving with the key depressed.
When superimposed in the MR headset and environment,
the visual environment appeared very busy and cluttered.
Thus, inspired by the MirrorFugue project [21], we re-
placed the top of the grand piano and recorded the 360
video footage such that the top of the piano created a re-
flection of the piano teacher (see Figure 3). There are three
reasons that it is valuable to show the virtual reflection of
the piano teacher. The first is to cultivate greater social
presence [41], so that the student can see the face of the
piano teacher while she speaks and gives verbal instruc-
tions. Social presence is the feeling of being there together
with another real person in an online, digital, or virtual re-
mote collaboration, and it has shown to have significant
effects on user satisfaction [41]. The second reason is
modeled from of the design of virtual embodiment stud-
ies in VR. The setup for these studies involves a virtual
mirror, in which the user can see him or herself reflected
as the avatar they embody [22]. Thus, we wanted to in-
clude a similar ‘virtual mirror’ to create a greater sense
of psychological identification with the piano teacher that
might improve confidence and performance. The final rea-
son for including the virtual mirror is that eventually we
would like to visually annotate the virtual reflection of the
teacher with real-time motion feedback from the student’s
movements to help the student notice the difference be-
tween their movements and those of the teacher. A related
example comes from the i-Maestro musical training appli-
cation for violin [42], which used a 3D Augmented Mirror
showing synchronized video and motion data for bowing
trajectories on the violin. This 3D Augmented Mirror en-
hanced students’ understanding of the correct bowing tech-
niques and body postures for playing the violin.

3.3 Audio Recording and Feedback

The teacher was seated at a Yamaha upright piano situ-
ated in a large room (volume: around 400 m3) against a
wall. A Sennheiser Ambeo VR Mic was positioned up-
right slightly above and behind the expert’s head in order
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Figure 3. This figure is a model representing what the user
sees inside the headset in the Mixed Reality environment.
The user sees the virtual hands of the teacher on top of
the physical keyboard. There is a blue highlight on the
currently pressed key. The user also sees the face and upper
body of the pianist in the reflection on the upright grand
piano.

to get a binauralised sound source. All sound files were en-
coded to B-format thanks to Ambeo A-B Format Converter
then decoded to binaural format through FB360 Converter.

3.3.1 Audio Spatialization

Spatialized audio is used in ADEPT to differentiate the
sounds of the teachers playing from the students playing,
ultimately so that the student can learn to attenuate to their
errors in pitch and timing while playing. Different devel-
opment versions of the system have explored various ways
to spatialize audio. The first design was to spatially mis-
align the teacher’s point of view from the actual physical
piano of the student. Here, we offset the sound virtually
by using the Facebook 360 Audio Spatializer plugin in
Reaper. The sound was made to spawn at locations directly
above and to the left of the user’s physical piano, above and
to the right, matching the user’s piano, and also slightly
below. This spatial offset design was inspired by the vi-
sual offset design used by Xiao Xiao in MirrorFugue [21].
Preliminary data from pilot testing has shown that students
find the audio spatialization offsets of slightly above and to
the right and left to be the most comfortable and intuitive
to follow than audio from below or matched to their piano
location.

The second audio spatialization technique we are explor-
ing is using binaural recordings rather than ambiosonics to
capture the spatial perspective of the teacher. Based on the
previous design results, we will be offsetting the spatial-
ized spawning location of this binaural audio to be slightly
above the user’s piano. In future user studies, the binau-

ral audio will also be accented by personalized 3D sound
that account for the shape of the user’s ears, which may
enhance the effect.

4. FUTURE DIRECTIONS

Rather than using 360 degree video, we are currently ex-
ploring using volumetric video capture of the teacher’s
hands using the Structure Sensor and the Microsoft Kinect
2 depth-sensing cameras. We will also explore using Leap
Motion hands to display the teacher’s hands with a custom
mesh of the teacher’s actual hands from photogrammetry
scans. A benefit for both of these designs is the possibility
to easily resize and rescale the 3D hand models to more
appropriately fit the student. Between these two designs,
we will select the one that seems to have the most optimal
display quality for the project. The virtual mirror will be
present, not as now with the real reflection of the teacher
in the piano, but instead as a darkened video screen that
we will position in the Unity environment to spawn in the
reflection of the piano. The goal for the design moving
forward is to present the minimum amount of information
necessary to facilitate user performance with the highest
degree of quality. Currently, we are also developing a dis-
play with volumetric video capture and 3D motion capture
data overlaid, which we could project as a 3D augmented
Mirror like the i-Maestro project [42]. We hope that this
can help the student to understand motion trajectories for
the piano, combined with real-time motion feedback visual
annotations.

Currently, the visual component of our design prototype
has only explored adjusting the opacity of the video over-
lay of the teacher’s visual perspective. In future user test-
ing, we are also exploring having the teacher’s body and
hands appear next to the student, or above the student’s
hands on top of the keyboard, to explore if this makes it
easier for students to follow the fingering patterns of the
teacher. We will also test having the teacher’s hands to
be present from a first-person perspective aligning with the
student’s visual perspective in the observation phase, and
then to appear above the student’s hands during the ”play
along” phase. And finally, another visual design prototype
we plan to test involves having the teacher seated next to
the student, and to allow the student to slide over on their
piano bench to “sit into” the body and first-person perspec-
tive of the teacher.

We are also implementing a user interaction for the stu-
dent to trigger hearing more or less from teacher’s point of
view. This means that the user will be able to select how
much she sees or hears from the teachers point of view.
That is, in future user testing, the system will be presented
as though the teachers embodied sense reality is something
that the student can choose to enter into. For instance, the
visual overlay will be first set around 50 percent opacity,
but the student can decrease or increase the opacity to see
more or less from their own or the teacher’s point of view.
Similarly, the student can lean her head forward into a vir-
tual sphere to hear more strongly from the teachers per-
spective.

Audio signal processing of the piano playing is being in-
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corporated using pitch Pure Data, so that we can have an
auditory analysis using the frequency to MIDI converter,
pitch detection, and tempo tracking. We will use infor-
mation to detect errors in playing the incorrect key or the
correct key with the wrong finger. Ultimately, this analysis
will allow the system to provide real-time feedback with
visual motion annotation, pitch slider effects, and poten-
tially also haptic feedback to the student.

The role of haptic feedback in learing musical move-
ments has becoming increasingly vital to this project, and
we are exploring the possibility of using a wrist actuator
with five vibrating motors to represent movements for each
of the fingers. Ideally, this haptic wearable device should
be non-intrusive for the student’s playing, which is why we
are planning to test a wrist-worn device, as opposed to pre-
vious gloves which were not worn while playing the piano.

Lastly, we are collaborating with piano teachers at the
Rhythmic Music Conservatory in Copenhagen to collect
qualitative data on piano pedagogy towards a participatory
design approach to make the technology more specific to
enhance and compliment the students’ learning experience.
Additionally, we continue to conduct user testing with the
system to address ongoing challenges during development.
One of the goals in doing this is to better understand music
and piano pedagogy and to explore the ways that the sys-
tem can actually compare to and enhance traditional face-
to-face piano instruction with a teacher. We hope that the
system can eventually deliver piano instructions in a way
that acknowledges the deep and complex history of piano
pedagogy techniques, whereas the current focus in design
and development has been much more focused on previous
technology-enhanced systems for training to piano.

4.1 Motion Capture and Feedback

We are beginning to explore the major features of musical
movement that distinguish expert pianists (masters) from
more novice pianists, and also to explore the movement
patterns characteristic of very novice adult students learn-
ing the piano for the first time. The purpose of this motion
analysis is to create an evaluation metric for performances
as an outcome to target as a result of the training.

Motion capture from the teacher will be captured using
Leap Motion (mounted above to approximate head posi-
tion) and photo-electric sensors with an optitrack system.
Motion data from the student will be captured using the
Leap Motion (mounted above at same coordinate ratio to
where it had been mounted for the teacher) and Microsoft
Kinect as both infrared and skeletal tracking systems. Mo-
tion data will capture finger and joint positions from both
hands, as well as temporal sequencing and timing of move-
ments.

Novice pianists focus on the extremities while playing,
particularly having the correct fingering patterns, whereas
expert pianists feel the music through their entire body
[43]. Arms, wrists, and upper torso posture movements are
usually introduced and trained at more advanced stages of
learning, and are trained in isolation [43]. Learning how to
move the body relies heavily on imitation. Observation and
imitation of expert performance allows students to experi-

ence how music is felt in the body of another player [6].
Moreover, visual feedback about motor performance, ac-
curacy, and adjustments can help improve reflection on
one’s own body and performance, and is often used in pi-
ano performance [36]. A previous training system used
electromyography (EMG) to measure muscle activity in
the thumb and successfully delivered biofeedback to help
students achieve optimal muscle activation. While mo-
tion feedback does not deliver information directly about
muscular activations, this still indicates a strong potential
for motion feedback to imrpove motor performance while
playing piano [44]. Thus, the primary goal of the mo-
tion feedback is to support successive adaptations in motor
learning and performance. In order to monitor and evalu-
ate the performance, the movements of the students will be
captured with similar means.

4.2 Potential Challenges

Previous AR piano training applications have used Vufo-
ria object tracking for matching the virtual and real pianos,
but the distance at which the virtual piano appears from
the user is still not quite correct. Thus, a potential chal-
lenge for the next stage of development is to ensure that
the 3D model of the piano teacher’s hands appears at the
current depth and distance from the user. We found that
we were able to control this apparent distance with the 360
degree video, but depth perception accuracy in the Magic
Leap headset is not as precise as it could be. Specifically,
we will want to make sure that the spatial configurations
of the hands are easy to see and understand in a three-
dimensional way, and that the user can perceive the dis-
tance and depth of the fingers accurately. A related chal-
lenge is that the teacher’s hand blends in with the white
keys on the keyboard, so we might need to put an outline
around the hand and fingers, shade the hand with a color
shader, or have the teacher wear colored gloves to increase
the contrast.

Visual and aural latency could be potential challenges
that could disrupt the user experience, specifically if the
two sensory channels are out of sync. In future develop-
ments, the auditory mix between teacher’s and student’s
sound could be a bit problematic if there is latency between
visual and auditory information.

4.3 User Studies

Future user studies will be conducted on the binaural audio
perspective-taking to see which settings optimize user ex-
perience. We will also explore adding user interactions to
trigger the intensity of the perspective taking, and measure
which decisions users choose to make at which time points
to gain a sense of the usefulness of the user interactions,
and which user actions should be programmed to trigger
those visual and auditory effects.

4.4 Experimentation

We will compare two groups of students learning either
with the ADEPT system or with the same content pre-
sented on a 2D video screen. The main target of experi-

246

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



mentation is to explore how well students can actually fol-
low the teacher. Thus, we will be measuring interpersonal
synchrony comparing motion capture data recorded from
the teacher with that of the student. Our hypothesis is that
interpersonal synchrony during training will predict better
performance out of the system. Afterwards, we will ask
the students to play the same sequences from memory and
measure performance accuracy using motion capture anal-
ysis with the Musical Gestures toolbox in Matlab and video
analysis using Elan Software for Transcription. We will
also have an expert panel of professional piano instructors
who will rate the performance of the users who had been
trained with the system, as compared to just watching a
video.

5. DISCUSSION AND CONCLUSIONS

In this paper we presented ADEPT, a system for facilitating
learning to playing the piano. The ADEPT system aims at
teaching musical movements on the piano in an embodied
way so that the student learns to move like a professional
pianists. We use audiovisual perspective taking with a pi-
ano teacher to help students orient to the correct hand, fin-
ger, wrist and upper torso positions for sound-producing
movements on the piano. By introducing the notion of
Augmented Embodiment, the student can see and hear a
blend of his or her own body and that of the teacher from a
first-person perspective. Increased user interactions to con-
trol the intensity of the audiovisual perspective taking are
currently being implemented and tested. Initial prototype
testing indicates that positioning the sounds of the teacher’
piano playing slightly above the student optimizes comfort,
and further testing will determine if this also optimizes per-
formance. In conclusion, the ADEPT system offers a new
design technique using modern Augmented Reality tech-
nology with audio-visual perspective taking and feedback
to help teach piano to novice students.
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ABSTRACT

This paper models predictive processing of chords using 
a corpus of Ludwig van Beethoven’s string quartets. A 
recently published dataset consisting of expert harmonic 
analyses of all Beethoven string quartets was used to eval-
uate an n-gram language model as well as a recurrent neu-
ral network (RNN) architecture based on long-short-term 
memory (LSTM). We compare model performances over 
different periods of Beethoven’s creative activity and pro-
vide a baseline for future research on predictive process-
ing of chords in full Roman numeral representation on this 
dataset.

1. INTRODUCTION

Predictive processing and the formation of expectancies 
are core capacities of human cognition that also play a 
fundamental role in music perception and cognition [1–4]. 
Musical expectancies are essential for processes at differ-
ent time-scales, such as for musical interaction and syn-
chronization, as well as for musical tension and the play 
with emotional effects [5, 6]. Musical expectancy has also 
been understood to be culture- and style-dependent and to 
be grounded in musical knowledge that is acquired through 
processes of implicit or statistical learning [1, 7, 8]. The 
modelling of predictive processing and the formation of 
expectancies is thus of core importance for computational 
models of music and requires a learning-based approach.

Musical expectancy has been studied in terms of melody, 
harmony and rhythm, where the task is to predict the next 
note, chord, onset or a combination thereof. In the gen-
eral case of polyphonic music, it is a non-trivial problem 
to find a consistent representation of musical content and to 
accurately define what events should be predicted. Many 
past approaches have, therefore, simplified the problem to 
predicting a single stream of events from a fixed alphabet, 
such as melodic notes or chord events. This task is struc-
turally closely related to modelling natural language, and 
similar approaches have been taken in both fields. Most 
notably, one can distinguish models that use a finite-length
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context, such as n-gram or kth-order Markov models, from
models that use a latent state to capture longer dependen-
cies, such as hidden Markov models (HMMs) [9] and re-
current neural networks (RNNs) [10, 11].

In this paper, we focus on modeling the prediction of a
chord symbol given a harmonic context based on a recent
data set comprising expert annotations of the 16 Beethoven
string quartets [12], subsumed under nine different opus
numbers which formed the basic grouping for all analy-
ses. To this end, we evaluate a standard n-gram model as
well as a state-of-the-art RNN architecture based on long
short-term memory (LSTM) [13]. We report and compare
accuracy results of the two models over different opera and
discuss our results form a technical as well as from a music
theoretical point of view.

2. METHODS

2.1 Data and Preprocessing

The data used for this project contain the expert harmonic
analyses of all 16 Beethoven string quartets incorporated
in nine opera: Op. 18 (6 quartets), op. 95 (3 quartets) and
7 other opera, each containing one quartet. We group the
string quartets by opus number assuming that an opus con-
stitutes a coherent unit of a musical work with pieces that
are not independent of each other and should thus be treated
as dependent data in the training procedure. Features in the
data include global and local keys, beat, time signature,
opus and movement numbers. The chord annotation for-
mat used in the dataset is a formalised version of Roman
numeral notation, the most common music theoretic set of
symbols for harmonic analysis. In addition to the key, the
scale degree, and the figured bass, the chord annotations
include information on suspensions, added notes and pedal
notes. Table 1 demonstrates several examples of of this an-
notation format. A more detailed explanation can be found
at the official documentation of the data [12]. This anno-
tation format is much richer than what is commonly found
in harmonic corpora and thus implies a particularly chal-
lenging learning problem.

A total number of 28, 095 chord labels are annotated re-
sulting in 1, 730 unique items. More than 1,500 chords
occur less than 10 times throughout the whole corpus of
16 quartets (908 of which occur only once), while the top
5 chords occur more than 1,000 times throughout all quar-
tets. This distribution is similar to the Zipf distributions
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Notation Interpretation

V43 a dominant seventh chord in second inver-
sion

ii%7 a half-diminished seventh chord on the sec-
ond scale degree

IV6// a major triad on the fourth scale degree in
its first inversion at a phrase end

vi(+9) a minor triad on the sixth scale degree with
an added ninth

V[V a dominant triad over the pedal tone on
fifth scale degree

Table 1. Examples for chord symbols in the dataset and
interpretations.

Figure 1. Frequency of chord symbols on log-log scale.

frequently found in natural language and music [14, 15].
In order to reduce the absolute number of chord classes,

several preprocessing rules were established. Chord sym-
bols on top of a pedal, e.g. a suspended tone in the Cello,
were disregarded because their harmonic function is more
ambiguous. As a result, the number of chord categories
was drastically reduced to only 800. Figure 1 represents
the resulting distribution of chord ranks vs. chord frequen-
cies after preprocessing.

2.2 N-gram Language Model

Our goal is the prediction of chord symbols, given some
harmonic context. The simplest choice for a baseline model
is to use an n-gram language model, which estimates the
probability of the ith word wi based on the context of the
previous n− 1 words wi−(n−1) . . . wi−1as follows:

P (wi|wi−(n−1) . . . wi−1) =
C(wi−(n−1) . . . wi)

C(wi−(n−1) . . . wi−1)
,

(1)
where C( · ) counts the number of times the respective se-
quence of words occurs in the training data. In order to find
the optimal n-gram length, hyperparameter tuning was per-
formed. Values of n = 2, 3, . . . , 10 were used to evaluate
results by cross validation: for each iteration, the model
was trained on the whole corpus except one opus, which
was reserved for validation purposes. As a simple n-gram

Parameter Values

Sequence Lengths [chords] [10, 20, 40, 80, 160]
Amount of layers [1, 2, 3, 4, 5]
Layer type [LSTM, Bi-directional LSTM]
Amount of neurons [8, 16, 32, 64, 128, 256, 512]
Dropout strength [0, .1, .2, .3, .4, .5]
L2-regularization [0, .001, .005, .01, .05, .1, .5]

Table 2. Model parameters explored

Layer Description

LSTM 256 neurons, return sequences = True, L2 = 0
Dropout Strength = 0.3
LSTM 64 neurons, return sequences = False, L2 = 0
Dropout Strength = 0.3
Dense 821 neurons, activation = sigmoid, L2 = 0

Table 3. Model layout

model such as (1) can not handle unseen events, we use
add-one smoothing [16] by adding one prior count to all
symbols and adjusting the denominator of (1) accordingly

P (wi|wi−(n−1) . . . wi−1) =
C(wi−(n−1) . . . wi) + 1

C(wi−(n−1) . . . wi−1) + V
,

(2)
where V is the total number of unique chords in the corpus.

2.3 Neural Network

As a more complex model for the prediction of chord sym-
bols we used a Recurrent Neural Network (RNN) with
Long Short-Term Memory cells (LSTM). This model was
selected because this type of network has shown promise in
sequence prediction tasks with long term dependencies [17]
and thus seems suitable for an application to music. More-
over, it allows us to compare the more complex RNN model
with the more basic n-gram model.

The design of the model architecture was based on re-
lated work [18, 19] after which modifications were tested
manually by maximizing for validation accuracy on 10%
of the data while training on the remaining 90%. Differ-
ent configurations of sequence lengths, dropout, amount of
layers, type of layers, and amount of neurons were tested.
Tuning of the L2-regularisation strength and dropout rate
was then done with a nine-fold cross validation using the
distinct opera as cross-validation folds. We tested param-
eters in the ranges shown in Table 2. Our final network
architecture is shown in Table 3.

We also tested replacing the initial LSTM layer with a
convolutional layer and performed a grid search over ker-
nel size and amount of filters. While the training phase was
notably faster, peak validation accuracy was a bit lower
than our final final LSTM architecture.

For the activation functions we used the defaults provided
with the Keras library [20], which is tanh. To normalize
the network output to a categorical distribution we used a
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Figure 2. Comparative accuracy of a n-gram and LSTM
model using nine-fold cross validation. The error bars are
defined as as 1/sqrt(n), n being the length of the opus

softmax function

S(x)j =
exj

K∑
k=1

exk

. (3)

For training we used the Adaptive Moment Estimation (ADAM)
optimizer [21], which has proven to yield robust perfor-
mance based on prior work in the field of neural networks
and deep learning, primarily ascribed to the adaptivity of
the learning rate it employs.

3. RESULTS

Hyperparameter tuning for optimal n-gram length resulted
in an optimal value of n = 2, which is consistent with
findings in other modelling tasks in music reporting val-
ues between 2 and 4 (see e.g. [9, 16]). Thus, the simplest
model actually achieved the best average accuracy score of
0.1952 (SD=0.024). While the average accuracy for n = 3
and n = 4 did not decrease substantially, results for larger
n drastically decreased. The best recorded performance
was 0.2372 for op. 130, and the lowest score of 0.1594
was achieved for op. 135. The accuracies for all opera are
shown in Figure 2.

As for the LSTM model, it was observed that longer se-
quence lengths l in training only increased computational
time at no substantial increase in accuracy, leading us to
use the minimal value tested (l = 10) for prediction. An
average accuracy of 0.1958 (SD=0.026) was obtained with
a maximum of 0.2257 on op. 74 and a minimum of 0.1646
on op. 132. (see Figure 2). The accuracy values for both
methods and all opera are reported in Table 4. The corre-
lation between the two model accuracies is 0.21 and thus
relatively weak.

4. DISCUSSION

The n-gram and LSTM models have similar mean accu-
racies and standard deviations. The weak correlation be-
tween the n-gram and LSTM model suggests that the ac-
curacy of the models is indicative for certain properties of

opus LSTM N-GRAM

18 0.2217 0.1900
59 0.2157 0.2200
74 0.2257 0.1823
95 0.1917 0.1645
127 0.1738 0.1972
130 0.2175 0.2373
131 0.1750 0.1852
132 0.1646 0.2212
135 0.1763 0.1594
mean 0.1958 0.1952

Table 4. Results

Figure 3. Amount of chords in each opus

the data. Finding out what these properties are is not only
an interesting musicological research question but will also
allow to improve computational models for harmony pre-
diction in the future. Specifically, opp. 135, 95, 131, and
127 have the lowest accuracy values, which suggests that
harmonic progressions within these opera are especially
hard to predict.

Having a more detailed look at the performance for each
opus highlights the differences (see Figure 2). For instance,
for op. 95 the LSTM model demonstrates substantially bet-
ter performance than the n-gram model. Op. 95 is known
as one of Beethoven’s most experimental works about which
he stated that “this work is written for a small circle of con-
noisseurs and is never to be performed in public” [22]. On
the other hand, in opp. 18, 74, and 135 the n-gram model
outperforms the LSTM model. A better understanding of
where these differences originate from is an important step
and will be pursued in future research.

The best performing n-gram model was of length n = 2,
which contrasts with the musicological insight that har-
monic dependencies can be highly non-local. This sug-
gests that n-gram models, which are constructed to use lo-
cal context information as much as possible (even those
using more advanced smoothing and backoff methods) are
not able to capture long-term dependencies in harmonic
progression.

LSTM models, on the other hand, are supposed to cap-
ture long-term dependencies. The fact that, overall, the
LSTM model does not outperform the n-gram model on
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the present data set suggests that this potential was not
fully leveraged as yet. One possible reason for this might
be the representation of harmonies as simple string tokens,
which does not make the rich structure of the harmonic an-
notations in the corpus accessible to the model.

Overall, an accuracy score of 19.5% is comparably low,
which is most probably due to the rich annotation format
in full Roman numeral representation making the anno-
tated Beethoven corpus a particularly challenging data set
to model.

5. CONCLUSION

We have evaluated two of the most commonly used mod-
els for sequence prediction, n-gram models and LSTM, on
a recent published data set with harmonic annotations of
Beethoven string quartets (ABC). Our LSTM model and
the best performing n-gram model (with n = 2) showed
comparable performance with an average accuracy of 19.5%
over an alphabet of 800 harmonic symbols. The context
length of n = 2 suggests that neither of the models was
able to pick up on non-local dependencies in harmonic pro-
gressions, which underlines the importance of incorporat-
ing structural knowledge from music theory into computa-
tional models.

As the ABC dataset is largely unexplored and is unique
due to its rich annotation format, we hope that our results –
especially the accuracy score of 19.5% – provide a useful
baseline for other researchers in the community.

Acknowledgments

MR would like to thank Mr Claude Latour for supporting
this research.

6. REFERENCES

[1] D. B. Huron, Sweet Anticipation: Music and the
Psychology of Expectation. MIT press, 2006.

[2] M. T. Pearce and G. A. Wiggins, “Auditory expecta-
tion: The information dynamics of music perception
and cognition,” Topics in cognitive science, vol. 4,
no. 4, pp. 625–652, 2012.

[3] M. A. Rohrmeier and S. Koelsch, “Predictive informa-
tion processing in music cognition. A critical review,”
International Journal of Psychophysiology, vol. 83,
no. 2, pp. 164–175, 2012.

[4] M. Pearce and M. Rohrmeier, “Music cognition and the
cognitive sciences,” Topics in cognitive science, vol. 4,
no. 4, pp. 468–484, 2012.

[5] L. B. Meyer, Emotion and Meaning in Music. Uni-
versity of Chicago Press, 2008.

[6] M. M. Farbood, “A parametric, temporal model of mu-
sical tension,” Music Perception: An Interdisciplinary
Journal, vol. 29, no. 4, pp. 387–428, 2012.

[7] M. Rohrmeier and P. Rebuschat, “Implicit learning
and acquisition of music,” Topics in cognitive science,
vol. 4, no. 4, pp. 525–553, 2012.

[8] J. R. Saffran, E. K. Johnson, R. N. Aslin, and E. L.
Newport, “Statistical learning of tone sequences by hu-
man infants and adults,” Cognition, vol. 70, no. 1, pp.
27–52, 1999.

[9] M. Rohrmeier and T. Graepel, “Comparing feature-
based models of harmony,” in Proceedings of the
9th International Symposium on Computer Music
Modelling and Retrieval. Citeseer, 2012, pp. 357–
370.

[10] F. Colombo, S. P. Muscinelli, A. Seeholzer, J. Brea,
and W. Gerstner, “Algorithmic composition of
melodies with deep recurrent neural networks,” arXiv
preprint arXiv:1606.07251, 2016.

[11] F. Colombo, A. Seeholzer, and W. Gerstner, “Deep
artificial composer: A creative neural network
model for automated melody generation,” in
International Conference on Evolutionary and
Biologically Inspired Music and Art. Springer, 2017,
pp. 81–96.

[12] M. Neuwirth, D. Harasim, F. C. Moss, and
M. Rohrmeier, “The annotated beethoven corpus
(ABC): A dataset of harmonic analyses of all
beethoven string quartets,” Frontiers in Digital
Humanities, vol. 5, jul 2018. [Online]. Available:
https://doi.org/10.3389/fdigh.2018.00016

[13] A. Graves, “Generating sequences with recurrent neu-
ral networks,” arXiv preprint arXiv:1308.0850, 2013.

[14] S. T. Piantadosi, “Zipf’s word frequency law in natu-
ral language: a critical review and future directions.”
Psychonomic bulletin & review, vol. 21, no. 5, pp.
1112–30, oct 2014.

[15] D. H. Zanette, “Zipf’s law and the creation of musical
context,” Musicae Scientiae, vol. 10, no. 1, pp. 3–18,
2006.

[16] M. T. Pearce and G. A. Wiggins, “Improved meth-
ods for statistical modelling of monophonic music,”
Journal of New Music Research, vol. 33, no. 4, pp.
367–385, 2004.

[17] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber
et al., “Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies,” 2001.

[18] H. Lim, S. Rhyu, and K. Lee, “Chord generation
from symbolic melody using blstm networks,” arXiv
preprint arXiv:1712.01011, 2017.

[19] S. Skuli, “How to generate music using a lstm
neural network in keras,” no. Dec 7, 2017. [Online].
Available: https://bit.ly/2IZtgm0

[20] F. Chollet, J. Allaire et al., “Keras,” https://github.com/
keras-team/keras, 2019.

253

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



[21] S. Ruder, “An overview of gradient descent optimiza-
tion algorithms,” arXiv:1609.04747, 2016.

[22] B. Cooper, Beethoven. Oxford University press, 2000.

254

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



SONIC CHARACTERISTICS OF ROBOTS IN FILMS

Adrian B. Latupeirissa
Sound and Music Computing

KTH Royal Institute of Technology
ablat@kth.se

Emma Frid
Sound and Music Computing

KTH Royal Institute of Technology
emmafrid@kth.se

Roberto Bresin
Sound and Music Computing

KTH Royal Institute of Technology
roberto@kth.se

ABSTRACT

Robots are increasingly becoming an integral part of our
everyday life. Expectations on robots could be influenced
by how robots are represented in science fiction films. We
hypothesize that sonic interaction design for real-world
robots may find inspiration from sound design of fictional
robots. In this paper, we present an exploratory study fo-
cusing on sonic characteristics of robot sounds in films.
We believe that findings from the current study could be
of relevance for future robotic applications involving the
communication of internal states through sounds, as well
for sonification of expressive robot movements. Excerpts
from five films were annotated and analysed using Long
Time Average Spectrum (LTAS). As an overall observa-
tion, we found that robot sonic presence is highly related
to the physical appearance of robots. Preliminary results
show that most of the robots analysed in this study have
“metallic” voice qualities, matching the material of their
physical form. Characteristics of robot voices show signif-
icant differences compared to voices of human characters;
fundamental frequency of robotic voices is either shifted to
higher or lower values, and the voices span over a broader
frequency band.

1. INTRODUCTION

Robots are increasingly becoming an integral part of mod-
ern society. With an increased presence of social robot in-
terfaces comes increased demands on robots to effectively
communicate with their human counterparts. The work
presented in this paper is conducted within the context
of the SONAO project, previously described in [1]. The
SONAO project aims to improve the comprehensibility of
robot non-verbal communication (NVC) through an in-
creased clarity of robot expressive gestures and non-verbal
sounds. Previous research conducted within the SONAO
project has focused on developing re-targeting techniques
for a NAO 1 robot based on findings from virtual charac-
ter animation research [2] and perception of mechanical
sounds inherent to expressive gestures of a NAO robot [1].
Future work in the SONAO project includes the use of

1 https://www.softbankrobotics.com/emea/en/nao
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movement sonification to increase the comprehensibility of
robotic gestures and emotional states. In the current study,
we shift the focus from physical robots such as the NAO,
to fictional robot characters in films and the sonic repre-
sentations thereof. The main aim of the work is to gain
insight into how Foley artists have tackled the task of de-
signing robot sounds. We believe that findings from this
exploratory work could be relevant for sound designers fo-
cusing on robotic interfaces, particularly for future imple-
mentations involving sonification of robot movements.

Previous work focusing on developing sounds for the
robot NAO includes e.g. [3–5]. However, even if some
previous studies have focused on sounds for communica-
tion and emotional expression in Human Robot Interaction
(HRI), the sounds used in such work has often been based
on simple sound synthesis methods. For example, sonifica-
tion has only been used to a very limited extent in HRI (see
e.g. [6,7]). Moreover, previous work have often lacked de-
tailed descriptions of mapping strategies or motivations of
design decisions.

Our hypothesis is that sonic representations of robots in
films could influence the expectations on sounds produced
by real-world robots, thus affecting human robot inter-
action. In previous work, it has been reported that par-
ticipants in sound design workshops referred to sound in
movies when asked to describe sonic interaction experi-
ences [8]. On a general note, it has been suggested that
interfaces from science fiction films offer lessons to inter-
action designers, as science fiction interfaces reflect cur-
rent interface understandings in terms of expectations from
users [9], and that our concept of robots is influenced by
the image of robots from science fiction [10]. In the cur-
rent paper, we present an exploratory study focusing on
sonic characteristics of robot sounds in films. We believe
that findings from this study could be relevant for sound
design in the field of HRI.

2. BACKGROUND

The term ”non-verbal communication” refers to utterances
that do not involve semantics in natural spoken language
but may still facilitate rich communication and expres-
sion. Non-verbal communication can be organized into
four categories: Gibberish Speech (GS), Non-Linguistic
Utterances (NLUs), Musical Utterances (MUs) and Par-
alinguistic Utterances (PUs), all of which are brought to-
gether under the umbrella term Semantic-Free Utterances
(SFUs) [11]. SFUs can be described as auditory com-
munication or interaction means for machines that allow

255

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



emotion and intend expression, composed of vocalizations
and sounds without semantic content [11]. Previous re-
search has shown that NLUs can convey affect and that
people show categorical perception at a level of inferred
affective meaning when listening to robot-like sounds [12].
In the current paper, we examine both non-verbal (e.g.
sounds emanating from the body of the robot; robot move-
ment sounds) and verbal (robot speech) sounds of fictional
robots.

As for all products involving some kind of sound design,
sounds can play a role in our aesthetic, quality, and emo-
tional experience [13]. In [13], the authors make a distinc-
tion between sounds that are generated by operating of the
product itself, and sounds that we intentionally add to a
product. In the context of HRI, we need to consider both
intentional sounds that are specifically designed to commu-
nicate certain emotional reactions or intentions, and con-
sequential sounds inherent to the robot’s movements. A
study focusing on consequential sounds for servo motors
commonly used to prototype robotic movement was pre-
sented by Moore et al. in [14]. Results suggested both
anthropomorphic associations with sounds and negative
impressions of motor sounds overall. In the current pa-
per, nonverbal communication and sounds used to augment
particular emotions through movement can be considered
intentional sounds. One of the benefits of working with
fictional robots in films is that a Foley artist can design all
sounds produced by a robotic character, which is usually
not the case for actual mechanical robots in real life (their
movements often automatically produce sounds which are
not specifically designed).

In [3], a library of emotional expressions consisting of
gestures and sounds was presented. However, the authors
did neither describe the sound design in detail, nor the
mapping strategies used. In [4], different sounds defined to
express robot emotions were evaluated using recognition
ratios. Sounds ranged from gibberish speech, alienated
human voices, “bleeps” to animal sounds. In [5], authors
introduced BEST (Bremen Emotional Sound Toolkit) 2 , a
validated set of 408 short (700ms to 16s) electronic sound
emblems, created to augment the nonverbal capabilities of
the NAO robot.

Up to this point, relatively little work has focused on how
Foley artists design robot sounds. In [15], authors dis-
cuss the use of non-verbal sounds for communication of
affect in interaction with robots, mentioning the sound de-
signer Ben Burtt, who produced the sounds for the R2-
D2 robot in Star Wars and Wall-E, as a source of inspi-
ration. The story of how Burtt struggled for months before
finding a R2D2 sound with credibility and character is de-
scribed in detail in [16]. Burtt started experimenting with
various synthesizers (Moog and ARP) to produce elec-
tronic beeps and tonalities. However, these sounds lacked
emotional meaning, and Burtt therefore started blending
the electronic sounds with mechanically generated sounds
(”emotional” acoustic noises such as e.g. whistling sounds
and expressive squeaks produced by bits of metal touch-

2 http://gaips.inesc-id.pt/emote/
best-bremen-emotional-sound-toolkit/

ing dry ice). Finally, he produced baby babble using his
own voice and intercut it with electronic tones. The final
version of R2-D2 involved a method in which Burtt played
the synthesizer simultaneously as he recorded his voice,
which in turn triggered electronic sounds and simultane-
ously shaped envelopes and pitches.

In [10], seven different musical sounds, five of which ex-
pressed intention and two that expressed emotion, were de-
signed for the robot Silbot. In order to identify sound de-
sign considerations, sounds of the robots R2D2 and Wall-
E were initially analysed. A total of 175 sound samples
from Star Wars and 100 sounds from Wall-E were cate-
gorised into two different groups: intention sounds (con-
veying meaning/emphasizing a situation) versus emotional
sounds (expressing feelings). Authors found that intona-
tion, pitch and timbre were dominant musical parameters
to express intention and emotion.

3. METHOD

This study aims to analyse robot sounds in films, thereby
creating a basis of knowledge for future studies in the
SONAO project. As mentioned above, our hypothesis is
that sonic portrayal of robots in films could have an in-
fluence on expectations on sounds produced by robots.
Specifically, we are looking into robot’s sonic presence
(i.e. sounds that signify the presence of a robot in a scene),
auditory expression (i.e. sounds that signify the display of
emotion), and spectral characteristics of robot speech. Re-
sults will inform the design of future sonic representation
of real-world robots in the SONAO project.

3.1 Film Selection

Five films were selected to be analysed in the current study.
Main criteria for inclusion was that there was a presence of
a humanoid robot with human-like behaviour in the film.
This selection was done since the focus of the SONAO
project is mainly on humanoid robotic interfaces. Fur-
thermore, the inclusion criteria was defined so as to limit
the total number of investigated robotic interfaces. The
defining factor of the behaviour in this context was that the
robot was capable of establishing an empathetic conversa-
tion with human characters in the film. To narrow down
the selection, only non-animated films involving English-
speakers were considered. In addition, it was important
that the robot had sufficient screen time with no notice-
able background music or noise, as the robot sounds would
otherwise have to be separated from other sounds using
source-separation methods. With these criteria in mind,
one film was selected from each decade from the 1970s to
2010s. The selected films are The Black Hole 3 (1979, pro-
duced by Walt Disney Production); Short Circuit 4 (1986,
TriStar Pictures, et al.); Bicentennial Man 5 (1999, 1492
Pictures, et al.); I, Robot 6 (2004, 20th Century Fox, et
al.); and Chappie 7 (2015, MRC, et al.).

3 https://www.imdb.com/title/tt0078869/
4 https://www.imdb.com/title/tt0091949/
5 https://www.imdb.com/title/tt0182789/
6 https://www.imdb.com/title/tt0343818/
7 https://www.imdb.com/title/tt1823672/
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In the current study, all films were produced in USA,
and all of the robot characters were male. The issue of
representation in this context does not go unnoticed. Fu-
ture studies factoring differences in culture and gender will
be conducted in later stages of the current project, with
work including female robot characters that fit the inclu-
sion criteria e.g. Ava in Ex Machina 8 (2014, Universal
Pictures International, et al.) and L3-37 in Solo: A Star
Wars Story 9 (2018, Lucasfilm, et al.).

3.2 Analysis

For each selected film, video excerpts displaying respec-
tive robot and a human counterpart were isolated. The
excerpts are short (ranging from 1 second to 2 minutes),
containing dialogue between the characters, sonic display
of emotion, or movement sound effects. Between 10 to 20
video excerpts were isolated from each film in order to be
used in the analysis. All video clips that are discussed in
section 4 are available as supplementary material 10 . For
the analysis of audible sonic presence and auditory ex-
pression, each video clip was annotated and analysed from
spectrograms. The results were also compared to their re-
lation to the physical appearance and action performed by
the robot. Key findings from this analysis are presented in
section 4.

For the purpose of speech analysis, short video excerpts
of robotic speech were isolated. For comparative purposes,
video excerpts with the speech of the main human charac-
ter (same gender) were also isolated. A special case was
present for the film Bicentennial Man, where the robot,
Andrew Martin (played by Robin Williams), transitioned
from having a fully mechanised appearance in the begin-
ning of the film into having a human-like appearance to-
wards the end. In this film, we also compared the speech
spectra between the robot Andrew and the human Andrew.
The sound files were first analysed in Praat [17] to deter-
mine the fundamental frequency of the speech using the
f0 detection scripts developed by De Looze [18] 11 . The
sound files were then analysed using the Long-term Av-
erage Spectrum (LTAS) function iosr.dsp.ltas from
the IoSR MatLab Toolbox 12 in MATLAB. Highlights of
the results are presented in section 4.

By comparing speech spectra between characters from
the same film, we could ensure the same quality of the
sonic feature (since different films most likely will have
used different approaches when it comes to sound master-
ing). For simplicity, the current study only focused on male
characters (humans and robots). To be more precise, com-
parisons were made between a human (typically the main
character) versus a robot in the same film.

8 https://www.imdb.com/title/tt0470752/
9 https://www.imdb.com/title/tt3778644/

10 https://kth.box.com/v/robotmovies
11 http://celinedelooze.com/Homepage/Resources.

html
12 https://github.com/IoSR-Surrey/MatlabToolbox/

Figure 1. A close up view of the robot Sonny, accompanied
by high-frequency tones.

4. RESULTS

An overall observation that we made after watching the
films and analysing their sounds is that robot sonic pres-
ence is highly related to the physical appearance of the
robot itself. Whirring sound of motors are commonly
used for mechanical robots such as Bicentennial Man’s
Andrew Martin and Chappie. These sounds are used to
emphasize movements. Some of the movement sounds
are also used to emphasize emotions. For example, the
sound of Andrew’s head movements is used to express
sadness. When Andrew’s head faces downwards, a me-
chanical sound characterized by a falling pitch is used. For
Chappie, his two ears are used to emphasize his emotion;
they go up or down, which is accompanied by a sound ef-
fect characterized by a rising or falling pitch.

A different approach is used for the robot Sonny in I,
Robot. Sonny’s futuristic physical appearance is much
more flexible than the other robots in the current study,
and this appearance is accompanied by more fluid and less
mechanical sounds to emphasize his movements. Sonny’s
presence on the scene can be recognized by high-frequency
sounds presumably emitted by his body. This is evident
in the interrogation scene; as detective Spooner enters the
room, the scene shows a brief close-up of Sonny’s face
accompanied by three simultaneous high-frequency tones
centered at around 6300 Hz, 9200 Hz, and 11500 Hz re-
spectively (see figure 1). In a later scene, where detective
Spooner and Dr. Calvin enter a room to talk to Sonny,
similar tones are also audible as the two human characters
walk toward the robot (see figure 2). The only similar sonic
presence observed for the other films in the current data
set was for Bicentennial Man, in which the robot Andrew
breaks his body after falling out of a window. This scene is
accompanied by a continuous sound of broken machinery.

Analysis of the sounds of Andrew Martin as a robot ver-
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Film Character f0-min f0-max Key Range

Bicentennial Man Andrew Martin (robot) 81 239 112 1.558
Andrew Martin (human) 60 185 96 1.616
Richard Martin (human) 70 293 118 2.067

Short Circuit Number 5 (robot) 110 332 187 1.594
Newton Crosby 125 439 199 1.808

Table 1. Highlights from speakers’ register analysis from Praat: the bottom line and top line (f0-min and f0-max), Key, and
Range. The f0-min, f0-max, and key are given in linear scale (Hertz), range in a logarithmic scale (octaves).

Figure 2. Similar tones are also present in other scene.

sus a human proved to be particularly interesting, based
on the spectral analysis results. The human-like versus
robot-like Andrew not only differed in terms of visual ap-
pearance, but also in terms of voice. Robot Andrew has a
“metallic” quality in his voice, matching the material of his
physical form, while the human version of Andrew retains
the actor’s natural voice characteristics. Table 1 and fig-
ure 3 show significant differences between the two voices.
Fundamental frequency of robot Andrew has been shifted
to higher values. In addition, the robot’s voice is character-
ized by a broader frequency band compared to his human
counterpart. In the same film, the voice of the other main
human character (Richard Martin) is characterized by a
narrower frequency band, compared to the robot version of
Andrew (see figure 4). Similarly, in the film Short Circuit,
the voice of the main human character (Newton Crosby) is
also characterized by a narrower frequency band compared
to robot Number 5 (see figure 5). The difference between
Short Circuit and Bicentennial Man is that the fundamen-
tal frequency of robot character in Short Circuit is shifted
to lower values.

5. DISCUSSION AND CONCLUSIONS

Of course, one may argue that other auditory features than
LTAS might provide interesting information for the charac-

Figure 3. LTAS comparison between the two forms of An-
drew Martin, human and robot.

terizations of robot sounds. Other auditory features might
be of larger importance in this context, and this will be
investigated in future experiments making use of voice
sketching [19] for depicting robot actions and intentions.
Nevertheless, we have shown that LTAS can be used for
characterizing robot sounds and that robots in films are
portrayed using broader frequency bands and other for-
mants, compared to humans. Moreover, sound character-
istics of the robots appear to vary both with the robot’s
movements as well as its physical appearance. This infor-
mation can be used in the design of future sonic renderings
of robot movements and of their non-verbal sounds when
interacting with humans, in combination with the manip-
ulation of acoustical cues for rendering different emotions
as shown in the research field of emotional expression in
speech and music [20, 21].

For simplicity, the current study has focused only on films
in which the main language was English. One may argue
that sound design in HRI should be characterized by inter-
cultural diversity, in the sense that the sounds should be
interpreted similarly independently by language of origin
of the listener. Still, sound design in popular films creates
expectations about how a robot should sound in reality, and
robots presented in films are usually associated to a specific
country of origin (i.e. Japan, USA, and Germany). There-
fore, the selection of films used in the present study can
be considered of importance in this context. Nevertheless,
as mentioned in the Method section, the number of films
on which we base our analysis will be expanded in future
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Figure 4. LTAS comparison between Richard Martin and
the robot form of Andrew Martin.

Figure 5. LTAS comparison between Newton Crosby and
the robot Number 5.

work. In future data sets, female robot characters as well
as robots from different countries will be represented.
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ABSTRACT

This project investigates the potentials of Head-Mounted-
Display (HMD) based Virtual Reality (VR) that incorpo-
rates musical elements as a tool to perform exposure ther-
apy. This is designed to help adolescents diagnosed with 
Autism Spectrum Disorder (ASD) to deal with their social 
anxiety. An application was developed that combines the 
possibility of singing in VR while a virtual audience pro-
vides feedback. A pilot test was conducted on four adoles-
cents diagnosed with ASD from a school for adolescents 
with special needs in Denmark. All four participants had 
shown signs of social anxiety according to their teachers. 
The initial results from this pilot study indicate that de-
spite the participants’ were capable of singing in front of 
the virtual audience without reporting a major level of so-
cial anxiety.

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmen-
tal disorder, characterized by deficits in social communi-
cation and interaction across multiple contexts [1]. These 
deficits include difficulties with gestural and verbal com-
munication, keeping eye contact and understanding facial 
expressions. Additionally, phobias such as social anxi-
ety have been described to be common among individu-
als diagnosed with ASD since Leo Kanner first described 
a group of children with autism in 1943 [2, 3].

Social anxiety is described as the feeling that arises in par-
ticular situations evoked by the real or imagined concern 
of being evaluated by others [4]. With a prevalence rate 
of up to 18 %, social anxiety is one of the most common 
psychiatric disorders while being ranked among the top 10 
chronic disorders that negatively affect the general quality 
of life [4].

Specifically, social anxiety in children diagnosed with ASD 
can promote further isolation from interaction with peers, 
avoidance of social situations [5] and school refusal behav-
ior [6]. These social and interpersonal problems can reduce 
the chances for independent adulthood. Studies show that

Copyright: c© 2019 Ali Adjorlu et al. This is an open-access article distributed 
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the original author and source are credited.

a vast majority of adults diagnosed with ASD are unem-
ployed and a majority of them depend on parents or social
agencies for support [7]. Furthermore, there is a corre-
lation between anxiety, loneliness, and depression among
children diagnosed with ASD [8], which has a negative ef-
fect on their general quality of life. The high prevalence
of ASD (1 out of 50) further underlines the importance of
developing interventions to help children and adolescents
diagnosed with ASD to cope with their social anxiety [9].

Incorporating music into interventions for individuals di-
agnosed with ASD have illustrated benefits such as pro-
moting engagement in social interaction and increasing self-
esteem [10, 11]. In the paper ”Autism and Music Therapy
- is change possible, and why music?” Brown argues that
music is intimately interwoven to our structure as human
beings and our relationship to others [12]. Even newly
born infants move in synchrony with the rhythms of hu-
man voice regardless of the language [13]. Since musical
elements can establish social interactions even as early as
infancy, it makes sense to use these elements to children
diagnosed with ASD to overcome their social anxiety.

One of the most established non-pharmaceutical methods
to treat anxieties is exposure therapy [14]. By gradually
exposing the patient to a stimulus that seeks to provoke
anxiety (e.g., musical performance in front of an audience)
without the presence of the feared outcome (e.g., being
negatively judged by the audience) has proven to help in-
dividuals to overcome their phobias.
Virtual Reality (VR) can be used to create a sense of pres-
ence in a virtual environment by replacing the real-world
sensory information with digitally created audio and visu-
als. This enables the possibility to develop controllable
simulations in which therapeutic interventions such as ex-
posure therapy can take place. Additionally, VR-based ex-
posure therapy does not include some of the practical and
logistic issues associated with real life in vivo exposure
therapy. As an example, feared stimuli such as perform-
ing in front of a live audience might not be easy to access
in real life while being difficult to manipulate and control
(e.g., managing the audience to avoid an adverse judgment
of the user).

One of the first known published studies on VR exposure
therapy investigated the effectiveness of virtual environ-
ments to help individuals with agoraphobia: fear of crowded
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places (see [15] for a review of the topic). Since then, a va-
riety of studies have examined the effectiveness of virtual
environments to conduct exposure therapy on individuals
diagnosed with phobias such as acrophobia [16], zoopho-
bia [17], and social anxiety [18]. However, there is a short-
age of studies investigating the effectiveness of VR expo-
sure therapy to help children and adolescents diagnosed
with ASD to deal with their social anxiety [19, 20].

Young individuals diagnosed with ASD have displayed
a positive attitude towards head-mounted display (HMD)
based virtual reality experiences, showing a high-level of
enjoyment and immersion [21,22]. Furthermore, there have
been studies illustrating the potentials of VR to teach a va-
riety of everyday living skills to children and adolescents
diagnosed with ASD [21] such as money skills [23] and
social skills [24].

This study will investigate the potentials of combining
the advantages of HMD-based VR exposure therapy with
music and its ability to promote social interaction and con-
nections.

2. METHODS

The VR intervention was designed and developed by the
authors and evaluated at STUEN, a school for adolescents
with mental disabilities in the Rødovre municipality.

2.1 The VR intervention

Traditional exposure therapy involves exposing the client
to specific situations that provoke anxiety without the pres-
ence of the feared outcome. In this study, a VR application
was developed to expose its users to a context within which
she or he will have to sing a song in front of a virtual au-
dience. The idea of singing in front of an audience was
supported by the teachers at STUEN who informed us that
some of their students with ASD had shown signs of social
anxiety when they had to present a school topic in front
of their peers or participate in music sessions. The ap-
plication was developed using Autodesk Maya and Unity
3D, designed to run on the Oculus Rift HMD. A 3D vir-
tual concert hall was designed containing a stage with a
microphone (see Figure 1). Additionally, the virtual con-
cert hall contained chairs for the virtual audience, a gate
from which the audience would enter the hall as well as
a screen (see Figure 2) on which the lyrics of the song to
be performed would appear. In order to increase tension, a
smaller screen was placed on the stage which was used to
visualize the count down from 3 to 0 before the user had
to start singing in front of the virtual audience (see Fig-
ure 1). The user was placed in front of the microphone
on the stage facing the empty chairs, in order to build up
the tension while providing time to familiarize herself with
the virtual environment. A non-diegetic voice will then an-
nounce in Danish: ”Hello. You are in the concert hall. Are
you ready to make some noise? If you are ready, say come
in out loud. Once you say come in, the audience will en-
ter the hall.”. The word noise is directly translated from the
Danish word ”larm” which means noise and is a commonly
used word in Danish. Windows keyword recognizer is used

to detect the key phrase ”come in” via the Oculus Rift mi-
crophone. If the user does not say ”come in” after 20 sec-
onds, the announcer will say out loud ”please say come in
once you are ready so we can start.” Once the user has
said ”come in”, the virtual audience will walk in through
the gate of the concert hall and find their seats. Footstep
sounds will further emphasize the presence of the virtual
audience in the scene, having the purpose to induce the
user with a bit of thrill and anxiety required in an exposure
therapy intervention. A non-diegetic voice will once again
announce in Danish ”The audience is now seated and ready
to start. Once you are ready, say start so we can begin the
show”. Once again, if the user does not say the keyword
”start” after 20 seconds, the announcer will ask him to say
”start” once more. Saying ”start” will initiate a countdown
from 3 to 0 which is visually presented to the user via the
screen seen in figure 1 accompanied with an earcon sig-
nal for each step in the countdown. Once the countdown
is over, the song will start playing, and the lyrics will be
visible on the screen as seen in figure 2. The music and
lyrics to be included in the VR music intervention can be
changed before each session by the authors. This is done
so that each user can perform their favorite song instead
of a song that is chosen for them. A set of eight differ-
ent virtual audience animations was developed including
a variety of facial expressions and body movements (see
Figure 3). These animations are triggered according to the
users’ singing amplitude. If the user is not singing along,
the audience will sit still and look bored. If the user is
singing, the virtual audience will clap their hands and look
happy. If they start singing louder, the virtual audience
will stand up and clap their hands. Once the song is over,
the non-diegetic announcer will say in Danish ”Thank you,
that was awesome.”

Figure 1. Screenshot from the virtual simulated room with-
out any virtual audience. The user is placed in front of the
3D microphone. The countdown screen can be seen behind
the chairs.

2.2 Evaluation

Four students from STUEN Rødovre diagnosed with ASD
participated in this study. All participants have shown some
characteristics of social anxiety. The Four participants age
ranged from 18 to 20 years old and were all male. Each
participant was asked if they would like to sing in front of
a virtual audience in an HMD based VR application and
all four accepted to participate in the study, each signing
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Figure 2. The lyrics appeared on a screen behind the virtual
audience.

Figure 3. The virtual audience reacting to the performance.
Each member of the audience switched between eight dif-
ferent animations depending on the users’ singing ampli-
tude

a consent form describing the experiment. They were told
that they could stop the VR session at any time. Addition-
ally, each participant was asked which song they would
like to sing, which was then added to the VR intervention
by the authors before each session.

A simplified version of the Liebowitz Social Anxiety Scale
(LSA) [25] was used in order to measure the extent of so-
cial anxiety in each of the participants. The LSA was sim-
plified due to the communication difficulties observed in
individuals diagnosed with ASD. The simplified version
of the LSA contained only 5 items compared to the 24
items in the full version. The 5 items were chosen based on
guidelines from the teachers who believed that the students
would be able to understand and relate to the chosen ques-
tions. Each item in the LSA is designed to assess social
anxiety in a variety of situations by asking two questions.
The first question asks how anxious the participant usu-
ally is in a described situation from a scale ranging from
none to mild, moderate and severe. The second question
of the item asks how often the participant tries to avoid the
described situation on a scale ranging from never to occa-
sionally, often and usually. The five items included in this
study are:

1. Acting, performing or giving a talk in front of an
audience

2. Meeting strangers

3. Entering a room when others are already seated

4. Taking a exam

5. Looking at people you don’t know very well in the
eyes

All of the above situations were translated into Danish
with simple and descriptive words to help the participant
better understand the context. Additionally, each question
was accompanied by an image to help the participant inter-
pret the sentences. Furthermore, smiley face Likert scales
(Smileyometer) were used when asking how anxious the
participant usually is in the described situations as seen in
figure 4. Smiley Likert scales have been reported to be ef-
fective with children. [26].

Figure 4. Smiley Likert scale for the question on how anx-
ious the participant usually is in a described situation from
a scale ranging from none to mild, moderate and severe

Finally, a timeline was designed to illustrate the answers
never, occasionally, often and usually as an attempt to help
the participant understand the question.

Following the simplified version of the LSA, the students
were introduced to the VR application and started their task
of performing a song in front of an interactive virtual au-
dience. Data were gathered during each VR session via
screen recordings of the participants’ performance in the
virtual environment. One author remained in the room ob-
serving the participants behavior during each session.
After the VR session, the participants were asked four ques-
tions from the Witmer Singer presence questionnaire (PQ)
and four questions from their Immersive Tendency Ques-
tionnaire (ITQ) [27]. This was done in order to explore
whether the participants were sufficiently immersed in the
virtual environment for it to be effective s an exposure ther-
apy tool. Once again the questions were chosen based on
the guidelines from the teachers and translated to Danish
using simple descriptive words. The four chosen questions
from the ITQ questionnaire were:

1. Do you easily become deeply involved in movies or
TV dramas?

2. Do you ever become so involved in a movie that you
are not aware of things happening around you?

3. How often do you play arcade or video games?

4. Do you ever become so involved in doing something
that you lose all track of time?

The four questions chosen from the PQ questionnaire were:

1. How responsive was the environment to the actions
that you initiated?
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2. How natural did your interactions with the environ-
ment seem?

3. How involved were you in the virtual environment
experience?

4. How much did the auditory aspects of the environ-
ment involve you?

The above questions on the simplified versions of the PQ
and ITQ are to be answered via a 7-point Likert scale, once
again communicated to the user via a smiley face Likert
scale as seen in figure 5 . Exposure therapy interventions

Figure 5. 7-point Smiley Likert scale for the simplified
versions of the PQ and ITQ questions

expose their users gradually to a stimulus that seek to pro-
voke the targeted anxiety without the presence of the feared
outcome. Therefore, the participants were asked to rate
how scary it was to sing in front of the virtual audience
on a smiley Likert scale ranging from 0 to 4. In addition
to the four participants, one of the teachers participated in
a short unstructured interview, giving his input on the VR
application as a tool to perform exposure therapy on his
students. We also discussed the findings of our survey with
the teacher to confirm the validity of the participants’ an-
swers.

3. RESULTS

All four participants tried out the VR intervention. How-
ever, P4 was not capable of understanding the questions on
any of the surveys, despite them being simplified by the
authors and the teacher. Therefore, only the observation
data from him is presented in this paper.

3.1 Liebowitz Social Anxiety Scale

The results of the simplified version of the Liebowitz So-
cial Anxiety scale can be seen in table 1 and 2. P1 re-
ported no fears at all from all five scenarios described to
him. Furthermore, he stated that he never tried to avoid
these situations. According to the teacher, this participant
tries to avoid having to present in front of his classmates.
P2 reported moderate fear from having to perform in front
of others while he reported that he occasionally tries to
avoid this kind of situations. He also stated a moderate
fear from having eye contact with strangers, but he never
tries to avoid it. P2 answered ’none’ to the question of
how much he fears meeting strangers, however, he chose
occasionally when asked how often he tries to avoid situa-
tions where he has to meet new people. Entering crowded
rooms is reported to be mildly feared by P2, but he indi-
cated that he never tries to avoid having to enter them. P3
answered ’none’ to how much he feared all five situations.

He also reported ’never’ on how often he tries to avoid the
situations in the simplified version of the LSA, except for
exams which he avoids occasionally.

Participant P1 P2 P3
Performing None Moderate None
Meeting Strangers None None None
Crowded rooms None Mild None
Taking a exam None Severe None
Eye contact None Moderate None

Table 1. Responses from the simplified version of the Im-
mersion Tendency Questionnaire asking how anxious or
fearful the participant feels in different situations ranging
from none to mild, moderate and severe.

Participant P1 P2 P3
Performing Never Occasionally Never
Meeting Strangers Never Occasionally Never
Crowded rooms Never Never Never
Exams Never Usually Occasionally
Eye contact Never Never Never

Table 2. Responses from the simplified version of the Im-
mersion Tendency Questionnaire asking how often the par-
ticipant avoids the situation ranging from never to occa-
sionally, often and usually

3.2 Observations during VR sessions

Each VR session lasted approximately ten minutes. P1, P3
and P4 chose to sing a Danish song called ”Papirsklip” by a
Danish artist called Kim Larsen. P2 chose the song ”Born
to be yours” by Imagine Dragons.

As previously mentioned, there were two vocal commands:
”come in” which activated the animation in which the vir-
tual audience would enter the concert hall and ”start” which
would initiate a countdown followed by the music starting.
The users were asked to pronounce the voice commands
by an announcer in the VR music intervention. P1, P2 and
P3 had no problems pronouncing the commands. P4 strug-
gled to understand the announcer and remained quiet after
being asked to say ”come in”. The VR application was
programmed to ask the user to say come in once again if
the correct voice command was not detected. However, P4
remained quiet and looked shy while wearing the HMD.
This resulted in the observer asking the user to say come
in which was followed by P4 saying you may enter in-
stead. Therefore, the observer had to say the voice com-
mand himself which activated the virtual audience entering
the concert hall animation. P4 also struggled with the sec-
ond voice command resulting in the observer once again
having to activate it by saying out loud start. Once the
Kim Larsen song started playing, P4 started singing along,
struggling from time to time to pronounce the lyrics cor-
rectly, humming most of the song instead.
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P1, P2 and P3 showed confidence when singing, looking
to enjoy the experience while having no problems saying
the voice commands. P2 hummed most of the song.

3.3 simplified version of the Immersive Tendency
Questionnaire (ITQ)

The results from the simplified version of the ITQ can be
seen in table 3. P1 and P2 reported a high level of immer-
sion tendency. P3 reported that he is never so immersed
in a movie that results in him not being aware of his sur-
roundings. Furthermore, he declared that he never loses
track of time when performing any activity. Questions re-
garding how often he plays video games and how easily he
becomes deeply involved in a movie was answered with a
4 which is the midpoint on the Likert scale from 0 (never)
to 7 (often).

Participant P1 P2 P3
Easily Involved? 7 7 4
Aware of surrounding? 5 7 1
Video games 6 5 4
Loose track of time? 6 7 1

Table 3. Responses from the Immersive Tendency Ques-
tionnaire. Answer options ranged from 0 to 7.

3.4 Presence Questionnaire

The results from the simplified version of the PQ can be
seen in table 4. All three participants reported that the VR
environment was completely responsive to their actions.
P1 and P3 both stated that the interaction with the VR en-
vironment seemed completely natural by choosing 7 on the
smiley face Likert scale. P2 picked 6 which is just be-
low the highest possible choice. P1 also chose the lowest

Participant P1 P2 P3
Responsive environment? 7 7 7
Natural interacetion? 7 6 7
Involvement? 6 4 7
Audio? 5 5 7

Table 4. Responses from the presence questionnaire. An-
swer options ranged from 0 to 7.

smiley face Likert scale out of the three participants when
asked about how involved he was with the virtual environ-
ment. P1 chose 6 while P3 once again chose 7. P3 also
chose 7 on whether the audio in the VR environment in-
creased his involvement with the application. P1 and P2
both chose 5.

3.5 Level of anxiety

The results of the participants’ answers to whether it was
scary to sing in front of a virtual audience can be seen in ta-
ble 5. Only P2 reported some level of anxiety. He was also
the only participant to reported fearing situations where he
has to perform in front of other people.

Participant P1 P2 P3
How scary was the experience? 0 1 0

Table 5. Responses from the anxiety questionnaire. An-
swer options ranged from 0 to 4.

3.6 Teacher’s comments

At the end, one of the teachers working with the partic-
ipants on a daily basis tried out the VR intervention fol-
lowed by a short interview with the authors. The teacher
mentioned that he believed that singing and music increases
what he called the fun factor of exposure therapy. How-
ever, he said that the participants he provided us with would
never sing in front of other people, referring to music ses-
sions they have had at the school. During those sessions,
participants in this study often stayed away. He believed
that VR might have given the illusion of being alone to his
students, resulting in them singing fearlessly. When pre-
sented with the results from the Liebowitz Social Anxiety
Scale, the teacher stated that his students do not want to
seem scared, resulting in them answering that they do not
fear the described situations. He added that P2 is proba-
bly the one with the highest level of social anxiety together
with P4.

4. DISCUSSION AND CONCLUSION

This explorative study aimed to investigate the potentials
of singing in VR as a tool to help children diagnosed with
ASD to cope with their social anxieties. More specifically,
the project investigates whether singing in front of a reac-
tive virtual audience is a sufficiently immersive experience,
which is one of the main requirements for exposure thera-
peutic interventions.

A cartoonish virtual concert hall was designed to be ap-
pealing to the user while avoiding the uncanny valley. The
uncanny valley is a concept that describes the observers’
revulsion towards humanoid objects or 3D models that ap-
pear nearly human [28]. Additionally, the virtual audience
was programmed to react positively to the users’ singing
via a variety of animations such as clapping their hands
and standing up while looking happy to motivate the users
to sing. In contrast, if the user did not sing along, the vir-
tual audience would remind seated, looking sad and bored.
Instead of pressing a button on the VR controller to start
the experience, the authors implemented audio commands
to further expose the user to a situation where they had to
speak in front of an audiance. Finally, the participants got
the option to chose the song they wanted to sing to increase
their motivation.

Level of social anxiety in the participants was evaluated
before each VR session using the simplified version of the
LSA questionnaire, while their level of presence in the VR
environment was measured using the simplified version of
the ITQ and the PQ questionnaire, both developed by Wit-
mer & Singer [27] . These questionnaires were translated
to Danish together with the teachers and simplified using
easy to understand words as well as illustrations visual-
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ising each situation. However, P4 still had problems un-
derstanding the questions and was not capable of provid-
ing any answers. One of the primary deficits in individu-
als diagnosed with ASD is reduced communication capa-
bility. According to the teachers, P4 is on the low func-
tioning side of the autism spectrum which results in him
having a hard time communicating. Despite these com-
municative deficits, he still sang and hummed during the
VR session, activating positive feedback from the virtual
audience. This behavior was also observed in P1, P2 and
P3 who sang or hummed during the VR session, activat-
ing the virtual audience’ positive feedback. The singing
behavior of the participants was surprising to the teacher,
who did not expect them to behave the way they did. How-
ever, according to the results from the simplified version
of the LSA questionnaire, P1 and P3 reported having no
stage fear, making their performance on the virtual stage
less surprising. The teacher’s comment on this result is that
they did not want to be perceived negatively by the authors
by stating that they were scared of certain situations. In
general, the results from the simplified version of the LSA
does not correlate with the comments from the teacher who
stated that his students suffer from social anxiety. There-
fore, the validity of the simplified version of the LSA as
well as the PQ, and ITS questionnaires is debatable. In
future iterations, a qualified expert clinician or behavioral
psychologists should be involved in the design of the ex-
periment, helping to gather more valid data from this target
group. Additionally, to gain further information on the so-
cial characteristics of the participants, methods such as the
Social Responsiveness Scale could be used [29].

In the post VR session questionnaires, P2 rated 4 on his
self reported involvement in the VR experience, which was
the lowest of all three participants. This low level of in-
volvement with the VR music intervention can explain why
he was singing along despite his moderate fear of perform-
ing in front of an audience (according to his teacher). He
also rated 6 on whether the interaction in the VR environ-
ment was natural, which is also the lowest rating from the
three participants. He was the one who hummed to most
of the song compare to the other participants who sang the
words which can be explained by the fact that he was the
only one who chose an English song to sing. P2 was not
asked any question on whether he was able to speak En-
glish. In future iterations, only danish songs should be in-
cluded in the VR application. The teacher suggested the
songs included in this version of the application after he
had asked the participants which songs they would like to
sing in VR.

P3 choose the smiley face Likert item number 7, the high-
est possible on all four questions on the simplified version
of the PQ survey. This is despite him reporting the lowest
immersive tendency out of the three participants who an-
swer the surveys. During the singing session, he was the
one who seemed to know most of the lyrics of the Kim
Larsen song, and also seemed to enjoy himself. Therefore,
the music could explain his high rating in the simplified
version of the PQ survey.

P1 reported being easily involved in movies and loses

tracks of time when performing certain activities. He also
reported a high level of presence in the VR music interven-
tion, which was also observed during his singing session.
He sang the lyrics, putting effort into trying to read the
lyrics and pronouncing them correctly.

P4 was not capable of answering neither the simplified
versions of the LSA, the ITQ or the PQ surveys, even though
they were simplified and had images explaining their con-
tent. The teacher explained that P4 has the lowest com-
munication skills of all the participants. He also had prob-
lems understanding the announcer in the VR experiment
which asked him to repeat the voice commands ”come in”
and ”start.”. However, when the music started playing, he
did not hold back and started to sing along, correctly pro-
nouncing the lyrics of the Danish song he chose. Music
might have reduced the social barriers he experienced since
he looked relaxed during the VR singing session. Future
iteration of this study could involve the teacher gathering
data from his students about their experience with the VR
music intervention. The students feel more comfortable
with their teachers. This might result in them providing
more relevant and valuable insight about their experience
with the VR intervention. Using the simplified version of
the LSA, PQ, ITQ was an attempt to not overwhelmed the
users with a lot of questions. However, doing this we have
reduced the validity of these methods.

Despite of this, we believe that the explorative study showed
that a VR music intervention could be an immersive ex-
perience for adolescents diagnosed with ASD and social
anxiety. As Brown argued, music seemed to remove bar-
riers for P4 who started singing along the song moments
after he was timid and unable to communicate with the ob-
server [12]. In future iterations of the study, information
on the participants’ reaction to the feedback provided by
the virtual audience must be collected to shed some light
on its effectiveness to increase the users’ immersion.

Exposure therapy is defined by gradually exposing the
user to a stimulus that provokes anxiety without the pres-
ence of the feared outcome. Out of the three participants
who answered questions after the study, only P2 reported
experiencing any form of anxiety. Future iterations of the
application should focus on creating a more tense experi-
ence to provoke more social anxiety in its users by adding
new levels in the VR application. The first level will keep
the cartoonish background and 3D virtual audience. The
next level will replace the environment with a real class-
room or concert hall recorded via a 360 camera while keep-
ing the virtual audience. The third level will only con-
sist of 360 video footage of real audience and environment
recorded with 360 camera, making it as realistic as possi-
ble.
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ABSTRACT

This paper investigates how to design an embodied learn-
ing experience of a drumming teacher playing hand drums, 
to aid higher rhythm understanding and accuracy. By pro-
viding novices the first-person perspective of a drumming 
teacher while learning to play a West-African djembe drum, 
participants’ learning was measured objectively by their 
ability to follow the drumming teachers rhythms.

Participants subjective learning was assessed through a 
self assessment questionnaire measuring aspects of flow, 
user-experience, oneness, and presence. Two test iterations 
were conducted. In both there was found no significance 
difference in participants’ ability to follow the drumming 
teacher’ s tempo for the experimental group exposed to the 
first-person perspective of the teacher in a Virtual Reality 
(VR) drum lesson, versus the control group exposed to a 
2D version of the stereoscopic drum lesson. There was 
found a significant difference in the experimental group’ s 
presence scores in the first test iteration, and a significant 
difference in experimental group’ s oneness scores in the 
second test iteration. Participants’ subjective feelings indi-
cated enjoyment and motivation to the presented learning 
technique in both groups.

1. INTRODUCTION

Several studies have shown the potential of Virtual Real-
ity (VR) as an alternative training and learning platform 
for acquiring new skill sets and improving existing ones. 
Amongst others seen in the field of music learning, training 
rhythmical skills and musical expression [1], along train-
ing physical movements [2]. The multidimensional nature 
of VR provides a unique possibility to take the perspective 
of another person than one self. This quality provides a 
strong tool to facilitate learning and communication be-
tween individuals, which has been examined by expert-
novice mentorship simulations in the art of painting [3]. 
One advantage of using VR for education is the ability 
to present abstract topics in a tangible way. For example, 
teaching mathematics through collaborative environments 
for learning geometrical concepts, against traditional pen
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Figure 1. First drumming recordings.

Figure 2. Second drumming recordings.

and paper. Moreover, VR supports doing, instead of ob-
serving, as the user participates in the virtual world instead
of using it, compared to other types of human-computer
interfaces [4]. The focus on incorporating the body in de-
signing movement-based interfaces has been fueled by the
advances in sensor technology [5]. The affordance of VR
technology leverages interactivity, not seen in medias such
as video and text, based on the vast possibilities for behav-
ioral tracking. This essentially allows users to participate
in a VR instead of using it, through embodied interactions.
This project seeks to investigate how to teach music more
effectively, by incorporating VR to communicate somatic
knowledge of a drumming teacher, providing a first-person
perspective of the playing teacher.
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Figure 3. A screenshot from the experiment. Top: ex-
perimental condition: wearing the VR headset. Bottom:
control condition where the visual feedback is given by the
screen. In both cases auditory feedback is given by head-
phones, while tactile feedback is given by the real drum.

2. DESIGN AND IMPLEMENTATION

This section presents the design of a VR setup for teach-
ing novices drums through an embodied first-person per-
spective of a drumming teacher. The underlying moti-
vation is to aid higher rhythm understanding and accu-
racy through the participants embodiment of the playing
teacher. The design consists of two parts. First, the de-
velopment of the teaching material constituting the test
stimuli of a prerecorded drum lesson, and a discussion of
the suitable hand drum for the rhythm teaching of novices.
Secondly, the recording setup with a stereoscopic 3D cam-
era is discussed, for capturing a reliable first-person per-
spective of the drumming teacher, to be viewed through
a Head Mounted Display (HMD) while playing along the
teacher.

2.1 Design of Teaching Material

The design of the teaching material for the drumming record-
ing was revised and discussed in two iterations, with two
professional drummers respectively. A prerequisite to the
drummers’ qualifications was teaching experience and skills
on hand drums of a West-African Djembe and a bongo
drum. Hand drums were chosen based on perceived affor-
dances and signifiers on how to be operated by the hands.
Secondly, allowing immediately tactile feedback, to pro-
vide a direct sense of the drum when viewing the stereo-
scopic footage of the hand drum through a HMD.

Before each of the two individual drumming recordings,
the drummers were explained motivation for the research

of the study. Additionally, the test objective of comparing
two learning medias (VR and video), and their effective-
ness on rhythm learning. The requirements for the teach-
ing material included content directed to novices who had
no to little experience with drum lessons before. This was
to ensure an equal level of drumming experience, and skill
level between the test participants. Furthermore, the drum
recording was structured with drumming sequences that
left enough time for the novice to play along. This is
based on the objective measure, to test the effect of the two
learning medias, which involves a comparison of the drum-
ming rhythms produced by the mentor and the novice. The
drummers’ knowledge was incorporated into structuring
the suitable rhythms for teaching hand drums to novices.

The first drummer had over 40 years experience of mu-
sic practicing. The teachers experience included teaching,
performing drumming shows with a west African drum-
ming group, along skills in other instruments. A bongo
drum (size 6 and 7 inch) was used for the first recording
(see Figure 1), due to affordability. An initial instruction
and trial phase was dedicated to familiarization with the
bongo before the rhythm training. It was incorporated in
the first part of the drum lesson, allowing the participants
to get familiar with the bongo. This included, how to place
the bongo between the knees, the hit method, and how to
produce a pulse on the bongo. The general structure of the
drumming lesson was composed of 4 sequences of rhythm
patterns. The teaching material for both drumming record-
ing followed the general structure of a trial phase and four
rhythm patterns. The trial phase included how to hit the
djembe. The teacher instructed how to play two different
djembe tones in the trial phase, to match the skill level for
a novice. The base tone (centre drum skin), and the tone
(edge of drum skin). Halfway in each play along sequence,
the teacher increased the tempo, to challenge the novice.

2.2 Recording setup

The recording was filmed with the stereoscopic 3D Lucid-
Cam. For the second drumming recording, the static rig
was improved from the first recording. The rig was altered
to be positioned from the side, without the two fish-eye
lenses capturing the extended rig arm, allowing more flex-
ibility for adjusting to the drummers height (see Figure 2).

2.3 Implementation

The game engine Unity3D 2017 was used as the software
to implement the 3D stereoscopic viewing for the HTC
Vive HMD. The digital hands from a Leap Motion device
were incorporated to support the position of novices own
hands within the physical drumskin, and the matching of
their own hands to the playing teachers.

3. FIRST ITERATION

The first test iteration included a between-group design,
comparing two viewing conditions of VR and video. The
test stimuli for both test groups were the same pre-recorded
video of a drum lesson instructed by a drumming teacher,
from the second drum recording. The test stimuli consisted
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of 5 phases. An initial trial phases taught the participants
how to hit the djembe drum, to get comfortable with it.
Next phases four rhythm patterns were taught. In each
rhythm pattern, the teacher demonstrated the rhythm three
times on the djembe drum, before playing along. Each play
along rhythm sequence was on average 49.5 seconds long.
The total length of the test stimuli was 5 minutes and 53
seconds. The first 5 seconds of the recordings was a black
screen. 11 seconds was left in the end, after the teacher
finished the final and fourth rhythm. In the experimen-
tal group, participants were taught to play drums by tak-
ing the first-person perspective of the drumming teacher in
VR, viewed through a HMD, projecting the stereo-scopic
recording of the teacher. Participants were presented with
a physical djembe drum, matched to the position where
it was located in the virtual world (test stimuli). In the
control group, participants viewed the same test stimuli on
a 2D monitor placed in front of them. The audio of the
test stimuli was recorded with the built in stereo micro-
phones in the LucidCam, recording audio at 48Hz, uncom-
pressed 16-bit audio, from the teachers visual perspective.
The viewed test stimuli was recorded in the same room as
the participants were seated, with the participants sitting
on the same position as the teacher on a stationary chair.

3.1 Participants and Recruitment

35 participants were recruited at the University of New
South Wales Art Design (Sydney). The data of five partici-
pants was not usable and discarded, producing a final sam-
ple of 30 (male=12, female=18). The groups ages ranged
from 20 to 40; the majority accounted 25-34 years (50%).
The majority were students (86.6%). Before conducting
the test, participants were handed a consent form along
with a participant information sheet for the test. Partic-
ipants’ data was assured confidentiality, along with their
right to withdraw from the test at any time. Participants
were recruited based on the criterias of being novices to
drumming, not having any hearing disabilities, and fully
functional limbs.

3.2 Setup

A djembe hand drum of height 60cm and diameter 30cm
was used. Participants were seated on a stationary stool of
fixed height 43.5 cm, and a diameter of 33 cm. The drum-
ming lesson took place in a section of a closed room, partly
covered by a black curtain. Each participant’s sound from
the drumming, was recorded with a lavalier microphone
clipped to their clothes, centre at chest. On-ear headphones
were used to play the sound of the viewed test-stimuli. The
HTC Vive HMD was used to display the test stimuli for the
experimental group. The control group sat at a distance of
one meter from the 2D monitor.

3.3 Procedure

Participants were randomly assigned to each of the two test
groups, and all naive to the purpose of the test. Partici-
pants were asked demographic questions before the drum-
ming lesson in each of the two test groups (experimental

and control), in an online self-assessment questionnaire.
Both groups were asked about their experiences with mu-
sic practising. The experimental group was further asked
about their previous experience with VR, by a rating scale
from 1 (never tried it before) to 7 (uses it daily). Par-
ticipants were recorded to compare the rhythm accuracy
between the drumming teachers recording and the partici-
pant. At the beginning of the viewed test footage, an audi-
ble synchronisation clap from the test footage, was out-
putted through a pair of speakers, before switching the
sound output to the worn headphones by the participant.
This was done to generate the same synchronization point
in the participants audio files to the teacher, for the rhythm
comparison. After the pre-recorded drum lesson, partici-
pants completed post questions to their subjective learning
experience, filled out in the online self-assessment ques-
tionnaire.

3.4 Rhythm accuracy

The variable of rhythm accuracy was chosen to objectively
quantify the novices ability to follow the teachers djembe
rhythms. Each participant produced a unique audio file,
capturing their rhythmic performance during the experi-
ment. The learning efficiency of both test groups was quan-
tified by comparing participants individual audio files anal-
ysed in beats by minute, with the drumming teachers.

3.5 Self-assessment questionnaire

Participants answered a self-assessment questionnaire post
to their participation in the pre-recorded drumming les-
son. The questionnaire was designed to measure 4 as-
pects of the participants subjective experience of the given
learning media, including: Flow, User-experience, One-
ness, and Presence. Flow was measured using the Flow
Short Scale [6].

The Inclusion of Other in the Self Scale was originally
developed in [7]. The scale was used to measure the ex-
tent to which the participants felt bodily in sync with the
mentors location and rhythmic movements, related to the
concept of body-syntonicity. The measure of presence tar-
geted presence seen through the Plausibility Illusion (Psi).
Psi relates to the fact that the scenario presented is felt as
actually happening [4].

In the experimental group, the audio recordings of five
participants was discarded. Participants noticed that the
audio and video played through the Unity application was
out of sync. The synchronization of the audio and video
played through Unity was therefore monitored during each
test, by the participants wearing the HMD at their drum-
ming position before starting and playing of the unity ap-
plication. Participants soundfiles were synchronized with
the teachers in post-processing. The drumming lesson con-
sisted of four rhythm patterns, both including a normal
and fast tempo. Eight soundfiles were generated for each
participant, containing the normal and fast tempo of each
rhythm. It was prioritized to avoid the teachers voice in
the generated soundfiles, not to cause a further difference
in the teachers and participants audio recordings. Eight
sequence markers of label tracks were created related to
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the teachers starting points. The sequence markers con-
tained both the normal and fast tempo of the rhythm play
along periods. The sequence markers ensured the genera-
tion of the eight individual wav files for each participant, to
match precisely the teachers soundfiles files respectively.
The MIRtoolbox 1.7 for Matlab, was used to analyse par-
ticipants rhythm performances [8].

An independent t-test was performed with participants
final tempo score in the two test groups. The reported
results showed no significance difference for the experi-
mental group exposed to the VR drum lesson (M=35.311,
SE=2.956), than for the control group exposed to the 2D
drum lesson (M= 30.821, SE=2.1043), t(28)= 1.236, p=
0.226

Though there was found no significant difference among
the two test groups, the control group performed better
with 4.49 BMP less in difference from the drumming teacher,
than the experimental group. Inspecting the data further,
the total average of the fast tempo difference scores of the
two test groups, produced almost equal results. The con-
trol group produced a fast tempo difference score with a
mean value of 20.29 BPM. While the experimental group
produced a mean value of 20.49 BPM. The total average of
the normal tempo difference scores produced 41.36 BPM
in the control group, and 50.13 BMP in the experimental
group, indicating the control group was 8.77 BMP closer to
following the teachers tempo, than the experimental group,
in these sequence parts. An independent t-test was also
performed among the two groups total average of the nor-
mal tempo scores. The result also indicated no significance
among the two groups ability to follow the teachers tempo
in normal pace. An independent t-test was performed with
participants average flow score from the FSS in the two test
groups. The result of the FFS flow scores was found not
significantly different for the experimental group exposed
to the VR drum lesson (M=5.580, SE=0.152) than for the
control group exposed to the 2D drum lesson (M= 5.1067,
SE=0.254), t(28)= 1.601, p= 0.121.

Participants’ ratings in the first seven user-experience items
produced a total mean value for the experimental group at
5.73, and a mean value at 5.70 for the control.

There was found no significance difference between the
experimental and control group, in the reported oneness
ratings, with the exact same mean of 4.73, and median of 5
in both groups. The Oneness scores indicated that the first-
person perspective rendered in the HMD experienced by
the experimental group did not provide a stronger sense of
feeling in tune and synchronizing with the teachers move-
ments in this experimental setup.

An independent t-test was performed with participants
average presence score in the two test groups. The re-
sult of the presence scores was found significantly differ-
ent for the experimental group exposed to the VR drum
lesson (M=5.617, SE=0.251) than for the control group
exposed to the 2D drum lesson (M= 4.7333, SE=0.263),
t(28)= 2.4282, p= 0.0219, = 0.05. Table 1 summarizes the
results.

Measurement Mean Std. dev. Std. err.
Flow Exp. 5.580 0.588 0.152
Flow Con. 5.1064 0.982 0.254

User-experience Exp. 0.833 0.215
User-experience Con. 0.827 0.213

Oneness Exp. 4.733 1.792 0.463
Oneness Con. 4.733 1.624 0.419
Presence Exp. 5.617 0.972 0.251
Presence Con. 4.733 1.019 0.263

Table 1. Descriptive statistics of the Subjective Self-
assessment Questionnaire for each measurement for the
control (con) and experimental (exp) group for the first test
iteration.

4. SECOND ITERATION

The experimental design followed the same as the first test
iteration. However, the test’s stimuli was revised with a
third drumming recording, to produce a final pre-recorded
drum lesson. The hired drumming teacher was the same
used for the test stimuli in the first test iteration. The struc-
ture of the test stimuli followed the same as the first test
iteration, with the same four rhythms. The total length
of the recorded test stimuli was 7 minutes and 9 seconds
long. The test stimuli consisted of a longer trial phase with
more deliberate instructions. This was to ensure that the
participants got a sense of how to hit the djembe prop-
erly before the first rhythm instruction. The four rhythm
patterns taught was on average 82 seconds long. The au-
dio recording of the mentor in the first experiment was
recorded with the built-in stereo microphones in the Lu-
cidCam. In the first experiment, the participants could see
what the teacher saw, but not hear a reliable version of
what the teacher heard. This experiment revised the au-
dio capture to be recorded from a binaural point-of-view
with the Roland CS-10EM binaural microphones. The mi-
crophones are electret and omnidirectional, capturing a fre-
quency range of 20 Hz to 20,000 Hz.

4.1 Participants and recruitment

41 participants were recruited at the University of New
South Wales, Art Design (Sydney). It was ensured that
none of the subjects had participated in the first test itera-
tion. One participants data was not usable and discarded,
giving a final sample of 40 (male=14, female=26). The
groups ages ranged from less than 20 to 55; the major-
ity accounted less than 20 years (35%) and 21 − 25 years
(30%). The majority were students (80%). Participants
were recruited by the same conditions as in the first test
iteration.

4.2 Setup and procedure

The setup and procedure followed the general structure of
the first test iteration. The sound of the participants was
captured with a Zoom H4n Pro, placed in front of the drum.
The changes to the procedure included the test conductor
demonstrating how to hold and position the djembe cor-
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Measurement Mean Std. dev. Std. err.
Flow Exp. 5.333 1.159 0.259
Flow Con. 5.105 0.881 0.197

User-experience Exp. 5.714 1.061 0.237
User-experience Con. 5.728 0.828 0.185

Oneness Exp. 5.250 1.564 0.336
Oneness Con. 4.4 1.353 0.303
Presence Exp. 5.575 1.162 0.259
Presence Con. 4.975 1.186 0.265

Table 2. Descriptive statistics of the Subjective Self-
assessment Questionnaire for each measurement for the
control (con) and experimental (exp) group for the second
test iteration.

rectly, with the right angle tilting the djembe from the floor
away from the participant. Furthermore, the test conductor
explained in the brief about the drum lesson content, that
the participant would first be instructed by the teacher in
the drum lesson on how to hit the djembe. Next, follow-
ing a count in on four beats, to hit along the teacher. The
evaluation of the second test iteration relied on the same
measurements methods used in the first test iteration.

4.3 Results

Similarly to the first test iteration, there was found no sig-
nificant difference between the experimental group exposed
to the VR drum lesson (M = 24.567, SE = 2.282), and
the control group exposed to the 2D drum lesson (M= 21.739,
SE=1.932), t(38)= 0.946, p= 0.350.

4.4 Subjective learning

There was found no significance in the subjective ratings of
flow, user-experience, and presence. The Mann-Whitney
test was used as a significance test of the oneness ratings,
due to non-parametric data. The feeling of oneness with
the teacher showed significance difference between the ex-
perimental group exposed to the VR drum lesson (M=5.250,
SE=0.336), than for the control group exposed to the 2D
drum lesson (M= 4.400, SE=0.303), t(38)= 1.558, p= 0.048.
Table 2 summarizes the results.

5. CONCLUSIONS

This paper investigated if learning hands drums through an
embodied first-person perspective mediated in VR leads to
better rhythmic understanding than learning through a 2D
video. The results of the rhythm comparison in the two
test iterations found no significant difference between the
experimental and control group learning of rhythms, eval-
uated in the ability to follow the teachers tempo in BPM.
The majority of the participants described their experience
as enjoyable in both test iterations. Additionally, indicating
motivation towards the given learning technique in both
test groups. The results can situate the question whether
the given musical instrument and task was a motivation,
along the given teaching material. The two test conditions

were designed to detect the effect of a first-person perspec-
tive of a drumming teacher, on a novices rhythm accuracy
and learning. Thus, the two conditions differed in visual
display, the control group had the ability to watch their
own hands playing on the physical djembe. This could pro-
duce an advantage in terms of acquiring a better sense of
the edge when the hitting drum skin. However, a restrains
in this scenario was the shifting of attention between the
participants hands and the playing teacher viewed on the
2D monitor in front of them. In a first iteration, we tried to
project the hands of the player of top of the VR experience,
using the Leap Motion’s tracking. However, the inconsis-
tent tracking of the participants hands caused the attention
to be directed to the quality of the 3D rendered hands more
than the experience. As the viewed drum lesson was a
pre-recorded video, the possibility of corrections to par-
ticipants rhythm performance real-time from a teacher was
not available. Participants were not given any feedback
upon how well they performed the rhythm in the first and
second test iteration - from an objective source. To opti-
mize the participants learning, future studies could explore
real-time feedback of participants rhythm performances.
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[5] K. Höök, Designing with the Body: Somaesthetic In-
teraction Design. MIT Press, 2018.

[6] S. Engeser and F. Rheinberg, “Flow, performance and
moderators of challenge-skill balance,” Motivation and
Emotion, vol. 32, no. 3, pp. 158–172, 2008.

[7] A. Aron, E. N. Aron, and D. Smollan, “Inclusion of
other in the self scale and the structure of interpersonal
closeness.” Journal of personality and social psychol-
ogy, vol. 63, no. 4, p. 596, 1992.

[8] O. Lartillot and P. Toiviainen, “A matlab toolbox for
musical feature extraction from audio,” in Interna-
tional conference on digital audio effects. Bordeaux,
2007, pp. 237–244.

273

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Real-time Mapping of Periodic Dance Movements to Control Tempo in
Electronic Dance Music

Lilian Jap
KTH Royal Institute of Technology

lilianj@kth.se

Andre Holzapfel
KTH Royal Institute of Technology

holzap@kth.se

ABSTRACT

Dancing in beat to the music of one’s favorite DJ leads of-
tentimes to a powerful and euphoric experience. In this 
study we investigate the effect of putting a dancer in con-
trol of music playback tempo based on a real-time estima-
tion of body rhythm and tempo manipulation of audio. A 
prototype was developed and tested in collaboration with 
users, followed by a main study where the final prototype 
was evaluated. A questionnaire was provided to obtain 
ratings regarding subjective experience, and open-ended 
questions were posed in order to obtain further insights for 
future development. Our results imply the potential for en-
hanced engagement and enjoyment of the music when be-
ing able to manipulate the tempo, and document important 
design aspects for real-time tempo control.

1. INTRODUCTION

In Electronic Dance Music (EDM), a DJ combines in ad-
vance planning and real-time decisions for the purpose of 
creating an intense and ecstatic dance experience. Tak-
ing such dance experience into account is a direction of 
high potential when finding new practices for interactive 
systems based on the ideas of embodied interaction [1]. 
Current musical/technical landscapes have shifted the fo-
cus away from the passive individual towards an active role 
in sound [2] with the impact of embodied interaction.

Enabling the user to find an intuitive way for controlling 
the sound parameters of a music playback could pave the 
way further for an interactive musical environment. When 
it comes to the mapping of music playback tempo, the idea 
of involving dance movements for manipulation might not 
be a novel exploration field of research, eg. [3] and [4] that 
both involved techniques of video and/or image analysis. 
The main contribution presented in this paper is however 
the study of dancers’ experiences when interacting with 
the proposed system, an autonomous interactive system 
that expands the experience one has while dancing with 
it. This might open up possibilities for individuals wish-
ing to physically interact with music on a personal level -
without the requirement of having a musical background, 
or the expectation of having the actual physical ability to 
play a musical instrument.

Copyright: ©c 2019 Lilian Jap et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

In this paper, a proposed design system is presented where
the following hypothesis is addressed: mapping of real-
time measurements of a dancer’s rhythmic movements to
tempo manipulations in EDM can lead to a dance experi-
ence that compares positively to a standard playback of the
same type of music. The definition of a dancer entails any
possible user of the proposed system; whether the user pos-
sess the skill-sets of a dancer or not. A proof-of-concept
prototype is presented, along with its design process and
findings made after performing a user-study where partici-
pants got to interact with the prototype.

2. BACKGROUND

A number of studies involving experiments with music and
embodiment have been conducted. In the context of musi-
cal performances, the related work appears to have a com-
mon feature; sound-producing and communicative musi-
cal gestures as an extension of the body [5]. A music
performance may include gestures by those that produce
sounds, and by those that perceive sounds (i.e. listeners
and dancers) [6], with the larger body of research focusing
on the former.

Motion sensors used with the objective of implement-
ing different sound synthesis techniques have been imple-
mented in various mixed interdisciplinary approaches, such
as the sonification of body movements of contemporary
circus artists [7], conducting [8], and music pedagogy [9].
Placing wireless motion sensors on hands and feet, it was
shown that utilizing gestures as game content brings more
substance to the game [10].

When it comes to hearing rhythm in music, bodily move-
ments play an important role when developing the skill in-
volved in rhythmic perception [11]. Audio feedback can
induce more awareness as it brings deeper understanding in
how the body moves [12]. Aligning rhythmic movements
with rhythm in music have been used as an approach to
improve the users own movement performance in the con-
text of sports (running) as well as physical rehabilitation
and health [13, 14]. The gestures of dancers, and their re-
lation to underlying meter have been the subject of various
studies employing sensor technologies [15, 16], and repet-
itive movements have been found to be more pronounced
in hand gestures than the gestures of other body parts [15].

Marker-based infra-red motion capture (MoCap) technol-
ogy provides accurate data of complex movement in a three-
dimensional space [17], but is largely limited to applica-
tions in a laboratory space. Recently, Inertial Measurement
Units (IMU) have been applied in movement-based inter-
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action design [17–19]. Their miniature in size, mobile use
and reported accurate essential values make them benefi-
cial to use in more flexible contexts.

3. METHOD

In the present study, a real-time prototype was designed for
estimation of periodicity in a user’s body movements, and
tempo manipulation of audio recordings based on these
measurements. In order to establish the building blocks
and parameters for the prototype, a pre-study was con-
ducted (Section 3.1). An overview of the prototype’s com-
ponents is outlined in Section 3.2. The participant groups,
the experimental setup, and the evaluation method based
on questionnaires are described in Sections 3.3 to 3.5, re-
spectively.

3.1 Pre-study

An initial study was conducted with three participants to
establish the design of the prototype. Different placements
of IMU sensors on the body were examined in terms of us-
ability as well as pronouncement in the movements (hand
wrist, ankle joint, hip and the back). One sensor was used
and based on the notion that the placement should serve a
practical fit.

In the participants’ expressed preferences, the ankle joint
and hand wrist were the preferred placements as it made
the sensor less noticeable or could enable more control in
the tempo manipulation. However, the clearest pronunci-
ation of measured periodic movement in the initial study
was observed in the hand wrist. This corroborates find-
ings by Leman and Naveda [15], motivating our decision
to place the sensor on the hand wrist.

Adjustments in the implementation of the prototype were
made as well since high latency in combination with sud-
den tempo changes were encountered and a confusion from
the participants was expressed. The analysis frame size for
estimating the periodicity of the arm movement was set to
obtain a sufficiently reactive system, while still facilitating
reliable periodicity estimation. Other system parameters,
such as the form of tempo changes in the audio playback
were also determined in this pre-study. After testing var-
ious sensor and audio processing approaches, the system
design as depicted in Figure 1 emerged.

3.2 Prototype

3.2.1 Equipment and platform

A IMU sensor from x-io Technologies Ltd 1 was used,
which makes use of the Open Sound Control (OSC) pro-
tocol. This opens up compatibility with other software ap-
plications, for instance Max/MSP 2 , which was applied to
collect and process incoming data from the sensors. The
real-time communication was performed via Wi-Fi using
TP-Link AC750 travel router as a separate 5Ghz wireless
network instead of the sensors internal antennae, allowing
for future extensions using multiple sensors.

1 http://x-io.co.uk/ngimu/
2 https://cycling74.com/products/max/

3.2.2 System design

Parts of the operations were computed using JavaScript,
within the Max/MSP environment. The chain of operations
as depicted in Figure 1 can be described as follows:

1. OSC messages about the accelerometer data from
the NGIMU sensor are received.

2. Raw accelerometer data from x-, y- and z-axis are
smoothed through low-pass filtering in a Max/MSP
[slide]-object, filtering with slide value S = 10 ac-
cording to Equation 1. A given sample output yn
is equal to the previous value yn−1 plus the differ-
ence between the input xn and the previous value
divided by the slide value S. Given a slide value of
S = 1, the output will therefore always equal the in-
put. Given a slide value of S = 10, the output will
only change 1/10th as quickly as the input 3 .

yn = yn−1 +
xn − yn−1

S
(1)

3. The fundamental frequency F0 of the movements
in the data stream in each axis is estimated by the
[pipo.yin]-object from Mubu for Max-toolbox 4 . The
object makes use of the YIN-algorithm [20], which
also provide the quality factor of the detected peri-
odicity. Several values were tested for different at-
tributes of the yin-object in the initial study, and sig-
nificant for the interaction were the sample size of
frame (N), hop size (N/16), and frame-rate (sample
rate of sensors). N = 100 was found to provide suf-
ficiently accurate results while being short enough
to track a speed up/speed down of the acceleration.
Data streams are sliced into windowed frames of size
N using the [pipo.slice]-object from the same tool-
box and with the sensor’s default sample send rate
of 50 Hz, data streams are processed over the last 2
seconds.

4. Values of the computed quality factor - in each axis -
are smoothed using a second-order moving average
filter with subsets of 10 and 5 sample values, respec-
tively.

5. The highest obtained quality factor determines which
estimated F0 to be used, i.e. a choice between x-, y-,
and z-axes was made based on which expresses the
most consistent periodic movement.

6. F0 is converted into beats per minute (bpm).

7. Based on the changes in speed of the movements,
the tempo control value for the audio playback will
change accordingly. If detecting a speed increase/
decrease in the dancer’s movement, the current bpm
value of the playback will increase/decrease with a
value of 3bpm. If the movements are stopped, the
playing tempo will decrease as the current design of

3 https://docs.cycling74.com/max7/maxobject/slide
4 http://forumnet.ircam.fr/product/mubu-en/
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Figure 1. Block diagram of the developed prototype.

Figure 2. Screen-shots of recorded sensor data graph, de-
tected frequency and the axis with highest estimated qual-
ity of detected periodicity. Recorded with one of the par-
ticipants dancing to a EDM music sample.

the system is interpreting the movements to be in
a slower state than previous data stream set. The
minimum playback tempo was set to 60bpm. The
initial tempo control value was set to the tempo of
the original music recording.

8. Bpm-control values are sent to a sample-playback
object to be time-compressed/time-stretched in real-
time, based on the difference between the bpm-control
value and the current playback tempo. The time
compression/stretching make use of beat annotations
of the played audio sample (see Block 9 in Figure 1).
In future work, this may be replaced by a real-time
beat estimation of the music audio signal.

Figures 2 provides an example for sensor data when a
participant is moving in an intense and repetitive manner.
The axis with the resulting highest estimated quality factor
of detected periodicity (here, the X-axis) determines which
detected frequency to be used for tempo manipulation, and
the lower part of Figure 2 illustrate how a tempo increase in
the oscillation on the X-axis leads to an increasing tempo
estimate for the movement.

3.3 Participants

12 participants between the ages 22-31 participated in the
study (8 men and 4 women, mean age 27 years). 9 par-

Figure 3. Two of the participants testing the prototype in
the main study.

ticipants have a background in dance or are working pro-
fessionally with dance. All participants were reported to
be in a healthy condition. Each participant was recorded
individually and written consent was obtained before the
experiment started.

3.4 Experimental Setup

The participants were offered to choose music samples them-
selves. However, since no participant preferred this op-
tion, music stimuli were randomly chosen for each session
within a range of 110-140 BPM from a collection of 33
recent EDM productions 5 . The duration of each session
was kept within 15 minutes as a way to keep the partici-
pant engaged.

In one session, two experiments were performed for each
participant. In the first experiment no tempo manipula-
tions were conducted, and the participant was instructed
”to move freely, but repetitively to the presented music
stimuli”. The second experiment included the same task
but the ability to control the tempo of the music stimuli
through the implemented prototype. The NGIMU was in
both sessions placed on the right hand wrist of the partici-
pant. The experiments were conducted in a personal living
room using 2.0 stereo speakers with Bluetooth for play-
back of music. The participants were also video recorded
to facilitate further analysis of spontaneous reactions and
interactions. Figure 3 shows screen-shots from two partic-
ipants’ recordings.

3.5 Questionnaires

After each session, the participants were asked to fill a
questionnaire 6 , which contained both open- and closed-

5 The list of songs is provided here: https://bit.ly/2DhrLO9
6 The questionnaire, including all responses, can be obtained from

https://bit.ly/2WGJ0RU
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Figure 4. Results of participant ratings of how engaged in
the music they were in the first (no tempo manipulation)
and second (with tempo manipulation) session.

ended questions to gather qualitative and quantitative data.
The questionnaire focused on enabling comparison of the
participants experience to standard playback to an interac-
tive setting. In addition, several questions were provided
to gather more qualitative suggestions regarding the sys-
tem design.

4. RESULTS

4.1 Engagement in music

Figure 4 shows the participants’ ratings when asked about
how engaged in the music they were, comparing first (no
tempo manipulation) and second session (with tempo ma-
nipulation). The x-axis represents the distribution of the
participants rating, where 1 = not at all engaged, 2 = little
engaged, 3 = moderately engaged, 4 = very engaged and 5
= completely engaged. The y-axis represents the number
of participants. The first session without tempo manipu-
lation gave mean value rating of 3.42, while the second
session with the ability to manipulate tempo gave a mean
value rating of 4.00. Two participants gave a lower rating
in the second session (both from 3 to 2), five provided the
same ratings, and another five increased ratings.

Participants who had given a lower rating (2 - little en-
gaged) would give the motivation that dancing alone in
a room made them feeling little engaged as to whenever
he/she would be in a club-like situation: “I think it was not
easy to be dancing alone.”(P1), “I was all alone. Dancing
is kind of a social experience for me.”(P8)

Participant (P8) gave this first session a rating of 2 (little
engaged) while the second session got a rating of 5 (com-
pletely engaged). For the reason that:

I can’t say that my dancing improved, but it
was really engaging when you could control
the tempo with your movements. (P8)

Another participant who gave a different rating the sec-
ond session (value of 4 – very engaged), in comparison to
the first session (value of 2 – little engaged) explained the
difference as:

Because I was in control of the music. It made
it more of a “game” than just dancing to mu-
sic. (P6)

In relation to the first session, where the motivation for
the rating was explained as:

Hard to lose yourself in the music when you
are alone in room like this. You feel watched
even though the room is empty. It’s easier
to dance when you’re in a room full of peo-
ple dancing, or at home, where you feel com-
pletely relaxed. (P6)

Another participant who had given a higher rating the first
session (value 3 – moderately engaged) but had a different
engagement the second session (value 2 – little engaged)
explained it as:

The changing tempo made it hard for me to
enjoy the music and dance to it. As I moved to
the pace of the music it somehow did not catch
my movement and began to slow down which
made me have to wave my arm fast to make
the music speed up again (...) On the other
hand, I felt like I got to interact with the music
in a new way. The ability to adjust the music
as if I was dj-ing was cool, as I could play
with it. The songs also sounded cool when
switching the tempo. (P3)

Other participants who had shifted from feeling moder-
ately engaged to either very or completely engaged gave
the following reasons:

The possibility to change the dynamic through
my movement was for me more exciting. As
well as no need to stay repetitive. (P4)

Because my moves and actions had an impact
on the source/reason why I was originally mov-
ing. It created a little bubble in which a con-
versation with myself could happen. (P5)

4.2 Enjoyment when dancing

Figure 5 shows questionnaire responses when the partic-
ipants were asked to compare enjoyment of dancing be-
tween the first and second session. In addition to com-
paring the engagement ratings for the individual sessions
(previous subsection), these ratings provide an additional
comparison from the perspective of the participant. The
x-axis represents the rating from 1 (=much worse) to 5
(=much better). The y-axis represents the number of par-
ticipants giving a certain rating. Following results gave a
mean value rating of 3.08.

When asked about how they felt being able to modify the
tempo, a majority described a positive feeling. But along
with a positive feeling, some still expressed having a some-
what split feeling about the interaction.
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Figure 5. The rating when comparing the participants en-
joyment of dancing between the first and second session.

It was playful, an enjoyable negotiation. (P4)

It was interesting and fun. At the same time
there was a feeling of responsibility towards
the tempo in comparison to the music that is
not tempo modified. Like if it would be my
mistake if the dance floor died. (P2)

It felt interesting but exhausting to keep up as
my arm had to stay in one tempo even though
my body might have wanted to working in con-
tradiction to the music sometimes. But it was
also interesting to hear when I got tired and
then realizing that I had physically changed
tempo. (P11)

Great but confusing at times. It made me move
in a certain way to be sure to not mess up the
tempo. Felt a bit restricted. (P12)

A common feeling of restriction as the last-mentioned
could be identified among other participants as well.

It was hard to use it, as there was a delay of
a few seconds, and as I normally adjust to the
beat and have a difficult time to set the pace
for it to play, as I then need to move faster
than the music. (P3)

It slowed down to easily in my opinion. I often
felt that the tempo was perfect, but it always
slowed down a few seconds later. (P6)

(...) I felt more engaged in one way, because I
could control the pace of the music. Although
I felt more restricted because I had to more
repetitive and less instinctual. (P9)

A couple participants described a feeling of uncertainty
in if he/she is doing right.

(...) you realise that you sense of beat has got-
ten worse. (P7)

(...) perhaps a slight misconception from my
part when the vocals kicked in as I didnt feel
that I had as much control over them. (P10)

4.3 Spontaneous reactions

Recognized among the participants was how a larger part
of the participants generated more arm movements during
their second session in comparison to their first session.
Moving the arm as an indication of exploring possibilities
in the tempo manipulation, going from one extreme to an-
other (fast/slow, periodic/non-periodic) was often followed
by reacting with a laughter. There were furthermore partic-
ipants who appeared to shift between adjusting their dance
to what they were hearing and interfere their dance by gen-
erating arm gestures to control the tempo. 7

5. DISCUSSION

In this study, rhythmic movements of dancers were ana-
lyzed in real-time for their predominant periodicity, which
was then mapped to manipulate tempo in the music play-
back the dancer was moving to. The emphasis in the user-
study and resulting evaluation was put on the participants’
subjective experience, both with and without the ability to
control the tempo of the music. Even though no statistical
significance emerges from our study, the results indicate
the potential of positive dance experiences when improv-
ing the system based on the comments of our study.

Preserving the sound quality of the input audio was one of
the main challenges. Granted that the prototype aimed to
strictly change the bpm of the playing input audio – with-
out affecting other sound parameters – the music’s charac-
teristics and the sound quality of it were still affected. A
possible explanation for how most of the participants felt
more engagement and/or enjoyment could be grounded in
a feeling that it is music they themselves somewhat cre-
ated. Thus, an enhanced feeling in their engagement and/or
enjoyment in the interaction. Likewise, positive effect on
engagement could be originating from the fact that they
had to execute more control and needed to be more atten-
tive to the details in the music playback.

Modifications that became significant for the user interac-
tion were found to be situated in the functionality on how
the playback tempo changes. The developed system ap-
plies small but noticeable changes within a short time span
for the user to sense the agency in the interaction.

Among the participants’ expressed opinions, the most com-
mon criticism was regarding the delay between a change in
body movement and a tempo change in the playback. In the
way that the current prototype is constructed, the detected
frequency is always analyzed comparing current subset to
previous subset. If the frequency is analyzed to be higher,
the tempo will increase. If lower, the tempo will decrease.
Thus, attempting to make a tempo change for a short time
period might result in a playback tempo manipulation. It
therefore requires the user to create faster movements for
a longer time period in order to make movement changes
noticeable in sound.

After having arrived at a desired tempo of the playback,
the frequency and clarity of repetitive movements was fre-

7 Video examples of users in the tempo-manipulation experi-
ment: https://youtu.be/3toOXtS2bKI, https://youtu.be/i63UBMehWGs,
https://youtu.be/IivNDDOkxeQ.
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quently observed to decrease. This made P3 feel that the
system did not catch the pace of the movements and there-
fore this participant pointed out decreased enjoyment of
the dance in the interactive setup.

As a potential drawback of this study, a majority of the
participants were educated or are professional dancers. For
participants who have a deep background in dance perfor-
mance, it is assumed that taking on the task given in this
study can happen effortlessly and possibly feel more en-
gaged to any music that is played for them. Having a larger
as well as more diverse population, the distribution of feed-
back given from the participants may well have differed.
However, involving experienced dancers enabled us to get
a rich body of verbalizations that can guide further devel-
opment.

5.1 Future research

Some of the participants expressed confusion about which
sound parameters in the musical structure were controlled
by body movement, even though it was limited to tempo
alone. Further study on what other manipulations based on
gestures can therefore be explored.

Studying how a beat synchronization would influence the
interaction if it were to be done more “musically” can be
of interest, e.g. changing the tempo only at the beginnings
of bars. This can provide a solution for the user to feel
more engaged in the dance if wanting to break off from
the interaction and stay in the tempo. It is also likely to
improve the interaction experience by detecting durations
during which a clear signal is not received from the mo-
tion data, and deactivating the tempo manipulation in such
phases.

In order for the system to be adaptive to as many gestural
vocabularies as possible, additional features to the interac-
tion can be considered as a way to give the user further
choice and/or control in his or her movements. This allows
the user to reconstruct the system as desired to accommo-
date his or her gestural preferences and/or capabilities, as
was the case in Mulder’s work of GRIP instruments [21].

Investigating how participants would interact in groups is
worth exploring, and could add dimensions of social inter-
action through entrainment to the interaction.

6. CONCLUSION

The initial objective of this study was to investigate the
subjective experience when users are given control of the
decision-making in the music that is played for them. A
proof-of-concept prototype was built and examined by a
total of 12 participants. A user-study was conducted con-
sisting of two sessions, one without tempo manipulations
by the prototype and one with tempo manipulations con-
trolled by periodic body movement. The proposed de-
sign is suggested to provide a dance experience that can
compare positively to a standard playback of EDM music.
Results imply giving an overall positive dance experience
worth exploring further. For a number of the participants,
the prototype indicated contributing to more engagement
and enjoyment than to a standard playback of EDM in-

volving not interacting with the prototype. The qualitative
statements provide a rich set of directions to develop the
prototype towards increased robustness and diversity of in-
teractions.

7. REFERENCES

[1] P. Dourish, Where the action is. MIT press Cam-
bridge, 2001.

[2] A. Tanaka, “Music one participates in,” in Proceedings
of the 8th ACM conference on Creativity and cognition.
ACM, 2011, pp. 105–106.

[3] G. Castellano, R. Bresin, A. Camurri, and G. Volpe,
“User-centered control of audio and visual expressive
feedback by full-body movements,” in Affective Com-
puting and Intelligent Interaction, 2007, pp. 501–510.

[4] C. Guedes, “Controlling musical tempo from dance
movement in real-time: A possible approach,” in Pro-
ceedings from the International Computer Music Con-
ference. ICMC, 2007, pp. 453–457.

[5] S. Dahl and A. Friberg, “Visual perception of expres-
siveness in musicians’ body movements,” Music Per-
ception: An Interdisciplinary Journal, vol. 24, no. 5,
pp. 433–454, 2007.

[6] A. R. Jensenius and M. M. Wanderley, “Musical ges-
tures: Concepts and methods in research,” in Musical
Gestures. Routledge, 2010, pp. 24–47.

[7] L. Elblaus, M. Goina, M.-A. Robitaille, and R. Bresin,
“Modes of sonic interaction in circus: Three proofs of
concept,” in Sound and Music Computing Conference,
2014.

[8] P.-J. Maes, D. Amelynck, M. Lesaffre, M. Leman,
and D. Arvind, “The conducting master: an interac-
tive, real-time gesture monitoring system based on spa-
tiotemporal motion templates,” International Journal
of Human-Computer Interaction, vol. 29, no. 7, pp.
471–487, 2013.
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ABSTRACT 
This paper presents some of the outcomes of a one year 
Higher Education Innovation Fund1 funded project exam-
ining the use of music technology to increase access to mu-
sic for children within special educational need (SEN) set-
tings. Despite the widely acknowledged benefits of inter-
acting with music for children with SEN there are a num-
ber of well documented barriers to access [1, 2, 3]. These 
barriers take a number of forms including financial, 
knowledge based or attitudinal. The aims of this project 
were to assess the current music technology provision in 
SEN schools within a particular part of the Dorset region, 
UK, determine the barriers they were facing and develop 
strategies to help the schools overcome these barriers. An 
overriding concern for this project was to leave the schools 
with lasting benefit and meaningful change. As such an 
Action Research [4] methodology was followed, which 
has at its heart an understanding of the participants as co-
researchers helping ensure any solutions presented met the 
needs of the stakeholders. The presumption by the re-
searchers was that the schools needed new technology to 
help overcome barriers. However, although technological 
solutions to problems were presented to the school, it was 
found that the main issues were around the flexibility of 
equipment to be used in different locations, staff time and 
staff attitudes to technology. These issues were addressed 
through the Action Research methodology to ensure that 
the technology designed worked for these particular use 
case scenarios.  

1. INTRODUCTION
There have been several major reviews of music technol-
ogy’s use within SEN settings; within a general SEN edu-
cational context [1, 2, 3, 5], as well as particularly from a 
music therapy perspective [6, 7,  8, 9]. This growing body 
of literature supports the view that there is a growing in-
terest in the use and the study of the use of music technol-
ogy (MT) within these environments and by communities 
of practitioners. Music is used within SEN settings to sup-
port a range of activities, for example, formal class room 
based music teaching, one-on-one music therapy sessions, 
group music sessions [1, 3, 8] as well as being embedded 
in ‘everyday’ class room activities such as, signposting 
when it is time to get ready for lunch, or when to put your 
shoes on [3]. 
1 HIEF funding is allocated by Research England with a remit 
to to support and develop a broad range of knowledge-based 

1.1 Benefits of music 

Music has been identified as having a number of benefits 
in terms of promoting health and wellbeing, as well as hav-
ing the ability to develop wider skills relating to participa-
tion, socialisation, attention and fine motor skills [1] [3]. 
The employment of MT has a long history of being utilised 
(for example, see [10, 11]) to help provide access to music 
making, particularly for those working within SEN set-
tings where bespoke technologies can be used to overcome 
some of the physical or cognitive barriers that may be pre-
sent for these children in using ‘standard’ acoustic instru-
ments [6]. Recently there has been an increase in the 
amount of bespoke music technologies, specifically de-
signed for the SEN sector, (for example [12, 13, 14, 15]) 
as well as a proliferation of music delivered through tablet 
based devices such as Apple’s iPad [16, 17, 18]. (See Ward 
et. al. [5] for a full review). 

1.2 Issues of access 

In 2011, the UK Charity, Youth Music commissioned a re-
view of engagement with MT in special educational and 
disabled music settings throughout the UK. This report [1] 
clearly sets out the benefits of using music technology for 
SEN children and young people, but also identified many 
barriers to the use of MT within these settings. In this re-
view, these barriers are summarised under three headings: 
A need for specialist training; Resources; and A fear and 
dislike or indifference to technology [1 p. 31]. I will bor-
row these categorisations to revisit these issues.  

1.2.1 Need for Specialist training 
As already mentioned, there are a wide range of technolo-
gies available to enable the delivery of music within a 
classroom, ranging from bespoke hardware controllers to 
software running on tablet devices. These devices require 
a level of specialist knowledge to be useable and to inter-
face with existing equipment. Like all technology, these 
devices are prone to constant change and upgrade cycles, 
and as such, there is a continual need for specialist training. 
In addition to the Youth Music report  [1] this need for 
training has also been identified by a range of other au-
thors:  Welch et. al. [2] recognised a lack of knowledge 
and understanding of music technology among music ther-
apists and teachers within a SEN setting. Of the 80% of 
sampled schools that used distance sensing technology in 
music, only 11% used them on a weekly basis. A UK based 

interactions between universities and the wider world, which re-
sult in benefits to the economy and society.
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survey of practice and attitudes to electronic technologies 
in clinical music therapy carried out by Magee [6] found 
that 65% of music therapists felt they had a lack of skills 
in using this type of equipment. This translated into the 
electronic technology equipment being ‘in a box in a cup-
board’ [6 p.144].  A more recent study in 2012, by Hahna, 
Hadley, Miller and Bonaventura [19], surveyed 600 music 
therapists from the US, Australia, Canada and the UK. 
This found that 61% of respondents were self-taught, sug-
gesting that more training was needed to make ‘more tech-
nology accessible to a variety of learners’ [19 p.456].   

1.2.2 Lack of Resources 
Lack of resources can be material in nature, for example, 
lack of physical technology; lack of funds to purchase 
technology; or it could be more intangible in nature. For 
example, lack of information about how to integrate the 
technology into the sessions; or simply lack of time to uti-
lise the technology or learn about the technology. Findings 
from an international survey of music therapy practitioners 
by Hadley et. al.  [20]  reports on the barriers to entry as 
‘lack of money, lack of professional experience, lack of 
portability, lack of time to learn, limits of the facility, lack 
of interest, a belief that music technology is not appropri-
ate to music therapy clinical work, or that music technol-
ogy was not appropriate for their particular clientele’ [20]. 
Farrimond et. al [1] identify barriers to MT provision 
around the area of cost of technology. They draw on 
Nagler [21] who found that the ‘high cost of new equip-
ment’ was a barrier and Magee [6], who states that 40% of 
respondents to her survey of Music Therapists identify MT 
as being ‘too expensive to buy’ [6]. In more recent publi-
cations (2017) cost seems to be less of an issue, with a re-
cent focus on tablet based interfaces [9, 3] suggesting that 
the relative affordability of tablet based applications for 
MT is increasing provision. Welch et. al. [3] suggest that 
79% of schools have access to music through apps on tab-
lets, with 65% having access to music software such as 
Garage band [16, 3, p. 9]. Despite the proliferation of tablet 
devices in schools and the availability of low cost or free 
apps, it is worth noting that tablet based activities are not 
suitable for all children, access to technology will vary 
with need, and bespoke technologies for MT can still be 
prohibitively expensive. (For example a new Soundbeam 
6 [14] is around £2,500). The proliferation of available MT 
itself can become a barrier as Knight and Krout [9] note, 
the challenge that the sheer number of resources itself pro-
vides a challenge for the music therapist, in terms of know-
ing and evaluating which approach is best for their client 
[9].  

1.2.3 Fear, dislike or indifference of technology 
A fear, dislike or indifference of technology is Farrimond 
et. al.’s [1] 3rd category. This is supported by statistics from 
Magee [6], showing that 18% of therapists stated that they 
did not like technology and 4% thought that music tech-
nology was not appropriate/relevant for the clients they 
were working with [6 p. 143]. The most recent PROMSIE 
report [3] does note some marked improvements in the sec-
tor in the use and uptake of music compared with the sim-
ilar survey of 2011 [2]: ‘with more musically qualified 

staffing, a broader range of resources for the music curric-
ulum, more external organisations available to support mu-
sic, increased use of music technology and improved mu-
sic therapy provision’ [3, p.3].  However, the report does 
not specifically identify the attitude of staff towards the 
technology but it seems hopeful that with increased avail-
ability of technology within schools that Farrimond et al’s 
[1] prediction has come true that the ‘apparent acceptance 
of conventional technology might positively influence any 
negative perceptions of music technology over time’ [1, 
p.33] . Despite all the positive outcomes form the PROM-
ISE report there is no data on the actual use of MT within 
schools, in fact the report states ‘[o]ne caveat to these de-
tails is the extent to which, notwithstanding availability, 
schools regularly use such devices. Some comments sug-
gested that this was not always the case [3, p. 9].  This is a 
sentiment echoed by others, for example Hadley et. al. 
state ‘[d]espite the passage of time, these barriers are still 
the same as quoted in Magee (2006)’ [20].  Despite the 
seven years passing since Farrimond et. al.’s [1] review 
and the increase in the availability of MT based solutions, 
there remains many barriers to entry to using these tech-
nologies in the classroom and within music therapy con-
texts.  Issues seem to still be present regrading, ease of use, 
cost (for specific specialist equipment), and especially 
around training of how to operate and how to integrate 
technology into the class room environment.   

2. ACTION RESEARCH METHODOLOGY 
Action Research is presented in Reason and Bradbury’s 
SAGE handbook of Action Research [4] as following the 
following working definition: ‘Action research is a partic-
ipatory process concerned with developing practical 
knowing in the pursuit of worthwhile human purposes. It 
seeks to bring together action and reflection, theory and 
practice, in participation with others, in the pursuit of prac-
tical solution to issues of pressing concern to people, and 
more general the flourishing of individual persons and 
their communities’ [4, p. 4]. In contrast to conducting re-
search on subjects as objects, Action Research is very 
much conducted with stakeholders as “co-researchers” [4, 
p. 9]  and has a primary purpose to “produce practical 
knowledge that is useful to people in the everyday conduct 
of their lives” [4, p. 4].  

 
Figure 1. Action-reflection cycle [24, p.57]  

An Action Research based methodology is iterative in 
nature with most projects following a cyclical process of 
action and reflection based on Lewin’s [22] theory of ac-
tion as a  spiral of steps involving planning, fact-finding 
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and execution. Action Research’s more recent models, 
such as that outlined by McNiff [23], describe a cycle of 
Planning, acting, observing, reflecting, planning.. etc.  [23, 
p. 57]. 

 
Action Research was considered a suitable methodolog-

ical approach for this project as its tenet of affecting 
change within a community aligns well with the ethos of 
this project to empower and leave a lasting beneficial 
change in communities. The spirit of working with partic-
ipants as co-researchers also ties into ethical concerns re-
lating to ‘expert researchers’ telling practitioners what to 
do. This is a particular concern when working with com-
munities of marginalised voices such as the disabled. Since 
another aim of this project was to empower existing stake-
holders and create a community of practice, it was very 
important that the stakeholders felt part of the research pro-
cess and that their opinions were valued at least as highly 
as the researchers themselves. The Action Research cycli-
cal process of observing, reflecting, planning etc. mirrors 
those found in participant design and as such helps ensure 
that any results from the project meet the needs of all the 
stakeholders involved.  

3. CASE STUDY – SCHOOL A  
Access to local schools was facilitated through Coda. Coda 
is a local charity who states their objectives on their web-
site as: ‘Coda uses music as a tool for personal and social 
change. We love music and believe in its power to trans-
form lives. Coda provides a place to learn, train and de-
velop, and we offer help and support through participation 
and therapy’ [24]. Coda were already facilitating some 
training based around the use of music technology within 
local schools. As an entry point to the project we were in-
vited to give a short presentation about the project and its 
goals to representatives from a number of local SEN 
schools that had attended one of these training sessions. 
After this meeting an open call to partake in the project 
was sent out to all attendees at this session and two schools 
responded.  The scope of this article is around the out-
comes of working with one of these schools.  

3.1 Data Gathering 

Data was primarily gathered through minutes of stake-
holder meetings, open or semi-structured interviews and 
reflective writing by the researchers. Stake holder meet-
ings were initially with AA, Pupil Technology and AAC 
lead - & BB, Head of lower school (ex music teacher), 
Tom Davis (TD), Lead Researcher and Daniel Pierson 
(DP) Research Assistant. Later meetings were generally 
with AA, TD & DP and a range of pupils from the school. 
There was also a project steering group consisting of TD, 
DP, Ann Bevan  (AB) and Phil Hallet (PH) from Coda. 

3.2 The School 

School A provides education for pupils who have severe, 
profound and multiple learning difficulties. The large ma-
jority of pupils have one or more additional needs, includ-
ing autistic spectrum disorders, medical needs, sensory im-
pairments and emotional, social and mental health 

difficulties. Ofsted school inspection report 2015. School 
A describe themselves in their literature as ‘a specialist 
school for children and young people who have Complex 
Learning Difficulties or Disabilities’ They have a wide 
range of pupils with a range of needs, but quite a large pro-
portion with Profound Multiple Learning Difficulties, with 
an associated wide range of varied and complex needs. 

3.3 Current Music Provision  

It was evident from the first meeting with the stakeholders 
that there was a passion for music and a great desire to in-
clude more of it within the school.  BB stated that up to 
recently (Academic Year 2015-16), they had had a dedi-
cated music therapist, but due to funding constraints this 
was stopped. Also, “years ago” (no timescale given) they 
used to have a dedicated music teacher that retired and not 
replaced. Instead a decision was made that music would be 
delivered by the class teachers.  Music is used in a lot of 
ways in the ordinary classes, from helping with routine 
through to teachers delivering music lessons. There was 
some feeling that the music provision by ‘normal’ class 
teachers was difficult as they may not be trained specialists 
in music. Music is also used to make everyday teaching 
more accessible. For example, if reading a story there are 
audio cues to engage the pupils and music is used in a lot 
of ways to facilitate their learning. Music is also used 
throughout the day to help structure activities, such as a 
song for putting on their shoes, getting ready for lunch etc. 
School A has some outside support in delivering music. 
Coda, a music charity comes into the school and runs 
weekly sessions with the pupils. This normally culminates 
in a performance or a project. 

3.4 Main barriers to access 

3.4.1 Staff Perspective 
Issues at School A still echo those outlined by Farrimond 
et al [1]: staff not musically trained;  issues around asking 
non-musically trained staff to come up with a deliver mu-
sic based activities and a fear and dislike of technology. 
For example, comments suggesting that the staff were 
scared of technology. Staff comments about the 
Soundbeam 2, a commonly used piece of equipment in the 
school; ‘it’s technology’, ‘ it’s big’, ‘there’s a lot wires’; 
“Oh man, it’s got more than 3 buttons”  AA.  An additional 
issue raised was the issue of tight time constraints for both 
teachers and support workers. ‘It can’t take something like 
30 minutes to setup it needs to be plug and play … People 
struggle with time … So I think the impact is that it really 
has to be something that can used by everybody in the 
school and that every member of staff should be able to use 
without too much help’ AA – Interview July 2017. 

3.4.2 Student Perspective 
The students at School A have a range of leaning difficul-
ties often with combinations of issues. As identified at the 
first meeting the main barriers to access from student per-
spective were: difficulty physically accessing things; is-
sues of motor control and lack of grip strength. Another 
issue identified was visual impairment (VI), not as a 
standalone condition but paired with other learning 
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difficulties and disabilities. Two pieces of equipment that 
were particularly identified as being preferred by the pu-
pils were the resonance board (a sheet of wood slightly 
raised off the ground designed to resonate and amplify 
acoustic sound),  and the OmiVista [25] (an interactive 
floor projection system). 

3.4.3 Outcomes of first stakeholder meeting 
As the majority of researchers on the project had a music 
technology background there was a tendency for the team 
to propose technical solutions to the perceived problems. 
An idea to come from the first meeting was that the re-
searchers’ thought that the school would benefit from the 
design and construction of an active vibro-tactile reso-
nance board that could be linked to the OmiVista to make 
it more interactive. This idea was proposed to the stake-
holders at the 2nd meeting. Issues that arose from this meet-
ing were that the board needed to be easily accessible and 
easy to use. The school has a current vibro-tactile resonant 
board, but it is located in a sensory room and any sound 
has to go through a specific Hi-Fi. This presented a number 
of problems around accessibility. There is only one sen-
sory room in the school and students are allocated time in 
there in relation to need. This means that not all pupils get 
access to this space. The board in there is also quite high 
off the ground which means that students have to be 
hoisted into position on the board. This takes time and 
some students are dependent on their wheelchairs and 
can’t be hoisted. The board can only be used to play sounds 
through and isn’t an interactive environment for the pupils 
to take part in.  ‘The challenges for the boards are that they 
need to be portable – i.e. so you can take them into as many 
lessons as possible. They need to be easy to use. They need 
to just plug them in and they work. They need to give good 
vibro-tactile feedback to the students – the students need 
to want to use them ..’  (TD Reflective writing.) 

3.5 Resonance Board Development

 
Figure 2. Reckhorn BS-200 Body Shaker [26] 
mounted on small resonance board 

Following the requirements outlined in the stakeholder 
meetings and subsequent interviews the team created a vi-
bro-tactile resonance board that could be taken anywhere 
in the school.  
 

This vibro-tactile resonance board consisted of a 
Reckhorn BS-200 Body Shaker [26], a low frequency 
transducer such as those used in gaming chairs, con-
nected to a plywood board. The transducer was driven by 

a 100W amplifier and was positioned to try and create an 
even distribution of frequencies across the board. The 
transducer outputs as low as 5Hz but also produces vibra-
tions in the audio range, meaning that you get a tactile as 
well as an audible output. 

 
Figure 3. The larger resonance board.  

Initially a small board was made (610mm by 1220 mm by 
18mm). The board was raised off the floor with some pine 
runners and the transducer mounted underneath. Im-
portantly this board was low enough and strong enough to 
support an electric wheelchair. This meant that if needed, 
students could access the board without needing to be re-
moved from the wheelchairs. The tactile vibrations are 
strong enough to be felt through the chair, albeit in a re-
duced manner. The board went through a number of eval-
uation sessions with AA and a number of different pupils. 
A larger board was also created, (1220mm by 2240mm by 
18mm) which was designed for larger/older pupils to lie 
down on. The larger board was also painted white to ena-
ble easy projection of the OmiVista [25] onto its surface. 
Also the amplifier on both models was swapped for a less 
powerful model [27] that was smaller and could be at-
tached to the underside of the board. This meant that the 
board could be used just by plugging in anything that has 
a 3.5mm audio jack output and operated with one power 
switch.  

 
Figure 4. Pupil using the resonance board with a 
Skoog [12]. 

3.6 Evaluation of the Resonance Board  

Since most of the students that used the system could not 
verbalise, we relied very much on their careers’ assess-
ment of their level of engagement. However, as you can 
see from the examples below generally there was very pos-
itive feedback. So much so that students were foregoing 
their normal preferred instrument of choice, i.e. the guitar 
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in favour of the new system. The following two transcripts 
are just some of the examples that demonstrate evidence 
that the students had valuable interactions with the reso-
nance board.  

3.6.1 Example 1 
Transcript with Pupil 1, AA and a Teaching Assistant (TA) 
– DP also in attendance.  (5th May 2017).  
TA: Oh Hello , what is going on? 
AA: He is absolutely loving it.  
TA: You’ve got the piano? 
AA: Yes but it is much more than the normal piano be-
cause he has got the sensation as well.  
TA: Clever people.  That’s amazing.  
AA: He was lying really, really still and then moving.  
TA: Amazing! 
AA: It’s awesome isn’t it. 
TA: It really is. 

3.6.2 Example 2 
Pupil 2 using large resonance board wired up to the Omi-
Vista. AA & DP in attendance 5th May 2017. AA then 
took a guitar from the shelf and put it near the pupil. He 
strummed the guitar only briefly before rolling away from 
the guitar onto the other side of the board. AA was sur-
prised by this, saying “Wow, that’s quite telling if the gui-
tar doesn’t get any attention!” This was a key moment as 
AA recalled it even after the session was over, saying “I’m 
amazed, because he always would go for the guitar”. She 
explained that “If somebody walks into the room with a 
guitar he’s like this-” motioning outstretched arms towards 
the guitar. AA: “I’m amazed because he will always go for 
the guitar and he just didn’t. No, not interested in that thank 
you” (5th May video 2017).  

3.7 Legacy of the project 

3.7.1 Lasting change. 
The funding period finished in July 2017 and the equip-
ment was left with the school without any further follow 
up or support. Researchers returned to the school in Janu-
ary 2018, 7 months after the end of the project to see if 
there had been any lasting changes in the school . On ar-
riving at the school, AA took TD up to the classroom to 
show the resonance board in use. In the interview that fol-
lowed it transpired that the boards are being put to ongoing 
and continuous use. They have been used with a variety of 
existing equipment within the school including, the Beamz 
[13] , the Skoog [12], microphones, and iPad apps. The 
school have gone as far as actually purchasing an addi-
tional Skoog [12] so that they have an extra one to use with 
the new board. The only continued barrier to access was 
with using it with the OmiVista [25]. The OmiVista itself 
still needed modification to work with board. (A side panel 
needed unscrewing to access the audio output).  This was 
a barrier for the staff, and a health and safety concern for 
AA so the board was not being used in this way.  

3.7.2 Use in the classroom 
On asking if the board had increased access to music for 
these students AH replied:  “The context hasn’t always 

been in the context of making music – but certainly they 
have been experiencing sound in a different way” (AA 19th 
Jan. 2018). In general the board has increased access to 
experiencing sound for the children. The existing reso-
nance board is too tricky to use. It is high up such that 
wheel chairs can’t be put on it. The sound system in there 
is too complicated and there isn’t as much vibration from 
the box itself. In contrast this solution ‘everybody can use 
it. If you can plug in a pair of headphones you can use it.’ 
AH 19th Jan 2018) Having a moveable board means that 
more children get access as it can be used not only in spe-
cific music lessons (these happen in the room with the 
large resonance board in which is not so portable) but ra-
ther in the standard classrooms. This means it can be used 
not just for the delivery of music but anytime that they use 
music/sound throughout the day, which adds enrichment 
to all sorts of activities.  

3.7.3 Results of training 
AA had recently run a training session with the board as 
part of an inset day to a large group of staff.  Mostly, at the 
moment, staff are trying ideas suggested by AA, but 
there’s a lot of interest and people are excited about using 
it. As AA states: ‘I think the other thing is that after the 
training, people are more excited about it. Which means 
that if people are excited about something they want to do 
it. So it means that music happens. Where as before it 
might not have happened much. I think that that is a big 
difference actually. That people want to do it.’ AA. 

3.7.4 Impact of small interventions 
I would like to share one event that demonstrates the 
amount of impact such a small change in providing access 
can have on a child and their careers experience in school.  
One child, with hearing impairment normally does not re-
act in any way to sound. He cannot leave his wheel chair 
so cannot use the current resonance board setup in the sen-
sory room.  

“one of the teachers came up to me and said, we had 
an all tears moment.  because one student doesn’t normally 
react at all to music. And it was a really, really big reaction. 
but they were like, we were all crying.  (Laughing) That’s 
really, really, lovely. (AA, interview 19th Jan 2018) I've 
just seen photographs of the board session that made all 
the staff go all teary and I have to say, it nearly got me 
too!!! To see the reaction of someone with massive sensory 
impairment feeling the rhythm coming up through his 
wheelchair really is awesome. Unfortunately I cannot re-
lease any pictures of this specific student, but I can tell you 
that it put a massive lump in my throat. (AA email corre-
spondence 25th Jan 2018) 

4. FINAL THOUGHTS 
This project shows that despite improvements documented 
in the literature, many SEN schools still have issues ac-
cessing music through technology. The main barriers are 
not to do with the technology itself but, rather, with their 
context of use. Difficulties arise with either a lack of 
knowledge of how to use the technology, either from a 
technological perspective (how do I turn it on?) or from a 
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musical perspective (how do I use this technology to de-
liver music?).  This project again highlights the real need 
to create outputs that work with and for stakeholders. The 
Action Research methodology helped assure that any de-
sign decisions benefited the stakeholders and ultimately 
made the finished technologies useable within the school 
context. Although the assumption going into this project 
was that the solution would be in the development of new 
technologies, the technologies developed in this project are 
not new, in fact they are really modifications of technolo-
gies that were already found in the school. What is differ-
ent, is the ease of which they can be used in a variety of 
different environments. The flexibility to just move them 
to different classrooms, to plug them into a range of input 
devices (depending on pupils needs) and the ability to use 
them with pupils whilst in wheelchairs meant that pupils 
who normally didn’t have access, suddenly had access to 
music. This ease of use, and associated staff training,  
meant that staff were willing to try the technology, so ulti-
mately it was integrated into everyday school activities. 
Most gratifyingly, you can see from the final correspond-
ence from the school, what impact these small changes can 
have on an individual’s life experience.  
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ABSTRACT 
tinySounds is a collaborative work for live performer and 
musebot ensemble. Musebots are autonomous musical 
agents that interact, via messaging, to create a musical 
performance with or without human interaction.  

1. INTRODUCTION 
Generative and interactive systems have a long history 
within music [1, 2, 3]; more recently, aspects of artificial 
intelligence have been applied to such systems, creating a 
contemporary approach known as metacreation [4]. One 
useful model borrowed from artificial intelligence is that 
of agents, specifically multi-agent systems. Agents have 
been defined as autonomous, social, reactive and proac-
tive [5], similar attributes required of performers in im-
provisation ensembles. Musebots [6] offer a structure for 
the design of musical agents, allowing for a communal 
compositional approach [7] as well as a unified model. 
An overview of recent musebot ensembles is given else-
where [8]. 

2. MUSEBOTS 
Musebots are pieces of software that autonomously create 
music collaboratively with other musebots. They decide 
how to respond to their environment – and each other – 
on their own, based upon their internal beliefs, desires, 
and intentions.  

The musebot protocol1 is, at its heart, a method of 
communicating states and intentions, sending networked 
messages established through a collaborative document 
via OSC [9]. A Conductor serves as a running time gen-
erator, as well as a hub through which all messages pass 
(see Fig.1). 

 
 
 
 
 
Copyright:  2019 Arne Eigenfeldt. This is an open-access article 

distributed under the terms of the Creative Commons Attribution 3.0 

Unported License, which permits unrestricted use, distribution, and 

reproduction in any médium, provided the original author and source 

are credited.  

                                                           
1 http://tinyurl.com/gngmews 

Individual musebots broadcast to the ensemble aspects 
of their performance; the details of what they communi-
cate is left to the designer of the ensemble. 
 

 

Figure 1. Diagram of messages between musebots and 
the Conductor. In this case, Musebot A sends a broadcast 
message to the Conductor, who rebroadcasts it to the en-
semble. 

3. TINYSOUNDS: FOR VOICE AND 
MUSEBOT ENSEMBLE 

The musebot ensemble in tinySounds is a redeployment 
of an earlier metacreative system, The Indifference En-
gine, which is partially described elsewhere [10]. Live 
audio is analyzed for features: spectral centroid; spectral 
flux; loudness; activity level (onset detection); and Bark 
band spectrum. This information is messaged to the audio 
musebots and an effectsBot (see Fig.2). This latter muse-
bot adds effects – delay, pitch shift, time stretch, ring 
modulation, and distortion – autonomously, based upon 
its interpretation of the analysis messages. For example, it 
will switch effects when activity is low, and add more 
processing when flux is high. 

The audio musebots – in this case, four instances of ti-
nySoundBot – have access to a large corpus of pre-
analyzed soundfiles; given a Bark band spectral analysis 
via the Conductor, the audioBots will attempt to find the 
closest matching recordings from their available data-
base. The audioBots autonomously begin and end playing 
based upon incoming messages, including activity and 
flux, as well as reacting to whether other audioBots are 
active or not.  

Audio is generated using a modified version of CataRT 
[11]. 
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Figure 2. Diagram of musebots in tinySounds. Audio 
pathes are in red; musebot messages are in green. 

4. PERFORMANCE NOTE 
Machine learning algorithms are wonderful for sifting 
through data and discovering relationships; more chal-
lenging is how these algorithms can be used for genera-
tion. It isn’t that difficult, for example, to train a system 
to provide similar sounds for a database, given a live 
sound. But what’s the artistic interest in that? Similarly, it 
isn’t that difficult to extract live performance information 
from an improvising musician – activity level, general 
frequency range, timbre – so that the system responds 
likewise. But, again, reactive systems lose interest fairly 
quickly. 

I find it much more interesting when my musebots go 
off on their own, exploring their own ideas through be-
liefs they may have formed incorrectly and unintentional-
ly. For that reason, I usually build a lot of ambiguity into 
my analysis or provide conflicting information. What 
happens when one musebot is sure of something, while 
another is absolutely sure of something else? And what if 
a third musebot just doesn’t care? 

In tinySounds, musebots are trained using a neural net 
on a corpus that has been hand-tagged for valence and 
arousal measures, as well as pre-analysed for spectral 
information. However, the correlation between audio 
features (what the musebots are listening for) and affect 
(valence and arousal) isn’t direct; in assigning the latter, I 
may decide that a sound from the corpus is complex and 
active, but my reasons for doing so may not use the same 
information as the musebots are provided with. Thus, a 
musebot may decide that, based upon what it has learned, 
a live sound is high valence / high arousal, but the listener 
may perceive it otherwise. This isn’t a flaw in the system; 
it’s a feature! 

Lastly, my role as overseer in the musebot ensemble al-
lows me to further disrupt how the musebots apply their 
knowledge. The corpus is organized semantically (i.e. 
voice sounds, kitchen sounds, transportation sounds, 
etc.); once a musebot is using a certain subdirectory, it 
can’t easily switch to another. As a result, its choice of 
related sound, whether affective or timbral, is limited to 

what is immediately available to it. If the musebots are 
frustrated, they haven’t mentioned it to me (yet). 

 Musebots are not straightforward reactive processes; 
instead, they have their own beliefs (in this case, the in-
coming analysis data), desires, and intentions. They will 
happily play on their own, or they may react very closely 
to the live performance; more often then not, they will 
offer their own “reinterpretation” of the live performance, 
with individual reactions to the analysis data. 
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ABSTRACT

We previously introduced JamSketch, a system which en-
abled users to improvise music by drawing a melodic out-
line. However, users could not control the rhythm and in-
tensity of the generated melody. Here, we present exten-
sions to JamSketch to enable rhythm and intensity control.

1. INTRODUCTION

Improvisation is an enjoyable but difficult form of mu-
sic performance because musicians must create melodies
while playing an instrument. Therefore, to enable non-
musicians to improvise easily, various systems have been
proposed [1–5]. For example, JamSketch [5] enables users
to play an improvisation by drawing a curve called a melodic
outline, which represents the overall shape of a melody,
with a mouse or their finger on a piano-roll display. This
approach does not require skill in playing an instrument,
but the melodic outline is limited in its expressivity be-
cause it only represents how the melody moves up and
down in pitch. Until now, users could not control the rhythm
or intensity of the melody.

In this paper, we extend JamSketch to enable users to
control the rhythm and intensity of the generated melody
when drawing a melodic outline. Our intension is to add
functionality while not making the system more complex
or less intuitive to use. To satisfy these requirements, we
adopt the following approaches:

Rhythm: We support only the control of note density (how
many notes appear within one bar) to keep the oper-
ation simple. Users can control the note density by
changing the waviness of the melodic outline.

Intensity: Through the use of devices supporting pen pres-
sure sensing (e.g., Microsoft Surface Pro), the sys-
tem allows users to control the intensity by changing
the pen pressure.

2. SYSTEM

Once the system launches, the piano-roll display with its
horizontal time axis and vertical pitch axis appears. The
user draws a melodic outline with a stylus pen supporting

Copyright: c⃝ 2019 Akane Yasuhara et al. This is
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Table 1. Waviness and note density

0 ≤ s ≤ 10 no-wave D = 6

10 < s ≤ 50 small-wave D = 12

s > 50 large-wave D = 2

pen pressure sensing. The shape of the melodic outline
is reflected in the pitch of the generated melody, and the
pen pressure is reflected in the intensity of the performed
melody. Also, the rhythm (note density) is controlled by
drawing wavy curves.

2.1 Drawing a melodic outline

On the piano-roll display, the user draws a melodic out-
line. The melodic outline is displayed, and the line weight
represents the pen pressure when the outline is drawn.

2.2 Analyzing the waviness of the melodic outline

Once the user draws a melodic outline, the system analyzes
the waviness of the outline separately for each bar. Let y(t)
(t = 1, · · · , T ) be the melodic outline at a certain bar (the
resolution of t depends on the screen’s resolution). The

system calculates a smoothed outline ȳ(t)=
1

τ0

τ0−1∑

τ=0

y(t+τ).

Then, δ(t) = ȳ(t) − y(t) is calculated. After that,

s =

√√√√ 1

T − 1

T−1∑

t=1

(δ(t + 1) − δ(t))2

is calculated. The waviness at the corresponding bar is
determined as follows (Table 1):

waviness =





“no-wave” (0 ≤ s ≤ 10)
“small-wave” (10 < s ≤ 50)
“large-wave” (s > 50)

2.3 Determining the rhythm

The rhythm is determined separately for each bar and is
represented as a binary vector where 1 stands for an onset
and 0 stands for a non-onset. Because the shortest dura-
tion is set to an eighth-note triplet in the current imple-
mentation, the rhythm at each bar is represented as a 12-
dimensional binary vector R=(r0, · · · , r11) (ri ∈{0, 1}).
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First, a tentative rhythm R′ = (r′
0, · · · , r′

11) is generated
from the melodic outline. The basic policy is to generate
a note onset at time points when the melodic outline has a
high gradient. Let y′(i) be a down-sampled melodic out-
line (the time resolution is an eighth-note triplet). Then,

r′
i =

{
1 (|y′(i) − y′(i − 1)| > ϵ)
0 (otherwise)

is calculated, where ϵ is a threshold.
Then, the rhythm R is determined with a genetic algo-

rithm (GA) with the fitness function defined as follows:

F (R) = w0 sim(R) + w1 lik(R) + w2 dens(R)

where

• sim(R) is the similarity to the tentative rhythm R′:

sim(R) = −
11∑

i=0

(ri − r′
i)

2.

• lik(R) represents the musical liklihood of R:

lik(R) =

11∑

i=0

log P (ri|i),

where P (ri|i) is the conditional probability of ri

given the time index i and is calculated from a dataset.

• dens(R) represents how well the melody’s rhythm
follows the waviness of the melodic outline:

dens(R) = −
(

D −
11∑

i=0

ri

)2

,

where D is a preferred note density determined from
the waviness of the melodic outline. In the current
implementation, D is set according to Table 1.

2.4 Determining the pitch

After the rhythm of the melody is determined, the pitch
(note number) of each note is determined. This is also
based on a genetic algorithm with a fitness function that
tries to maximize both the melody’s closeness to the melodic
outline and its musical likelihood calculated from a melody
dataset. See [5] for details.

2.5 Determining the velocity

The velocity of each note is determined according to the
pen pressure at the corresponding point in the melodic out-
line. The mapping between the pen pressure and the veloc-
ity in the current implementation is listed in Table 2.

3. EXAMPLES

An example of melody generation including different note
densities is shown in Fig. 1 (left). From the 2nd to 5th mea-
sures, the melodic outline contains a small wave, and ac-
cordingly, the generated melody contains many short notes.
From the 8th to 12th measures, the generated melody con-
sists of a fewer longer notes because the melodic outline
contains a large wave.

An example of controlling the velocity is shown in Fig. 1
(right). From the 4th to 5th measures, the velocity is high
because the pen pressure is high (so, the curve is thick).

Table 2. Pen pressure and velocity
Pen pressure Display Velocity

3000 or higher 127

2000 to 3000 80

1000 to 2000 50

lower than 1000 30

Figure 1. Examples of melodic outlines (upper) and gen-
erated melodies (lower) with rhythm (left) and intensity
(right) control. The piano-roll representation includes the
velocity data at the right-side figure.

4. CONCLUSION

In this paper, we presented two extensions (rhythm and in-
tensity control) of the JamSketch system, which supports
improvisation by non-musicians. We conducted experi-
ments to confirm the effectiveness of this system. We omit-
ted the results due to a lack of space, but we will report
them in a separate paper.
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ABSTRACT

Music Genres serve as an important meta-data in the field
of music information retrieval and have been widely used
for music classification and analysis tasks. Visualizing these
music genres can thus be helpful for music exploration,
archival and recommendation. Probabilistic topic models
have been very successful in modelling text documents. In
this work, we visualize music genres using a probabilistic
topic model. Unlike text documents, audio is continuous
and needs to be sliced into smaller segments. We use sim-
ple MFCC features of these segments as musical words.
We apply the topic model on the corpus and subsequently
use the genre annotations of the data to interpret and visu-
alize the latent space.

1. INTRODUCTION

Music genre visualizations have not caught enough atten-
tion. Probabilistic Topic Models [1], have found wide ap-
plications in the field of Natural Language processing. We
use an unsupervised topic model on music genres data for
visualization. For our work we use raw music files, in .wav
format. Unlike text documents, raw music data has no dis-
crete components such as words. To create a text-like cor-
pus, we slice the audio data into smaller segments. We use
MFCC features of these smaller slices as the representa-
tion. Further, to build a corpus, we create a feature dictio-
nary by using the k-means algorithm. Also, in text docu-
ments, the inferred topics form a collection of words and
hence are straightforward to interpret. In our case, musical
words, which are mere MFCC feature arrays, lack inher-
ent meaning and cannot be interpreted. We interpret the
latent space of the topic model using genre annotations in
the dataset.

2. RELATED WORK

[2] had discussed some audio visualization techniques in
MIR which are mostly signal processing based. Topic Mod-
els have also been applied on audio [3]for the purpose of
audio information retrieval. We use the fault-filtered GTZAN
[4] dataset for genre analysis which is popular in MIR
community.

Copyright: c© 2019 Swaroop Panda et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

3. PROBABILISTIC TOPIC MODEL

Probabilistic topic models are based upon an idea that doc-
uments are mixture of topics and topics are probability dis-
tributions over words. These words come from a fixed size
vocabulary. To make a new document, one chooses a dis-
tribution of topics, then chooses a topic from this distribu-
tion and finally draws a word from the chosen topic. The
Latent Dirichlet Allocation (LDA) inverts this generative
process and thus infers the set of topics that were that use-
ful in generating the document. The plate notation below
defines the generative process.

Figure 1. Plate Notation for a Topic Model

4. APPLYING TOPIC MODELS ON MUSIC

The main challenge with the application of topic models in
the music (with raw audio files) is to represent the audio
in a text-document like corpus. The intent of the work is
to interpret the latent space of the topic model using music
genres. This interpretation would help giving a probabilis-
tic genre annotation to a song. For example a song may be-
long 60 % to Blues, 15 % to Jazz and 25 % to Pop genres.
To enable such a probabilistic assignments, we build basic
genre buckets consisting of at least 3 genres. We do this
since a mixture containing all the 10 genres would be very
large and obfuscating for the listener to meaningfully in-
terpret. The rationale used to bucket the genres is roughly
based on the histories and the musical form of these gen-
res. The first bucket consists of Rock, Metal and Pop gen-
res; the second of Blues, Jazz and Country genres and the
final bucket consists of Reggae, Disco and Hip-Hop gen-
res. The songs were clipped down to 0.10 seconds clips.
The MFCC features of these clips were then calculated.
We then use a K means clustering algorithm on the MFCC
features to build the dictionary. It partitions the data into k
clusters, where each data point belongs to a cluster and the
cluster mean serves as its prototype.

5. INTERPRETATION OF THE LATENT SPACE

Unlike text documents, where topics are interpreted as a
mixture of words; the acoustic topic model has topics which
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are mixtures of cluster means. These cluster means are pro-
totypes of the nearest datapoints(the audiofiles) and thus
lack meaning. It is thus essential to assign a suitable mean-
ing to these cluster means. The first part of the interpreta-
tion involves understanding the cluster means in terms of
music genre. The cluster means are constructed from the
MFCC arrays. The cluster means hence can be mapped
to and from these audio files and linked with the genre
annotations. For instance, lets say that 3 audio files, au-
dio1, audio4 and audio7 make up a cluster mean. We get
back to the dataset and find out that audio1 belongs to the
Blues genre, audio4 belongs to the Country genre and the
audio7 belongs to the Blues genre. Hence, the genres asso-
ciated with cluster means becomes Blues, Country,Blues.
In math, the cluster centers (or terms) can be described as
the following,

clustermean1 = {Blues, Country,Blues}
= 0.67Blues+ 0.33Country

clustermean2 = {Blues, Jazz, Jazz, Country}
= 0.25Blues+ 0.5Jazz + 0.25Country

(1)
Once we interpret cluster means in terms of music genres,

we can conveniently represent the topics in terms of music
genres. The topic space consists of cluster means and an
associated probability value. The cluster means can now
be defined as music genres with their proportions.

Topic1 = prob1 ∗ clustermean1 + prob2 ∗ clustermean2
= (prob1 ∗ 0.67 + prob2 ∗ 0.25)Blues+
(prob1 ∗ 0.33 + prob2 ∗ 0.25)Country
+ (prob2 ∗ 0.5)Jazz

(2)

Once the topic space has been interpreted, the document-
topic proportions can also be made sense of. The document
topic proportions from the topic model are probability val-
ues of the inferred topics present in each document. In this
context, the document topic proportions can provide with
the proportions of different music genres present within the
musical document, that is, a song. The term topic propor-
tions are proportions of different topics for a term in the
document. These term topic proportions can be similarly
interpreted in terms of genre proportions.

Doc1 = prob1 ∗ topic1 + prob2 ∗ topic2 (3)

6. EVALUATING THE TOPIC MODEL

We evaluate the model using a genre classification task.
We use the model to get the document-topic proportions of
every document(song). We use these document-topic pro-
portions as a representation for each song. We use genre
labels from the fault-filtered GTZAN dataset, divide the
data into train-test sets and perform the classification task
using a SVM. We also test our model with different num-
ber of topics to look for the optimal number of topics that
best capture the genre bucket.

2 3 4 5
1 0.47 0.53 0.58 0.53
2 0.36 0.38 0.35 0.40
3 0.53 0.46 0.48 0.50

Table 1. Accuracies obtained for different number of topic
terms. The rows represent the genre bucket, while the
columns represent the number of topics

7. MUSIC GENRE VISUALIZATION

Using the topic model, we can get a probabilistic genre la-
bels of different songs(from document-topic proportions)
along with progressive genre visualizations(from term-topic
proportions).

Figure 2. Probabilis-
tic Genre Labels

Figure 3. Progressive
Genre Visualization

Every song has a probabilistic genre annotation which
can be visualized by the doughnut chart in Figure 2; where
each colour represents a music genre. Similarly, any song
can be represented by a progressive genre visualization,
where the y-axis represents time, the x-axis genre propor-
tion and the colours respective music genres.

8. FUTURE WORK

The dataset is too small for the Topic Model to be very ef-
fective. Also, the topic model works on the bag-of-words
assumption; which may not be too efficient for modelling
music data. Other effective music representation techniques
can be used. Moreover, different kinds of Topic models can
be tuned to work specifically for music data.
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ABSTRACT 
It has been developed an interactive application that allows 
sonify human voice and visualize a graphic interface in re-
lation to the sounds produced. This program has been de-
veloped in MAX MSP, and it takes the spoken voice sig-
nal, and from its treatment, it allows to generate an auto-
matic and tonal musical composition. 

1. INTRODUCTION 
The main objective of any interactive application, is to 
strongly move the viewer to play with that application and 
to show him novel aspects. For that reason, using voice as 
a generator of tonal musical sequences, can be interesting 
both for composers and amateur users, since they can ex-
plore aspects of the voice that are not usually threated for 
sound generation. 
 
Voice is the most important tool of human communication, 
but also the most important musical instrument, therefore, 
the non-daily use of voice (whether communicative or mu-
sical) based on a synesthetic treatment as well as not syn-
esthetic but with both at same time can be quite interactive. 
 
CompoVOX has been developed in MAX MSP using the 
tools of data processing, generation of visual effects and 
sound effects offered by this programming method. 

2. TALKING ABOUT INTERACTIVITY 
In the last two decades, there has been a great technologi-
cal advance in processing capacity, therefore use of tech-
nologies applicable to the numerical arts has changed very 
much. Here they are mentioned some interesting works re-
lated to this work.  
 
The importance of interactivity (directly or indirectly) can 
be seen in projects like Opto-isolator [1], who induces the 
viewer to a high interaction, it’s proposed that it would be 
the work itself who observes the viewer. Otherwise there 
are project called Re: MARK, who employs voice to create 
image employing voice’s analysis (identification of pho-
nemes), and the movement of the participants to produce 
real-time animations. The importance of an interface who 
allows viewer to play actively is very important. projects 

like WIP [4] show the relevance of this fact. WIP is a pro-
ject who takes curve and the amplitude of sound to allow 
in real time generate multiple visual combinations, projec-
tion of the geometric shapes and appearance modification.  
 
This work has seemed inspired by the fact of being very 
attractive visually, that is achievable using real time syn-
esthetic and no synesthetic procedures to generate sound 
and image, and at same time creating a tonal music se-
quence from voice and taking to generate visual forms re-
lated to the sound performed on the screen shown in the 
installation.  
 

 
 

Figure 1. Doing a demo of CompoVOX 
 

3. SOUND SYNTHESIS 
To carry out the generation of sound, this project has made 
use of the acquisition of voice through a dynamic micro-
phone. This microphone allows to isolate the environment 
and in this way, it is possible to focus only on the capture 
of voice, also an audio card is used, then the signal is cap-
tured by the microphone and transferred to the computer 
through the audio card. 
 
This project has been developed through a program built 
under the structure of MAX MSP, the program is respon-
sible for taking the audio signal and through different 
stages of treatment, obtain a signal that can be translated 
into midi values and for so in a tonal musical sequence. 
 
At first, this program uses the fast Fourier transform, in 
this way, the region of interest for this project is filtered, 
that is the spectrum of the human voice that ranges be-
tween 50 and 600 Hz. Once this process has been carried 
out different Fourier filters are performed in parallel, 
which focus on taking only the signal of certain regions of 
the spectrum. To define such regions of interest, several 
tests have been made by differentiating the levels reached 
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in each region and that level is responsible for activating 
different areas of the musical scale, usually the low notes 
activate lower sounds and the high notes will activate 
higher sounds. 
 
It is evident that the levels of each one of the signals that 
are obtained will vary rapidly, since they come directly 
from the voice signal, therefore to smooth the changes that 
are in the signal an averaging function is used, this averag-
ing avoids sudden variations in the control signals, thus 
eliminating intrusions of sound from the environment and 
at the same time a signal that varies more slowly facilitates 
the control in real time of musical parameters that must be 
audible to the user. 
 
The entire system is controlled by the same clock, but each 
synthesis stage is activated only when an appropriate level 
range is reached in the indicated region of the spectrum 
and in that case, there will be a mapping (by means of a 
scaling between frequency and level) of midi notes, all 
sound generation systems are passed through a tonal filter, 
which forces the system to have some regularity and stay 
in the same key. 
 

 
 

Figure 2. Student playing with device 
 
The different parts of the signal are used both to control 
the type of note and to control the attack and the temporal 
length of the note. A control parameter is assigned to each 
signal. On the other hand, sound synthesis is also done by 
taking the central frequency of the voice and its variations 
to generate a sequence of notes that is passed through a 
tonal filter, and subsequently the frequency value serves as 
a tone control parameter of a synthesizer. 

 
For the graphic interface, several aspects are used. A back-
ground treated by MAX MSP that is responsible for repro-
ducing a space environment and whose edges come from 
noise, a conical gang that covers the space and that varies 
in sharpness and size proportionally to the central fre-
quency of the voice, a flat circular object located in the 
center it takes different forms correspondingly to the 
waveform of the voice, and objects that change shape ac-
cording to the level in a region of low frequencies of the 
spectrum. The whole system moves proportionally to the 
level of sound, that is, the louder the voice, the closer the 
objects are, and the fainter they are, the farther they go. 
The frequency is also responsible for changing the color of 
the objects. 

4. PERFORMING THIS DEMO 
During the presentation, the sounds that the person makes 
with the microphone will be captured. In real time, the par-
ticipant's voice will be used to filter and give different col-
ors to the sampled sounds. The voice will also be used as 
a mean of controlling and generating patterns / sequences 
that will be reproduced by the sequencer. This filtering and 
sequence will generate in a synesthetic manner a visual an-
alogue that will show the details of the spectrum of the par-
ticipant's voice. Additionally, the participant will be able 
to play with a rhythmic base. 

5. CONCLUSIONS 
Sonification of voice signal for the generation of tonal mu-
sical sequences accompanied by a graphic interface that 
relates some aspects of the voice with sounds and images, 
is highly interactive and allows exploring aspects of sound 
generation that are not traditionally used in the voice treat-
ment. CompoVox allows to work voice signal in a differ-
ent way from traditional use in music. 
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ABSTRACT
In this contribution, we present a facial activity detection
system using image processing and machine learning tech-
niques. Facial activity detection allows monitoring people
emotional states, attention, fatigue, reactions to different
situations, etc., in a non-intrusive way. The designed sys-
tem can be used in many fields such as education and mu-
sical perception. Monitoring the facial activity of a per-
son can help us to know if it is necessary to take a break,
change the type of music that is being listened to or modify
the way of teaching the class.

1. INTRODUCTION
Human-machine interaction systems have improved with
facial recognition. Pioneering works emerged between the
70s and 80s [1], when Facial Action Coding System (FACS)
was developed. Facial activity detection allows monitor-
ing people emotional states, attention, fatigue, reactions to
different situations, etc., in a non-intrusive way. These de-
tection can be used in many fields such as education and
musical perception.

In this contribution we present a multi-purpose facial ac-
tivity detection system to monitor attention and fatigue.
The system has been made entirely in Matlab, making use
of two specialized toolbox: Computer Vision System and
USB Webcam. The operation of the system needs a com-
puter and a Webcam USB2.0 with a frame rate of at least
60 fps.

2. SYSTEM DESCRIPTION
The general structure of the facial activity detection system
developed in this work to monitor attention and fatigue is
shown in Fig. 1. In this figure, it can be seen that the de-
veloped system consists on different stages that, although
arranged in a row, are strongly related to each other with
feedback information. The first state is intended to detect
a face in each frame of the video as well as the Regions
Of Interest (ROIs) on it: eyes and mouth. Then, the ROIs
are tracked, so that even if the person moves, the regions
of interest are always located in the scene. Once they ROIs
are determined in any frame, it must be decided the sta-
tus of each face part: eyes open or close and mouth open
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or close. Further, the movement and head turns are deter-
mined. Finally, a temporary analysis of the results is made
to determine drowsiness using the frequency and duration
of blinking and yawning.

Face 
detection 

ROIs detection: 
Eyes + Mouth 

… 

Tracking 
ROIs 

… 
ROIs status 
detection 

Face movements 
&turns estimation 

Temporal analysis of 
eyes & mouth status 

Facial 
activity 

Figure 1. General structure of facial activity detection sys-
tem.

2.1 Detection and tracking of face and ROIs (eyes and
mouth)
The general state diagram of the detection and tracking of
face and ROIs (eyes and mouth) are represented in Fig. 2.

… 

Detection 
Tracking 

Figure 2. State diagram of the detection and tracking of
face and ROIs.

The detection of face and ROIs is performing using the
Matlab functionality vision.CascadeObjectDetector, which
is based on detection by sliding window. The Viola &
Jones algorithm [2] is the selected processing, including
certain improvements such as rotated Haar characteristics
and the use of weak classifiers CART (Classification and
Regression Tree) with up to four Haar features. The per-
forming of tracking are made using the KLT algorithm.
Fig. 3 shows the result of the detection and tracking sub-
system.

Capítulo 3. Diseño y desarrollo 
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Para finalizar este subapartado, en la Figura 3.4 se muestra un ejemplo 

del resultado que proporciona el algoritmo de detección y seguimiento: 

 

Figura 3.4. Resultado al aplicar el algoritmo de detección y seguimiento. 

3.2. Estimación del estado de los ojos en una imagen 

Una vez se dispone de las ROI de las partes de la cara para cada imagen 

de la secuencia, el siguiente paso consiste en obtener el estado de los ojos 

determinando si están abiertos o cerrados en una imagen que contiene dicha 

parte de la cara. Se trabaja a nivel de cada imagen de forma aislada. 

Para estimar la apertura y cierre de los ojos se han realizado multitud de 

diseños y pruebas basadas en artículos que emplean diversas técnicas. En 

este apartado sólo se incluye el diseño que proporciona mejores resultados y 

que por tanto va a formar parte del sistema final. Para conocer el resto de 

diseños y pruebas realizadas se remite al lector al Apéndice B. 

Figure 3. Result of detection and tracking subsytem.

2.2 Eyes and mouth state detection
The state detection is performed in each frame, that is, in a
static picture.
2.2.1 Eyes state detection
Eyes status detection, open or close, has been performed
using the model of Bag of Words. This model needs the
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creation of a visual dictionary, based on the analysis of la-
belled pictures with open or close eyes. A visual dictionary
has been created, while a SVM classifier has been trained
and used to classify (tested with cross-correlation).
2.2.2 Mouth state detection
Segmentation method [3] has been selected to perform the
mouth status detection. The segmentation method is based
on colour, and the YIQ model provides good results in
mouth detection [4]. Specifically, channel Q is enough for
this task, because the lips and the inside of the mouth (ex-
cept the teeth) have a high purple content.

2.3 Face movements and turns estimation
Determining the attention of a person includes the detec-
tion of movements and turns made by the face. This point
on, the analysis must be performed comparing images along
time, not just individual images.
2.3.1 Face movements estimation
The method used compares the detected face regions (eyes
and mouth) of the current image with the detected face re-
gions of the closest image in which the face detection stage
was performed. To this end, a simple algorithm has been
developed based on calculating and comparing the central
points of the ROIs that delimit the face.
2.3.2 Face turns estimation
The estimation of face turns is based on determining three
angles: pitch, roll and yaw. Since the designed system only
has one camera, it is necessary to perform 3D orientation
from a 2D image. The selected method [5], is based on
estimations of the head orientation.
2.4 Temporal analysis of eyes and mouth status
Determining activities such as blinking, prolonged eyes
closing, yawning, surprise, etc. need to analyze several
consecutive images.
2.4.1 Temporal analysis of eyes state
Temporal analysis of eyes state has to take into account
that the average duration of a human blink is between 50
and 500ms. To this end, the video camera is configured
with a frame-rate of at least 60fps. Fig. 4 shows the finite
state machine to determine the state of eyes between stay-
ing awake, blinking and sleeping. Associated to this state
machine is the estimation of the frequency and duration of
blinkings. The condition to change to the state sleeping is
that the eyes were closed more than 500ms. … 

BL SL 

AW 

close> 500ms 

close 

close 

open 
open 

close 

open 

open 

Figure 4. Finite state machine to determine the state of
eyes between awaking (AW), blinking (BL) and sleeping
(SL).

2.4.2 Temporal analysis of mouth status
Since the objectives of the described system are monitor-
ing attention and fatigue, it is crucial to determine if the
person has the mouth closed, is talking or yawning. Fig.
5 shows the finite state machine to determine the state of
mouth between close, talking and yawning. Associated to

this state machine is the estimation of the frequency and
the duration of the yawns. The condition of the yawing is
mouth open for over 3 seconds. … 

TA YA 

CL 

open> 3s 

open 

open 

close 
close 

open 

close 

close 

Figure 5. Finite state machine to determine the state
of mouth between close (CL), talking (TA) and yawning
(YA).

3. RESULTS
The designed system has been tested with 30 different peo-
ple (15 males and 15 females). We have tested the system
both together and ins isolated stages. * Detection of face
and ROIs. Success rate is near 100%, being the mouth de-
tection the worst case with a success probability of 85%.
* Tracking of face and ROIs. Traking is lost in 1 out of
16 tests. * Eyes state detection. Classification accuracy is
close to 95%. * Mouth state detection. Classification ac-
curacy is close to 90%. * Temporal analysis of eyes and
mouth state. They are always detected correctly, but the
detection delay is 500ms for eyes and 3s for mouth.

4. CONCLUSIONS
In this contribution, we present a facial activity detection
system using image processing and machine learning tech-
niques. This system allows detecting if the eyes are open,
blinking or closed by being asleep, as well as detecting the
mouth closed, talking or open for yawning. This facial ac-
tivity detection allows monitoring people emotional states,
attention, fatigue, reactions to different situations, etc., in
a non-intrusive way. Monitoring the facial activity of a
person allows us to know if it is necessary to take a break,
change the type of music that is being listened to or modify
the way of teaching the class.
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ABSTRACT 

The Chordinator is an interactive and educational music 

device consisting of a physical board housing a “chord 

stacking” grid. There is an 8x4 grid on the board which 

steps through each of the eight columns from left to right 

at a specified tempo, playing the chords you have built in 

each column. To build a chord, you place blocks on the 

board which represent major or minor thirds above blocks 

that designate a root (or bass) note represented as a scale 

degree. In the bottom row, the user specifies a bass (root) 

note, and any third blocks placed above it will add that 

interval above the bass note. Any third blocks placed 

above other third blocks add an additional interval above 

the prior one, creating a chord. There are three rows 

above each root allowing either triads or seventh chords 

to be built. This interface combined with the board design 

is intended to create a simple representation of chord 

structure. Using the blocks, the user can physically 

“build” a chord using the most fundamental skills, in this 

case “stacking your thirds.” One also learns which chords 

work the best in a sequence. It provides quick satisfaction 

and a fun, interactive way to learn about the structure of 

chords and can even spark creativity as people build 

interesting progressions or try to recreate progressions 

they love from their favorite music. 

1. MOTIVATION 

The goal of this project was to create an interactive and 

educational tool to help people understand foundational 

harmonic structures in Western music. We wanted to 

create a product that had a physical dimension (as 

opposed to a purely digital product or application) with 

interchangeable pieces that made the design fun and 

engaging while remaining as simple and intuitive as 

possible.  

The target user for this product is someone without 

formal musical training but who may be interested in the 

building blocks of music theory, or curious about the 

chords and chord progressions in their favorite songs. In 

our research for this project we were unable to find any 

interactive, physical products like this.  

There are several standalone and online software 

application systems for understanding the fundamentals 

of music theory (i.e., notes, intervals, and chords). The 

drawbacks to these systems is that they tend to be 

expensive (e.g., EarMaster [1]), or highly task-oriented 

and geared towards aiding novice music students (e.g., 

www.musictheory.net [2]), or designed for academic use 

within a structured program (e.g., Musitian [3], 

SmartMusic [4]). Our product was designed to be more 

akin to software products such as Captain Chords [5] (a 

plugin compatible with many DAWs that allows a user to 

build chord progressions), but with a physical 

component. We believe this helps with the learning 

process by combining a tactile response with a visual 

(color representation of the intervals and orientation of 

the third blocks) response, and an auditory response. 

Another motivation for this project was the potential for 

our product to contribute to research in music perception 

and cognition. With this platform of creating chord 

progressions, we wanted to see if a user’s choice of 

timbre affects the type of chord progression they make. In 

other words, does creating chord progressions with a rock 

guitar sound tend to “pull” the user into creating a more 

pop-rock chord progression? To test this, our product is 

designed to allow a user to choose a timbre, and collects 

data regarding the final settings (all roots, thirds, tempo, 

and timbre) when a user is finished using the board. We 

chose five timbres that we thought best represented five 

common genres of music: strings for classical, electric 

guitar for rock, autoharp for folk, synthesizer for 

electronic, and a rhodes organ for jazz, as well as a more 

neutral or cross-genre sound, the piano. 

2. DESIGN 

Since the crux of our project relies on “stacking” or 

“building” chords, we needed a compartmental, sectional 

design. As such, a design similar to that of a fishing 

“tackle box” was chosen as the basic architecture for the 

board itself. We limited ourselves to eight columns (one 

per chord) and four rows (one root “box” and three third 

“boxes”) for practical reasons; namely, the addition of 

more columns would have made the board too large or 

the blocks too small. Since the average phrase of a 

popular song is typically four measures with one to two 

chords per measure, eight columns was an appropriate 

length to capture a single musical phrase.  

In the inside, we wanted the spaces for root blocks to be 

visually different from the third blocks as to make a 

visual representation of their importance and also to make 

the distinction between the block types more intuitive. 

This was achieved in the form of the root note blocks 

being larger than the third blocks, meaning the spaces for 

the root note had to be larger than the third notes. As our 

box was to be an eight-column by four-row grid, we had 

to create one row larger than the others while keeping the 

Copyright: © 2019 McCoy et al. This is an open-access article 
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other three the same. Ultimately we created our grid by 

creating an interlocking, modular “lattice” of MDF wood 

strips. Finally, we placed this lattice inside the box to 

achieve the “tackle box” look we were aiming for (see 

Figure 1).  

 

Figure 1: The chordinator board design 

For sound generation and switch onset detection we used 

an Arduino Mega that sends data over serial port to a 

MaxMSP patch which converts the data to MIDI and 

plays the chords in real time as they are sequenced. There 

are two potentiometers, one which controls tempo, and 

one which controls timbre. As the user creates their chord 

sequence, they can change instruments and tempo in real 

time. When they are finished, they press a button and the 

state of the board is saved. 

 

Figure 2: The switch detection method for the thirds. 

We decided to use two different systems of 

communication for our two types of blocks; the third 

blocks communicate a signal to the Arduino by a simple 

binary switch depression system, and the root blocks 

communicate by resistor.  

Two switches per block were required to detect three 

different states: no block, major third, and minor third. 

Both switches were aligned on the grid space so that, 

according to the location of the cavity when placed, it 

will either trigger one switch or the other (see Figure 2). 

One orientation corresponding to a minor third interval 

and the other corresponding to a major third interval.  

 

Figure 3: Resistor detection method for bass notes. 

To select the bass note for each chord, the larger (root) 

blocks are placed on the bottom row of each column. 

Instead of using switches to detect the different bass 

blocks, we used different values of resistors and assigned 

different notes to their corresponding values. Copper tape 

and a unique resistor was secured on the bottom of each 

bass block as well as the spaces where the bass blocks are 

placed (see Figure 3). When the connection is made, the 

block is identified based on the resistor that was used. 

From the user’s perspective, they are placing a block with 

a number corresponding to the scale degree. So, in the 

key of C Major, the number three would correspond to 

the note E.    

       3. CONCLUSIONS 

The Chordinator could be a useful product as a fun, 

standalone “toy” or game, and has the potential to be 

modified as a board or game for music education. Its 

ability to collect data makes it valuable for music 

perception and cognition research—something we hope 

to contribute to via this project in the future. We hope to 

collect user feedback at this stage of the prototype in 

order to make improvements to any aspect of the design, 

sounds, or user experience for the purposes of future 

development.   
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ABSTRACT

In this work, we demonstrate the market-readiness of a
recently published state-of-the-art chord recognition method,
where automatic chord recognition is extended beyond ma-
jor and minor chords to the extraction of seventh chords.
To do so, the proposed chord recognition method was inte-
grated in the Songs2See Editor, which already includes the
automatic extraction of the main melody, bass line, beat
grid, key, and chords for any musical recording.

1. DESCRIPTION

Gamification of music education has experienced a boost
in popularity in recent years due to new possibilities for
user interaction enabled by advancements in the field of
Music Information Retrieval (MIR) [1]. As an alterna-
tive to playing music with printed score sheets, interactive
applications with real-time feedback to the users’ perfor-
mance were brought to the market. Some examples of such
applications include: Rocksmith 1 , Skoove 2 , Songs2See
Game 3 , and Yousician 4 . Besides enabling the analysis of
users’ performances captured through a microphone, MIR
techniques have also enabled the semi-automatic creation
of score sheets from music recordings. This has been made
publicly available with the release of applications such as
Chordify 5 , Songle 6 , Songs2See Editor 7 , and plugins for
Sonic Visualiser 8 such as Chordino 9 .
By including the state-of-the-art algorithm for chord recog-
nition proposed by Nadar et al. [2] in the Songs2See Edi-
tor, we aim to demonstrate its potential for real-life appli-
cations. This highlights the importance of further advance-
ments in the field of MIR to enable non-experts to retrieve
complete score sheets of their favorite songs with minimal
manual corrections. An example of the proposed integra-
tion is shown in Figures 1 and 2.

1 https://rocksmith.ubisoft.com
2 https://www.skoove.com
3 https://www.songs2see.com/en/products/game
4 https://yousician.com
5 https://chordify.net
6 https://songle.jp
7 https://www.songs2see.com/en/products/editor
8 https://www.sonicvisualiser.org
9 http://www.isophonics.net/nnls-chroma
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Figure 1. Songs2See Editor interface displaying the ex-
tracted melody and beat grid of an imported audio file.

Figure 2. Final score sheet extracted by the Songs2See
Editor (including chords) that can be printed or exported
to other notation software.
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1. INTRODUCTION

Eating is one of the most sensory of all activities that we
take part in. Apart from tasting, it involves both the food
and the environment. The multitude of different sensory
inputs (from the smell of the food and the colour of the
plate, to the lighting in the room and the ambient sound-
scape) all affect the way we think about and perceive our
food [1]. Much like eating, listening is a fundamental part
of most lives; and similar to the role of food, music can
modulate our feelings, our mood, and our experiences in
life.

This demo explores the common link between these two
phenomena, specifically the way in which what we taste
can be influenced by what we listen to.

2. BACKGROUND

Associations between sensory input across all the senses
exist, and a substantial body of research on the topic of
multisensory perception has shown that individuals expe-
rience the phenomenon of “crossmodal correspondences”
which can be explained as seemingly arbitrary and unre-
lated associations between sensory features from different
sensory modalities [2]. For example, the combination of
a figure spatially positioned upwards and a high pitched
sound is often perceived as related and constitutes an ex-
ample of a crossmodal correspondence [3].

Recent research now demonstrate how music and sound
can influence our eating experiences and taste and flavour
perceptions. For instance, evidence shows that individu-
als are able to systematically map sonic attributes (such as
pitch, articulation, tempo, harmony, etc) and basic tastes
[4]. For instance, high-pitched sounds are often associ-
ated with sweet or sour tastes, whereas low-pitch sounds
tend to be associated with bitter tastes [5–7]. By making
use of such crossmodal correspondences, pieces of music
can be chosen or composed to correspond with the taste,
mouthfeel, or flavour of a particular food or drink [8]. Fur-
thermore, research within the emergent field of “sonic sea-
soning” has shown that such soundtracks can actually alter
people’s actual taste experience [9].

To further explore the phenomenon of sonic seasoning,
we have constructed a system where the way in which

Copyright: c© 2019 Signe Lund Mathiesen et al. This

is an open-access article distributed under the terms of the
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people pick up a mug triggers the onset of different taste-
corresponding soundtracks to accompany the drinking ex-
perience. This demo turns the act of drinking into a form
of embodied interaction with music, while high-lighting
how the same beverage can taste very differently depend-
ing on the music that happens to be playing at the same
time. By building such new interactive systems, we ex-
plore the extent to which our distal senses can influence
flavor perception, and at the same time use sound to raise
people’s awareness of their own eating behavior.

3. SOUNDTRACK CREATION

Two soundtracks were created for this demo, one designed
to bring out sweetness, and the other to emphasise bit-
terness. Previous research has demonstrated how high-
pitched, consonant, and legato-articulated music is associ-
ated with sweet tastes, whereas low-pitched and dissonant
music is associated with bitter taste [10–12].

The sweet soundtrack is composed of a fairly high-pitched,
slow legato clarinet melody on top of a single C major
chord piano arpeggio strum. A string pad is introduced
to create a softer timbre.

The bitter soundtrack consists of a low-pitched brass drone
with a slightly syncopated cello string figure in the low
register. Furthermore, an arpeggiated synth as well as a
pizzicato string ensemble adds a percussive element (static
pulse) to the track.

Both soundtracks were created in Logic Pro X with the
program’s preinstalled software instruments.

4. SETUP

The main components and relationships of the Janus Mug
are schematised in Figure 1. Each of the two handles of the
mug is connected to an Arduino microprocessor (Makey
Makey LLC) connected to a laptop. When the user picks
up one of the handles, they complete an electrical circuit
that trigger a specific key press on the laptop. A program
built with the Processing software then reads in the key
press and plays the appropriate taste soundtrack. This en-
sures that the user can hear either the sweet or bitter sound-
track as they are drinking from the mug, depending on
which handle of the mug they are holding onto. When the
user is finished drinking, setting the mug down on the ta-
ble triggers a different key press, which then stops music
playback.
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Figure 1. Diagram of the setup

5. CONCLUSIONS

Investigating our physical interactions with music while
we consume foods or beverages could potentially contribute
to the understanding of what drives our eating behaviour.
By raising awareness of such behaviours (through the sound/
consumer interplay), we can design future sound solutions
in a variety of spaces to encourage healthier eating be-
haviour. Research into “sonic seasoning” can provide food
researchers, health professionals as well as restaurateurs
with insights into how auditory influences can be imple-
mented in canteens, restaurants, and virtually any context
within which eating occurs. Imagine, for instance, how the
presence of a sweet soundtrack while drinking coffee could
enhance the perceived sweetness of the beverage and thus
result in a lower need for added sugar (or cream) to the
drink [9, 13].
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ABSTRACT 
This paper presents a framework that supports the development 
and evaluation of graphical interpolated parameter mapping for 
the purpose of sound design.  These systems present the user 
with a graphical pane, usually two-dimensional, where synthe-
sizer presets can be located.  Moving an interpolation point cur-
sor within the pane will then create new sounds by calculating 
new parameter values, based on the cursor position and the in-
terpolation model used.  The exploratory nature of these sys-
tems lends itself to sound design applications, which also have 
a highly exploratory character.  However, populating the inter-
polation space with “known” preset sounds allows the parame-
ter space to be constrained, reducing the design complexity oth-
erwise associated with synthesizer-based sound design.  An 
analysis of previous graphical interpolators is presented and 
from this a framework is formalized and tested to show its suit-
ability for the evaluation of such systems.  The framework has 
then been used to compare the functionality of a number of sys-
tems that have been previously implemented.  This has led to a 
better understanding of the different sonic outputs that each can 
produce and highlighted areas for further investigation. 

1.  INTRODUCTION 
A fundamental problem of synthesizer programming is 
knowing how to set the parameters to create a certain sonic 
output.  Many synthesizers have a large number of param-
eters and although having direct access to every parameter 
(one-to-one mapping) gives very fine control of the 
sounds, it complicates the process of designing new 
sounds.  Alternatively, it is possible to map a smaller num-
ber of control parameters to a larger number of synthesizer 
parameters (few-to-many mapping) to reduce the control 
complexity.  One way in which this can be done is to use 
interpolation, where sets of parameter values (“presets”) 
for known sounds can be assigned in a point-wise manner 
to the control variables of a suitable controller.  Then as 
the control variables are changed, via the controller, inter-
polation generates new values for the synthesizer parame-
ters.  In this way, it is possible to create sonic outputs that 
are constrained by the known sounds and the control 
changes.  This provides a mechanism for exploring a de-
fined interpolation space. 
   A number of such interpolation systems have been de-
veloped, but the systems of particular interest in this body 

of work are those that use a graphical interface for the in-
terpolation control.  These map presets of synthesis param-
eters to specific locations in a (normally) two-dimensional 
pane and the system calculates interpolated parameter val-
ues for the interpolation point (cursor) position as it moves 
between the preset locations.  This facilitates the discovery 
of new “custom” parameter values that blend characteris-
tics of two or more parameter presets.  The resulting 
sounds are a function of the interpolation model used, the 
parameter presets, their locations within the interpolation 
space, the position of the interpolation point [1] and the 
synthesis engine itself.  It is also possible to define trajec-
tories for the interpolation point that result in new sonic 
gestures. 
   Of particular interest here, is the use of such interpolators 
for sound design, which in this work is taken to be the de-
sign of new sounds, often to accompany visual or other 
media.  Sound design is a creative process and as a result 
there is a desire to remove or minimize any technical bar-
riers between the creative artist and sonic results.  A large 
part of the creative process involves generation and explo-
ration [2], so it is desirable to provide a platform that sup-
ports this paradigm effectively. 

2.  PREVIOUS WORK 
Over a period of many years a number of graphical inter-
polation systems have been developed for use with synthe-
sizer/sound processing technology.  A summary of these is 
given in the following sections and an evaluation is under-
taken that results in the formulation of a framework.  Fig-
ure 1 shows the visual representation for each interpolator 
reviewed. 
 

 
Figure 1  Graphical Interpolator Models Copyright: © 2019 Darrell Gibson. This is an open-access article distrib-

uted under the terms of the Creative Commons Attribution 3.0 Unported 
License , which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited.  
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2.1   SYTER 

Work in this area was first completed at GRM (Group de 
Recherches Musicale) in the early 1980’s on the SYTER 
system, a hardware workstation that was designed to allow 
real-time audio processing and synthesis. SYTER had a 
two-dimensional graphical interface, which offered a user-
friendly real-time control window, called INTERPOL [3] 
to control the relationship between different parameter 
presets in a real-time sound-processing engine (Figure 1a).  
The positions of points on the visual interface are mapped 
to presets of up to 16 parameters.  Each preset has a circu-
lar representation (a planet) in the interpolation space and 
clicking on a planet recalls the sound of the corresponding 
preset.  However, the system also allows interpolation be-
tween presets using a gravitational model, where influence 
varied with the distance between the planets and their size.  
In this way, larger planets have a higher gravitational force 
and so a stronger field-of-influence compared to smaller 
planets.  The work has been expanded over the years for 
three-dimensional graphical control and a generalized In-
verse Weighted Distance (IWD) model [4], where the ex-
ponent value can be user controlled. 

2.2   Interpolator 

The SYTER style gravitational model for interpolation 
was further expanded with a system called Interpolator, 
which was developed in collaboration between GRM and 
University of Hertfordshire in the early 2000’s [5].  This 
prototype system was designed as a graphical control in-
terface for the GRM Tools software plug-ins.  The system 
used a light model for the interpolation, where presets were 
represented as lamps, with each having an angle, aperture 
and extent of the light source (Figure 1b).  The light beams 
gave a visual representation of the corresponding preset’s 
field-of-influence.  In addition, if the angle of a lamp’s ap-
erture is opened up to 360 degrees then it becomes similar 
to the planetary system, except the lamp shows the field-
of-influence and the planet’s area is not lost from the in-
terpolation space.  Users could then explore interpolated 
sounds where the lamp’s light beams intersected.  Differ-
ent colours (up to 4) were used to signify different map-
ping layers for the interpolation.  Hence, a colour repre-
sented a set of parameters mapped to either single or mul-
tiple GRM Tools plug-ins (up to 4) and a lamp is a specific 
set of values for the parameters.  This design allowed lay-
ers to be created in the interpolation on the same or differ-
ent plug-ins. 

2.3   Gaussian Kernels  

In 2003, Momeni defined a system that allowed the spatial 
layout of objects that relate to musical material – either 
recorded samples or synthesis parameters.  Each of these 
can be placed at locations within a two-dimensional graph-
ical pane and represent a Gaussian kernel, whose value at 
any given point in the pane indicate the weight of the as-
sociated preset point in the interpolation. This allows 
weighted interpolation among the preset points based on 

the values of the Gaussian kernels at each point in the in-
terpolation space.  For each kernel the user could modify 
the location, amplitude and standard deviation [6]. The in-
terpolation space then shows a two-dimensional visual 
representation of all the kernels in the space and the ker-
nel’s amplitudes are mapped to the brightness scale of a 
selected colour (Figure 1c).  For more accurate visualiza-
tion the Gaussian kernels can also be viewed as a three-
dimensional image.  The space created can be explored and 
interpolation between the presets is calculated based on the 
cursor position and weight of the kernels.  The Gaussian 
kernels provided not only a mechanism for interpolation, 
but also for extrapolation beyond the perimeter of the 
points specified in the space.  As this system was imple-
mented in the visual programming environment Max, it is 
possible to control any sound engine that can be created in 
it. 

2.4   Metasurface 

In 2005 the Metasurface was developed as a control inter-
face for the AudioMulch Interactive Music Studio, a soft-
ware application for live performance, audio processing, 
sound design and music composition [7]. Metasurface can 
be used to control synthesis and processing parameters and 
allows any number of parameter presets to be defined and 
placed in the interpolation space. When the presets are 
placed in the interpolation space a Voronoi tessellation is 
constructed where each preset is at the centre of a convex 
polygon (Figure 1d). Any position contained in each poly-
gon is closer to the centre point of that polygon, than the 
centre point of any another polygon.  Moving the cursor 
within the tessellated pane performs natural neighbour in-
terpolation.  This is calculated by adding a new polygon 
for the current cursor position and the weight of each 
neighbour is then calculated as the area “stolen” from the 
neighbours by the polygon centred at the cursor position.  
Moving the cursor results in smooth interpolation between 
the cursors natural neighbour as it moves through the 
space. 

2.5   INT.LIB 

Work in the mid 2000s saw the SYTER style gravitation 
model revived, updated and expanded by Oliver Larkin.  
INT.LIB is a library for Max that allows the control of 
multiple layered presets using a gravitational model (Fig-
ure 1e).  Each layer is color-coded and has its own cursor 
that indicates the location of the interpolation point for that 
layer [8].  Optionally the interpolation points can be linked 
so that all layers are controlled simultaneously.  Each of 
the layers has its own instances of a synthesizer or signal 
processing plug-in and allows interpolation between a 
number of patches on that sound engine.  As INT.LIB is 
implemented in the Max environment it again means it has 
open ended possibilities for the synthesis engine. 
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2.6   Nodes 

Andrew Benson, a visual artist, created the nodes object 
for Max in 2009 and it proved so popular that it has been 
included in subsequent Max distribution (Figure 1f).  
When combined with the pattrstorage object it can provide 
a graphical interpolation system.  Although the nodes sys-
tem uses a distance-based interpolation function, it uses a 
different model, where each preset is represented as circu-
lar node within the interpolation space.  The interpolation 
is only performed in regions where the nodes intersect.  
When the cursor is inside a node the distance to the node’s 
centre is used as the weighting for the corresponding preset 
[9]. 

2.7   Spike-Guided Delaunay Triangulation 

In 2009 Drioli et al., developed another graphical interpo-
lation scheme as a sound design interface for physically-
based synthesis models.  A visual spike representation for 
the sonic output of each synthesized preset can be posi-
tioned in an interpolation pane (Figure 1g).  The presets 
form a scatter of points on the graphical pane and interpo-
lation is performed based on a Delaunay triangulation of 
the points.  The user can select points in the space and the 
synthesizer parameters are calculated through linear inter-
polation of the three presets of the containing triangle [10]. 

2.8   Intersecting N-Spheres Interpolation 

Developed by Martin Marier in 2012, Intersecting N-
Spheres Interpolation is a mapping strategy for interfaces 
including multiple continuous sensors [11].  This system 
uses a two-dimensional space where the presets and inter-
polation point are positioned.  The visual representation 
shows a circle around the interpolation point, with a radius 
equal to the distance of the nearest preset point.  Circles 
are also drawn around each preset point, with the radii of 
these circles being equal to the distance to the nearest pre-
set location or the interpolation point, whichever is nearest 
(Figure 1h).  Any preset point circles that intersect the in-
terpolation circle are considered neighbours and influence 
the interpolation.  The value of the interpolation point is 
calculated as a weighted average of the value equal to the 
ratio of intersecting circles area.  This system is realized in 
SuperCollider where it can control the audio processing 
and synthesis parameters running on this platform. 

3.  EVALUATION OF GRAPHICAL INTER-
POLATORS 

Although the systems examined in Section 2, have all been 
created to allow interpolated control of parameters they 
represent different realizations, are implemented with dif-
ferent technologies and have a number of different appli-
cation areas.  Nonetheless, there is a common thread, in 
that interpolation allows the adjustment of sound parame-
ters between defined presets, via some form of visual 
model.  From the systems examined it is apparent that they 
can be decomposed into five different, but dependent areas 

that should be considered when developing such systems.  
These are: 

1.  Control – input controls of the interpolation model 
2.  Visual Metaphor – the visual interpolation model and 

how it is represented graphically 
3.   Interpolation – the interpolation weighting calculations 
4.  Mappings – the synthesis parameters that are interpolated 
5.   Synthesis – type/architecture/implementation of the 

sound engine  

Each of these areas will be considered separately, how-
ever, for a number of the systems examined in Section 2 
there was not a clear partitioning between them.  In addi-
tion, in this work they will be considered in a sound de-
sign context. 

3.1   Interpolation Control 

There have been many different ways of controlling inter-
polation systems.  Here these have been constrained to 
those offering a graphic interface that corresponds to the 
visual interpolation model.  Many of the older systems had 
two modes of operation: one for the creating and editing 
the interpolation space and another for actually performing 
the interpolated sonic output [2, 5, 7, 12].  This meant that 
the interpolation space could not be changed in the middle 
of a sonic exploration, without changing mode.  However, 
if the interpolation calculations and graphics updates can 
be performed real-time it opens up the possibility of being 
able to control the interpolated sonic output, either by 
changing the location of the interpolation point within the 
space or by modifying the interpolation space itself: mov-
ing the preset locations or adding and deleting presets.  
Moreover, with the layered interpolation system presented 
in INT.LIB, it is possible to have multiple interpolation 
points and these can either be moved individually or linked 
so they can all be moved simultaneously [8]. 
   With the possibility of altering the interpolation space in 
real-time, it is also worth considering the input mechanism 
for controlling a graphical representation.  Using tradi-
tional computer-based spatial control devices (mouse, 
drawing tablet, joystick, trackball, etc.) only one point can 
be controlled at a time.  This means that only one preset 
position or the interpolation point can be moved at a time.  
Whereas with multi-touch screen technology it opens the 
possibility that sound design can be undertaken by simul-
taneously controlling multiple points in the interpolation 
space.  Being able to change the interpolation space real-
time and multi-touch technology, opens the following po-
tential modes of operation for changing an interpolated 
sound, creating new possibilities for the control of an in-
terpolated sound design process: 

1.  Move the interpolation point(s) 
2.  Change the field of influence for one or more preset 
3.  Simultaneously move one or more preset locations, 

while the interpolation point remains static 
4.  Simultaneously move the interpolation point and one 

or more preset locations 

Discontinuities in the interpolation space are not normally 
desirable for this application domain, as noted by other au-
thors [7, 12].  However, if the user does want to produce 
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audible jumps either a new instantaneous position for the 
interpolation point can be selected (a jump) or if real-time 
mode is available the position of the presets could be in-
stantaneously changed.  
   For sound design applications, the addition of performance 
expressions is often desirable to “bring the sounds to life”, e.g. 
to match the sound to on-screen actions.  It has already been 
shown that interpolation methods provide an opportunity to ap-
ply expressive control to synthesized sounds [12, 13].  How-
ever, it does not necessarily follow that expressive control of 
the interpolation should be performed at the same time as the 
design of the base sound.  It may also be the case that more 
traditional avenues for applying expressions will still be pre-
ferred, for example, through physical actions [14].  

3.2   Visual Model & Graphical Representation 

As can be seen by the range of systems examined, there 
have been many proposed visual metaphors for graphical 
interpolators.  The visual model provides the user with 
feedback on the state of the interpolation method, location 
of the presets and their relative influence.  This is delivered 
in addition to the auditory feedback generated by the syn-
thesizer output.  However, for a sound design task it is not 
clear if the visual representation is needed or actually aids 
the process.  
   In the systems examined there are different visual repre-
sentations for the presets within the interpolation space, of-
ten using geometric shapes: circles, triangles, polygons, 
etc.  However, there tends to be some form of visual link-
age between these representations and the actual interpo-
lation model.  For example, circles have been used to rep-
resent presets in a number of different interpolation sys-
tems [3, 8, 9, 11], but the way they are interpreted is di-
rectly linked to the interpolation paradigm being used in 
each case.  In some, the shapes used in the visualization 
are linked to which presets are included in the interpolation 
calculations.  For example, where triangulations are gen-
erated between the preset locations it provides the impli-
cation that the interpolation is being performed between 
the three presets of an enclosing triangle [10], a rectilinear 
grid implies interpolation between four local presets and 
polygons implies interpolation between the closest presets 
that form a convex hull around the interpolation point [7].  
Even a straight line (slider) can be used to imply interpo-
lation between two presets (a 1-D interpolation space).  For 
intersecting interpolation paradigms, where the interpola-
tion is performed when preset objects overlap in the space, 
the intersection itself implies which presets are included in 
the interpolation [5, 9].  In other cases, the sounds included 
in the interpolation are shown by links between the inter-
polation point and the presets [8]. 
   As well as different geometric representations for presets 
in the interpolation space, colour is also used in the major-
ity of the systems examined.  In most cases the colour is 
used to differentiate between the presets within the inter-
polation space.  However, in some cases the colours or 
shadings are visually interpolated to give a visual cue for 
the interpolated values between the presets [1, 5, 7].  On 
the multi-level interpolation systems, Interpolator and 
INT.LIB, colour is used to distinguish between different 
layers in the interpolation space [5, 8], but the influence of 

each preset is provided by linking the visual transparency 
of the preset’s display colour.  In this way, a solid colour 
shows a preset has a high degree of influence and it be-
comes more transparent as the influence decreases.  This 
is also the case for the linkage lines that show which pre-
sets are included in the interpolation, although the base 
colour already provides this information. 
   It is also worth noting that with most of the systems ex-
amined the visual representation relates to the interpola-
tion model (parameter space) and not the systems sonic 
output (sound space).  As seen through the work on timbre 
space, it is possible to use a sound-based representation for 
the control the synthesis parameters [15].  Although work 
has continued in this area, for sound design applications, 
the use of a predefined timbre space may be restrictive.  
The visual interpolator systems examined do not use auto-
matic positioning of presets within the interpolation space.  
Instead the user can define the presets that will be used in 
the interpolation space, the positional relationships be-
tween them in the space and in some cases the influence of 
individual presets.  These aspects allow sound designers to 
constrain the sonic output, while also supporting the ex-
ploratory nature of a design process [7, 12]. 
   Finally, with most graphical interpolation systems, indi-
vidual presets can be recalled by positioning the interpola-
tion point cursor directly on the preset’s position.  How-
ever, with the SYTER gravitational model, the gravity re-
mains the same while on the planet’s surface so any posi-
tion on the planet will recall that preset [3].  As a result, 
the area of each planet effectively reduces the potential 
size of the interpolation space [5].  Conversely, using the 
Max nodes object, the associated preset can only be re-
called by clicking on an area of the node that does not in-
tersect with another node.  If a non-intersecting area does 
not exist then it is not possible to hear the defining sound. 
   From this analysis, the systems already created have 
used the following visual cues in the interpolation space: 

1.   Preset handle (location in the space) 
2.   Preset field-of-influence 
3.   Interpolation point(s) 
4.  Number of presets included in the interpolation 
5.   Interpolation strength at the interpolation point 
6.  Navigable space 

3.3   Interpolation Methods 

A variety of methods have been used to calculate the inter-
polation values between the presets.  For example, linear, 
power, regularized spline with tension, etc.  The method 
chosen will affect the sensitivity and “feel” of the interpo-
lation system, as was demonstrated with LoM [16].  How-
ever, it is not clear how the system’s control, visual model, 
parameter mapping and synthesis engine combine to affect 
the feel. 
   As already noted in Section 3.1, it is desirable that an 
interpolation system should produce a “smooth” sonic out-
put that does not possess discontinuities or overshoots.  
Therefore, the interpolation function should be smooth to 
provide even changes and variation to the synthesis param-
eters and so the sonic output.  Although, in some situations 
jumps maybe required, this should be under user control 
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and not occur unexpectedly as a result of the interpolation 
method. 

3.4   Parameter Mappings 

Although the use of interpolation gives the user a mechanism 
to adjust multiple parameters simultaneously between preset 
values, the sonic output is defined by which parameters are 
mapped to the interpolation points.  Interpolating all the param-
eters within a set of presets can create large sonic changes, 
whereas a mapping that contains a subset of parameters offers 
more focused control.  Moreover, with some forms of synthesis 
there is not a simple link between the synthesis parameters and 
the sonic output.  As a result, selecting mapped parameters to 
create a specific sonic result can be difficult.  Previous research 
into the mapping of synthesis parameters has tended to focused 
on musical outputs and instrument gestural control [12, 13].  
This is a different application area and the outcomes have been 
fairly broad, not considering specific relationships.  Multi-lay-
ered mappings have been proposed, where intermediate ab-
stract parameters can be used [12], but for interpolation systems 
being used in musical instrument design.  Nonetheless a num-
ber of desirable characteristics have been identified for the 
mappings, such as, differentiability, linearity, range space, ex-
actness, extensibility and editability [13]. 
   With the graphical interpolation systems examined, the map-
ping between the synthesis engine and the interpolation points 
is often controlled by the user.  This is done by presenting the 
user with a list of parameters and allowing them to select the 
desired parameters to map between the visual interface and the 
synthesis engine.  Although this process gives control to the 
sound designer, completely different sonic outputs will be gen-
erated depending on which parameters are selected and those 
that are not.  With the majority of the systems examined one set 
of mappings is controlled by the graphical interface, however, 
both Interpolator and INT.LIB considered a multiple mapping 
approach offering simultaneous control [5, 8].  With INT.LIB, 
each mapping was sent to a different sound module so different 
sounds could be layered and controlled separately.  Whereas 
with Interpolator it also allowed multiple mappings to be asso-
ciated to the same sound module, which allows different as-
pects of a sound to be controlled independently. 

3.5   Synthesis 

From the range of systems examined, it can be seen that inter-
polation has been used with many kinds of audio processing 
and synthesis engines.  A number of the earlier interpolation 
systems are directly integrated into the same platform as the 
synthesis engine.  This means that although the sound can be 
changed within the remit of the given synthesis engine, it is not 
possible to use the same interpolation platform with a different 
synthesis engine.  The later exceptions to this have been devel-
oped through programming environments [3, 8, 9].  The flexi-
bility of using the programming environment means that it is 
possible to build new synthesis engines to be used with the in-
terpolation system.  Moreover, as the Max environment also 
supports use of common audio plug-in formats, it is possible to 
use many commercially available software synthesizers with 
interpolators built in Max [4, 8].  
   An interpolator user interface can mask the details of the syn-
thesis and the associated parameter manipulation from the user, 

allowing the sound designer to concentrate on the design pro-
cess, without having to worry about the underlying details of 
the synthesis engine. 

4.  GRAPHICAL INTERPOLATION 
FRAMEWORK 

Although a number of graphical interpolation systems have 
been created and documented, they were developed over a 
thirty-five-year period, using different implementation plat-
forms, different synthesis architectures and were designed for 
different application purposes.  Consequently, many of the re-
alizations used technologies that are now obsolete and no 
longer available making it impossible to do back-to-back eval-
uation between the original systems.  In order to be able to eval-
uate the suitability of these graphical interpolation systems for 
the purpose of sound design, they require re-implementation on 
contemporary hardware and software platforms.  This will al-
low direct comparisons to be undertaken between the different 
interpolation systems.  
   It is important to also consider the characteristics that a sound 
design graphical interpolator should ideally possess.  The fol-
lowing summarizes the most important factors from the evalu-
ation section: 

1.   Synthesis independent interpolation – the same interface 
can be used with different synthesis engines 

2.  Clear relationship between interpolation control and the 
sonic output – sound space defined by the populated pa-
rameter preset 

3.  Constrain the navigation and exploration of the parame-
ter space – user selecting and positioning presets in the 
interpolation space 

4.  Control a number of parameters simultaneously – reduce 
the control complexity of many parameters 

5.  Changeable parameter mappings – provide user with 
control over the parameter mappings  

6.  Exploration of the sound space with both course and fine 
levels of detail – change resolution and precision  

7.   Smooth interpolation – no discontinuities unless user se-
lects 

8.  Real-time interpolation (not different edit/interpolate 
modes) – allow either preset points or cursor to be moved 
to change sounds 

9.   Support the design of base sounds and the application of 
performance expressions 

10.   Usability, repeatability, predictability and playability 
– user can design a sound based on the supplied preset 
sounds. 

In order to be able to evaluate these aspects of different graph-
ical interpolators a hierarchical framework is proposed that 
compartmentalizes each of the system elements.  This works 
from the control input at the top-level to the sonic output at the 
bottom, as shown in Figure 2.  Although the final output, sound, 
is at the bottom level it is worth noting that the visual represen-
tation also gives the user visual feedback on the current config-
uration of the interpolation system and therefore, the sound.  
Equally the user maybe given inputs that allow the mappings 
to be modified.  However, what the framework shows is the 
interdependencies of the different elements of an interpolation 
system and the relationships between them.  For example, the 
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sonic output from the synthesizer is dependent on the control 
inputs, the visual model, the interpolation function, the param-
eter mapping and the synthesis engine used.  In addition, it is 
envisioned that in the future different realisations may be cre-
ated that will still be encapsulated by the framework. 

 
Figure 2  Graphical Interpolation Framework 

4.1   Framework Structure 

Having formalized the framework, the next stage was to con-
sider an implementation.  Using the framework defined in the 
previous section, it is possible to structure the different levels 
(control, visual model, interpolation, mappings and synthesis) 
into separate modules and test them separately.  In this way, it 
becomes possible to directly compare these aspects of each sys-
tem and evaluate their impact on the usability.  This can be done 
through comparative user tests where only one element is 
changed at a time.  The results can then be measured, compared 
and evaluated to determine the suitability of each for sound de-
sign applications.  To facilitate this the framework has been im-
plemented in the Max environment using the architecture 
shown in Figure 3. 

 
Figure 3  Framework Architecture in Max 

4.2   Framework Implementation 

As an initial investigation, a graphical interpolation system 
was built in Max using the nodes object detailed in Section 
2.6.  In this way, the nodes graphical interpolation system 
acted as proof-of-concept for the framework defined.  
When this interpolator system was implemented, care was 
taken to develop each of the five elements of the interpo-
lation framework into separate entities.  This was done 
through a modular design approach where each part is cre-
ated as a separate module so that each can be modified in-
dependently of the others.   
   The first implemented was the interpolation function 
module, which is storage that holds the parameter values 
and performs the interpolation.  The parameter values for 

each synthesis preset are stored as a new data set and it 
then interpolates between the parameter data sets, generat-
ing interpolated values for all the individual parameters.  
The interpolation is performed based on the modules input 
which is the relative weightings for each preset.  By de-
fault, the calculation performed is linear interpolation, but 
it is possible to change the mode so that any interpolation 
function can be realized. 
   As the nodes object has been specifically designed as a 
graphical interpolator, the object has been created with 
specific functionality for the visual model and the control 
inputs.  The control inputs realized in the nodes object 
are standard computer-based spatial controls.  However, it 
is also possible to send the object positional input data 
from other sources.  This provides the possibility of using 
other input devices to control the interpolation space.  The 
interpolation point on the nodes object can be moved 
within the space and an output weighting for each node is 
generated.  The visual model generated node weights are 
normalized (0.0 – 1.0) and are proportional to the interpo-
lation point’s distance from the circumference of a con-
taining node to its centre.  Therefore, when the nodes in 
the interpolation space overlap and the interpolation cursor 
is placed in an overlapped region, a weighting is generated 
for each node.  (In Figure 4 - 1 = 24%, 2 = 0% & 3 = 76%). 

 
Figure 4  Nodes Outputs Normalized Distances  

These weightings are used as the input to the interpolation 
function.  As the visual interpolation model is encapsu-
lated by a single object (nodes) it is possible to replace it 
with different implementations. 
   The synthesis engine has been constructed to be sepa-
rate from the interpolation platform by using software 
plug-ins, allowing different (commercially available) syn-
thesis engines to be loaded and tested.  However, the 
framework would also allow bespoke synthesis patches to 
be used.  When a new synthesizer is loaded, it is interro-
gated to determine all the parameter values for the number 
of presets loaded.  Each preset is associated to a node in 
the interpolation space and all of the preset’s parameter 
values are sent the interpolation function storage. 
   By default, all of the parameters for the presets are asso-
ciated to the corresponding node and so every aspect of the 
sounds synthesis is controllable.  However, the parameter 
mappings between the interpolation function and syn-
thesis engine can be changed by user selection. 

4.2.1  Framework Testing 
The prototype nodes-based interpolator was initially tested 
to ascertain if each module built in the framework could be 
changed independently of the others and to establish the 
impact on sound design tasks.  Through exploratory test-
ing, where the nodes-based interpolator and its parameter 
space were left the same (shown in Figure 5), it became 
apparent that changes to each module in the framework 
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leads to the system generating different sonic outputs and 
results in a different user experience with each realisation. 

 
Figure 5  Nodes Prototype Test Layout 

From testing with different synthesis engines, it was 
found that changes to the engine (preset changes, synthesis 
realisation or changes of synthesis type), were the main de-
terminants of the sonic output.  Moreover, with some forms 
of synthesis, changes to a single parameter can produce large 
sonic variations, but for others, more subtle alterations resulted.  
Changes to the control inputs allowed different mecha-
nisms for interacting with the sonic manipulation, and po-
tentially changing the usability of the interpolator.  Modi-
fications to the parameter mappings permitted the refine-
ment of the sonic changes that it is possible to generate 
with the interpolator.  Mapping lots of the synthesis pa-
rameters to the nodes resulted in big sonic changes, 
whereas mapping a few parameters permitted more subtle 
variations to be generated.  Changing the interpolation 
function resulted the subtlest differences.  The chosen 
function affects how the sound transitions as the interpola-
tion point is moved between preset locations. 

4.3   Graphical Interpolator Implementation 

The prototype nodes-based interpolator was used as the ba-
sis for the subsequent development of different graphical 
interpolation systems.  For each visual model and its con-
trol, the nodes object was replaced with an interactive user-
interface built using OpenGL for the interpolation model’s 
visual representation and JavaScript to create the control 
mechanism and calculate the preset weightings.  Each 
model was constructed and integrated with the other ele-
ments of the framework for testing.  To-date six interpola-
tors have been built, integrated with the framework and 
functionally tested.  These are: 

1.  Nodes (Overlapping Circles) 
2.  Gravitational (Planets & Space)  
3.  Radius-based IWD (Scatter Points & Interpolation 

Point Circle) 
4.  Light (Lamps) 
5.  Delaunay (Triangulation) 
6.  Voronoi Tessellation (Polygons) 

The nodes interpolator was reimplemented so that it could 
act as a benchmark for the other interpolators, but also so 
the visual representation can be changed to assess the in-
fluence of different visualisations using the same interpo-
lation model.  The other interpolators where chosen to rep-
resent the key traits of the interpolation systems that have 
been previously created. 

4.3.1  Graphical Interpolator Testing 
Following functional testing the different interpolators 
were back-to-back tested by placing the same ten presets 

at identical locations in each.  The nodes interpolator was 
populated first and although the size of each node was ran-
domly selected, they were chosen to ensure the whole 
space was covered.  For the gravitational interpolator, 
while the same locations were used, this model requires 
space between the planets, where the interpolation is per-
formed.  However, so that each preset has the same relative 
influence as they do in the node interpolator, the sizes were 
scaled by one tenth of those in the nodes interpolator.  For 
the radius-based IWD the interpolation point’s radius was 
chosen to cover approximately 50% of the interpolation 
space so for all interpolation positions, multiple presets are 
enclosed by the radius.  For the light interpolator although 
the same locations were used, as each lamp has an angle 
and aperture, it results in each lamp having a specific di-
rectionality.  To try and give coverage over the whole in-
terpolation space the extent of each lamp was scaled to 
four times the nodes size.  Despite this the lamps direction-
ality also needed to be selectively chosen to ensure the 
whole interpolation space was covered, whilst still giving 
a good spread of intersecting light beams.  For the two re-
maining interpolators the presets do not have different in-
fluences or directionalities so the locations were kept the 
same as the nodes layout.  The test layouts for the six in-
terpolators are shown in Figure 6.  

 
Figure 6  Test Layout for Graphical Interpolators 

These layouts were used to perform back-to-back tests 
where output from the different graphical interpolators 
were compared.  For the tests the control inputs, interpo-
lation function, parameter mappings and synthesis out-
put, all remaining the same, as detailed: 

1.   Control Inputs – Fixed 2-D movement of interpola-
tion point only  

2.   Interpolation Function – Linear interpolation 
3.   Parameter Mappings – All synthesis parameters mapped 

to the corresponding preset location 
4.   Synthesis Output – Native Instruments Massive with ten 

presets loaded 

The tests compared the sonic output from the different in-
terpolation models for the same interpolation positions.  
This was first done by instantaneously moving the interpo-
lation cursor to ten different locations and comparing the 
sound generated with each system.  From this test, it was 
evident that each visual interpolator generated signifi-
cantly different sonic results, despite being populated with 
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the same preset sounds.  To try and get a better understand-
ing of each system’s sonic nature, another comparative test 
was created, where the interpolation point was moved 
through a fixed trajectory path around the defined interpo-
lation spaces.  The path began at the centre of the space, 
moved diagonally towards the left-top corner until the 
mid-point and then moved around parallel to the outside 
edge of the space.  It was found that each interpolator gives 
a very different range of sonic outputs across all interpola-
tion positions.  The fact they were different was not neces-
sarily surprising, but the diversity of the sonic differences 
was not anticipated.  Moreover, each interpolator results a 
completely different sonic palette that it can generate, 
meaning it is very difficult to create the same sound with 
each interpolator.  This is because each interpolation 
model results in different preset weightings for the inter-
polation function.  As an example, Figure 7 shows the pre-
set weightings for just the centre position of each interpo-
lation spaces, as shown in Figure 6.   

 
Figure 7  Comparison of Interpolator Preset Weighting’s 

   In all cases, the relative positioning (layout) of the pre-
sets determines the interpolated outputs.  Different layouts 
of the same presets results in different outputs being ob-
tained.  It was also noted that for interpolators 1, 2 & 4 the 
extent (size) of each preset, further changes the interpola-
tions space.  Also, the directionality of the lamps in inter-
polator 4 gives an added element for further modifying the 
interpolation space.  For interpolators 3, 5 & 6 the influ-
ence of each preset is potentially the same, but the layout 
determines the relative strengths.  However, for interpola-
tor 3 this is constrained by the interpolation point’s radius 
that determines which presets will be included.  If the ra-
dius size is changed, corresponding presets will be added 
or removed from the interpolated output.  Whereas inter-
polator 5 uses only the three closest presets and interpola-
tor 6 uses the natural neighbours.  

5.  CONCLUSIONS 
The framework presented has been shown to provide a 
suitable platform for the testing and evaluation of different 
graphical interpolation systems.  The modularity of the 
framework components means that each can be modified 
independently of the others, offering a suitable mechanism 
for performing formal comparative user testing.  In this 
way, the use of the framework has led to a more detailed 
understanding of different interpolation models and the 
identification of where and how sonic differences are ob-
tained.  From the testing that has been undertaken so far 

three areas have been identified for immediate further in-
vestigation.  The first of these will be to undertake formal 
user testing to assess the level of feedback provided to the 
users by the visual representations of the interpolation 
model.  The second will be to undertake formal user testing 
to evaluate the suitability of the presented interpolators for 
sound design applications.  Finally, as different synthesis 
engines reactions to interpolation can be drastically differ-
ent this will also be examined further. 
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ABSTRACT

This paper presents and discusses the Compose With Sounds 
(CwS) Digital Audio Workstation (DAW) and its approach 
to sequencing musical materials. The system is designed to 
facilitate the composition within the realm of Sound-based 
music [1] wherein sound objects (real or synthesised) are 
main musical unit of construction over traditional musical 
notes. Unlike traditional DAW’s or graphical audio pro-
gramming environments (such as Pure Data, Max MSP 
etc.) that are based around interactions with sonic ma-
terials within tracks or audio graphs, the implementation 
presented here is based solely around sound objects. To 
achieve this a bespoke cross-platform audio engine known 
FSOM (Free Sound Object Mixer [2]) was created in C++. 
To enhance the learning experience, imagery, dynamic 3D 
animations and models are used to allow for efficient ex-
ploration and learning. All tools within the system are con-
trolled by a flexible permissions system that allows users 
or workshop leaders to create sessions with specific fea-
tures based on their requirements. The system is part of a 
suite of pedagogical tools currently in development for the 
creation of experimental electronic music.

1. INTRODUCTION

The Compose with Sounds (CwS) software package (see 
Fig. 1) was born out of two distint ideas and projects. 
Landy’s highly influential Making Music with Sounds [3] 
made strives in attempting to fill the enourmous gap in lit-
erature regarding sonic creativity for novices and school 
teachers. For several years, Landy had been working on 
the ElectroAcoustic Resource Site (EARS [4]). In 2006 the 
EARS website EARS was supported and adopted by UN-
ESCO becoming a node of their DigiArts programme. Af-
ter a period of collaboration with the body, they requested 
‘an EARS for kids’. This subsequently became EARS 
2 [5, 6]. As children prefer to be working actively whilst 
learning as opposed to being solely fed information, the 
EARS 2 pedagogical site needed to be highly interactive.

Copyright: c© 2019 Stephen Pearse et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

Furthermore, it demanded a creative dimension that could
not be integrated into the site. This provided the oppor-
tunity to develop a bespoke software package, not only
for EARS 2 but for any inexperienced user in the realm
of sound-based composition also known as electroacoustic
music.

For many years members of the project team have been
working across a wide variety of sound projects in edu-
cational and community settings. The target age group
for much of this work has been UK Key Stage 3/inter-
national middle school students aged 11-14.Within these
contexts, it has become rather clear that there were no real
software packages that present a simple way of working
with recorded audio that does not require specialist knowl-
edge or experience on hand. Projects such as Sonic Post-
cards [7], typically resorted to using Audacity as an audio
editor and composition environment. The main drawback
of this was that it was very hard for those without experi-
ence to fully comprehend what they were working on. Us-
ing Audacity also assumed that users were able to navigate
their way round the computer to find the sounds they were
going to use. In this setting, participants would often get
“lost” and lose interest. Software like Audacity presents a
vast number of “choices” regardless of the level of expe-
rience of the user. Similarly, when participants have been
presented with other “entry level” tools (such as Garage
Band) large numbers of them would spend the majority of
their time “auditioning” sounds and presets, leaving little
time to actually compose with them.

The CwS software was subsequently designed to be as
intuitive as possible while avoiding the interface or audi-
tioning shortcomings of existing tools. The core target age
group of the work remains students aged 11-14 but it is
flexible and approacheable enough to be used by students
either side of this age bracket. The software aims to sup-
port students to a level wherin they can easily move onto
other platforms such as Logic, ProTools or even Max MSP
and the like, while being easily linked to challenges within
EARS 2 projects. Like the aforementioned platform, the
software is intended to be multilingual for adoption in cul-
tures around the globe. CwS was first supported by an EU
Culture grant, ‘Composing with Sounds’ with further de-
velopment being supported by a Creative Europe grant for
the ‘Interfaces’ project [8, 9].
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Figure 1. Compose with Sounds Version 2.36

To increase access and potential engagement with the tool
and the EARS 2 platform on the whole, the system is sched-
uled for free release in late spring of 2019 for MacOS
10.9+ and Windows 10.

2. TECHNICAL OUTLINE

To enable the development of CwS, a bespoke audio engine
known as the Free Sound Object Mixer (FSOM [2]) was
engineered. This open-source audio engine was designed
to be flexible and suit different iterations of the Compose
With Sound project but also be easy to repurpose for other
real-time audio applications. With a project of this scale
great care and attention needed to be taken to ensure that
the functionality in FSOM was not dependent on the CwS
in any shape or form. While keeping the audio and graphic
threads separate is widely encouraged in the audio devel-
opment community, here it is fundamental to the architec-
ture of the project.

Throughout the project, CwS has gone through two sig-
nificant iterations which entailed a complete rewrite of the
graphical user interface. Versions 1 through to 1.35, all
utilised the cross-platform windowing library wxWidgets
[10] and was made available explicitly for Windows 7 and
MacOS 10.7 in 2015. To ensure future support for higher
resolution displays and stability on newer versions of Ma-
cOS, the entire graphical user interface was re-written to

utilise the popular windowing library, Qt [11]. For clar-
ity and integration with other iterations of the software and
other projects, all materials that are saved by the system (be
it the session itself, library information or template data)
are all saved in an easy to read and interpret XML schema.

2.1 Development Cycles

To tailor CwS to the target audience in the best way pos-
sible and ensure that it be delivered efficiently, an adapted
form of the SCRUM development methodology [12] has
been used. Software development iterations are based on
development sprints lasting between two to four weeks.
This flexibility is a necessity as testing and feedback across
multiple levels is continuously required to ensure stable de-
velopment of the software. Since commencing the devel-
opment of version 2.0, the codebase has been maintained
by a single software developer (the lead author). Due to
the size of the codebase and the aims of the project, sev-
eral iterations of testing and feedback take place to iden-
tify bugs and feature requests in each private release prior
to wider distributions. The software and each new fea-
ture is subsequently tested by three distinct groups, each
with finite roles (see Fig. 2). These groups are the de-
veloper and students at their institution, the wider project
team across the interfaces project and workshop partici-
pants. The developer is responsible for testing new func-
tionality; the wider team, bugs and general usability issues
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Figure 2. CwS Testing Cycles

and workshop attendees for broader usability issues along-
side requesting new features. This approach ensures that
if issues or queries concerning the usability emerge, work-
shop leaders and testers could be informed and guided to
test and query functionality.

Many features within the software were subsequently in-
formed through this approach. Perhaps the most notable
of these are the graphical tracks alongside the mute and
solo tools. As the system does not depend on a tradi-
tional track-based architecture (see section 5), sounds can
be placed over one another in the sequencer environment
with both being heard. Conceptually several users strug-
gled with this methodology and leading to confusion with
sounds of different lengths being laid over the top of one
another. The software dynamically sorts and alters the ren-
dering z depth of each sound based on their duration with
the shorter sound materials being drawn on top of those
with longer durations. While this is effective, user feed-
back indicated that limited graphical “tracks” would be
needed to ease the organisation of sessions. After a series
of workshops in the summer of 2018, many users requested
that these “tracks” offer solo and mute functionality. While
this was possible to achieve within the codebase, it was
not in keeping with the sound-based nature of the project.
As such, mouse tools were created instead for muting and
soloing multiple sounds at once within the system.

3. THE SOUND CARD

With sounds being affiliated with imagery, the metaphor
of a card or soundcard is used within the software. While

Figure 3. Solo and mute functionality

the pairing of image to sound in this form is encouraged, it
is by no means compulsory. At any given moment, a user
can alter the view of cards within the system to show the
waveform of the sound, the assigned image or both.

A composer’s primary means of working within the sys-
tem is the sequencing and transformation of these cards.
The software subsequently contains a suite of standard edit-
ing tools to be utilised. This includes the aforementioned
solo and mute tools (see section 2), deletion, splicing, trun-
cation, file bouncing and time-stretching 1 . For ease of
use, each of these can be undone and applied to multiple
cards at any given time. As well as supporting copy and
pasting of cards as a user would expect, the system affords
different approaches to duplicating and looping cards. Stan-
dard duplication is supported wherein a new card is created
immediately after the original has finished. When multi-
ple cards are selected at once, the newly duplicated cards
commence at the end of the final original card. These
new cards retain the same timing differences as the orig-
inal selections. Cards can also be duplicated to behave like
traditional looping functions found in commercial DAW’s
wherein cards are repeated upon their owen completion.
This flexibility in duplication subsequently enables users
to easily create structural relationships based on relative
timing or more rigid loops if desired.

3.1 Synthetic Cards

Alongside cards made from audio files on the user’s com-
puter, the system also contains synthetic/generative cards
that can be utilised. At the time of writing, these cards con-
sist of a noise card, an additive synthesis card and a gran-
ular synthesis card. The number of controls available for
the latter two types was purposefully limited to reduce the
threat of creative paralysis when confronted with an exten-
sive collection of controls. The former is limited to four os-
cillators with pitch, amplitude and shape controls (sine, co-
sine, noise, square, saw and triangle). The granular synthe-
sis region is based on traditional file-based granular syn-
thesis [14] over live input based tools akin with Mutable In-
strument’s Eurorack Module, Clouds [15]. This card sub-
sequently provides controls for the grain size, pitch, posi-
tion in the source file, the rate of spawning, amplitude and
playback speed (used to scroll through the sound at varying

1 The time-stretch tool is based around a custom phase vocoder in-
spired by the algorithm used in PaulStretch [13]

312

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



rates). While random modifiers could have been provided
for each of these controls, they have been purposefully re-
moved at this point.

3.2 Card Libraries

As the system is based around the usage of sonic cards,
the traditional approach of using an audio pool has been
replaced by the use of card libraries. This library system is
designed to utilise a clear and concise XML schema along-
side a simple file structure rather than serialising the data
into binary. While previous research [16] has shown the
inefficiency of XML under certain circumstances, it has
been utilised here to ensure easier integration with affili-
ated projects and tools. The system allows users to easily
import and export libraries either as standalone entities or
as part of saved compositions. A selection of card libraries
is provided with the software. A further collection of li-
braries can be found on the original CwS website [17] and
the EARS 2 platform [5, 6] which contains teaching mate-
rials for the system. Most significantly, it affords the po-
tential for users to interactively explore the libraries on the
accompanying website.

At present, the software does not allow users to record
sounds within it. This was an active decision made by the
team to ensure that the software is used primarily for sound
sequencing and transformation. A proof of concept library
creation application for desktop and mobile applications
has been created using JUCE [18]. This tool allows users
to create cards through recording or importing audio and
photos on their device of choice. Libraries can then be
exported from this tool.

3.3 Templates and Levels

The system contains a flexible permissions framework that
enables or disables access to features within. Akin with
Boden and later Magnusson’s work on constraints [19,20],
limiting or guiding users through a limited set of tools
(initially) forces them to think creatively about what each
tool affords. This subsequently encourages them to inter-
nally map out creative possibilities that they wish to ex-
plore. The approach taken in CwS supports this further as
it enables educators to create their own scaffolding struc-
tures [21] for audio tools and effects. These structures are
known as templates within the software and can be freely
created by the user. This augments Bigg’s constructivist
theory [22], where users can actively seek and creatively
apply their own pathway through the tools available. Tem-
plates can be applied to any compositional session or li-
brary that the system is aware of. When the student in
question is ready, educators can subsequently move to the
next relevant template. The system is provided with three
linear templates that can be used. An outline of what is
provided at each level can be seen in Table 1. To aid the
delivery of workshops and other guided learning sessions,
templates are saved into libraries when they are exported
if required. This enables workshop leaders to design ses-
sions that prescribe the sound materials and tools that can
be easily deployed.

Figure 4. Delay and Reverb representations

4. DIGITAL AUDIO EFFECTS AND
TRANSFORMATIONS

The system contains a collection of standard and extended
audio effect processors (see Table 1) that composers of sound-
based music would expect to find in a DAW of their of
choice or would have access to through commercial/free
audio plugins. The system does not allow external plug-
ins to be loaded into it for several reasons. In a classroom
context, deploying, loading and working with plugins can
slow down sessions due to the risk of technical or licensing
issues occurring. This is especially the case in today’s cli-
mate where some plugins require online activation or veri-
fication at runtime. When learning a new piece of software
alongside a new approach to music and sound, there is the
potential for any student to be overwhelmed with the quan-
tity of features available. If this experience requires users
to learn the control and interface vocabularies of different
plugin manufacturers on top of this, the chance of creative
paralysis may increase. Based on feedback from members
of the project team, it was decided that a suite of effects
should be designed with a consistent interface to ease stu-
dents development.

Unlike traditional track-based DAW’s, each of the effects
contained within the software exists entirely on a sound
card 2 . To aid the learning experience when using these
effects, each effect processor is accompanied by an inter-
active 3D animation that updates based on the effects set-
tings (see Fig. 4). The animations provided utilise the card
metaphor and presents visible transformations that sym-
bolically, and in some cases, literally reflect the effect pro-
cess. Effects such as reverb and the collection of delay
based effects evidence this divide. The reverb effects present
the card within a virtual room where the size, brightness
and wall texture alter based on parameters such as room

2 Automation for parametric changes subsequently exists within a
sound card itself.
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Level 1 Level 2 Level 3
Audio All Level 1 features All Level 2 features
Band Pass Filter Band Reject Filter Additive synthesis
Delay Distort Asymetric Delay
Fade Envelope Automation
Gain Harmoniser Chorus
High Pass Filter High Amplitude Modulation Flanger
Loop Low Amplitude Modulation Granular Synthesis
Pan Low Frequency Modulation Ring Modulation
Reverse Timestretch
Simple Reverb White Noise
Transpose
Truncate

Table 1. Learning Levels by Template in CwS

size, wet/dry and damping. Delay-based effects present
repeating cards drifting into the distance based upon the
algorithm being used. Across all of these, the delay time is
represented as the distance between the cards and the feed-
back alters changes in brightness across this spread. The
asymmetric (multitap) delay presents each tap with a card
whose colour palette has been altered while the chorus and
flanger both update the separation of the cards based on the
modulation source in real-time.

5. SEQUENCING

The core audio processing architecture within the system
deals with discrete regions. These regions contain all of
the audio material for a given card in the software. This
approach is unlike traditional DAW designs that will pro-
cess audio as an array/vector of tracks, each with content
within, or as an audiograph with audio nodes that are con-
nected. As there is the potential for hundreds of discrete
sounds being active at any given point, careful optimisa-
tions are needed to ensure consistent performance on com-
puters with widely different specifications. While every
region could be stored in some form of an array with each
deciding when they should process their audio (based on
the current play-head position and whether it is bypassed),
this is dependent on a large number of conditional tests and
instructions per sample. While this might not be a problem
on contemporary hardware, it may introduce a substan-
tial performance bottleneck on older machines that may
be found in schools. To overcome this, the audio engine
creates a cache of all of the region based events within
the current session. Each event has a type, the region it
is associated with along with the sample time that it oc-
curs. In the real-time audio thread, a list of active regions
is utilised. Only regions within this list are processed when
the sequencer is active. In this thread, the event type infor-
mation is used to decide whether a region should be added,
removed or left unchanged in the active region list.

Given the region based nature of this processing, the use
of time-based effects (such as delays and reverbs) can be
problematic with the decaying effect for a region poten-
tially being cut off as the regions timing events dictate that
it has finished playing. To overcome this, CwS uses im-

pulse responses to calculate the decay time of a given card
featuring time based effects. This timing information is
then used to extend the processing time of the given region
to ensure that the decay is never cut off.

6. WORKSHOPS

The software package has been presented at numerous work-
shops across multiple countries in the European Union.
Feedback on software tends to be overwhelmingly posi-
tive due to the streamlined user experience through work-
ing with cards. Participants and workshop leaders have
noted that the software is excellent as an introductory tool
for engaging sonic exploration and creativity for four key
reasons.

Firstly, the card system enables people to clearly see and
arrange the sounds they are working on without needing
to use linguistic markers. Some workshop leaders stressed
the importance of allowing students to work with drawn
images of sounds. In this context, being able to have a card
with an image enables a wide range of participants from
the very young upwards to intuitively use the software.

Secondly, projects such as Sonic Postcards [7] alongside
the work of Holland [23] present a strong case for the fur-
ther development of student listening activities through field
recording expeditions with groups of participants. The card
system means that recordings from several groups of par-
ticipants can be easily combined into a set of sounds for
them to compose with.

Thirdly is the level/template system which many facilita-
tors have responded positively to. By not presenting a long
list of options to a user, participants can spend more time
making music and less time choosing effects or processes.
Teachers have welcomed the fact that in CwS, the chil-
dren are gradually introduced to more tools as they work
through the levels. CwS encourages users to explore each
effect in turn and develop understanding before they move
to the next level with a teacher in support.

Finally, commentators have noted the visual models within
the system. Upon illustrating the software and similar tools
in workshop contexts, participants are often drawn to simi-
lar starting points/processes. Delay (and echo), Pitch shift-
ing (and harmonising), Reverse and Reverb are often the
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“go-to” processes. Great care has been taken with the vi-
sual models for these processes. Participants have almost
universally praised their clarity, reducing the need for lengthy
explanations. Several practitioners have highlighted the
reverb model being particularly helpful in visually link-
ing the room size and the surface material of the room
with sonic changes when using the controls. Such an ap-
proach is a noticeable contrast to software packages such
as Audacity that is often used in schools by workshop lead-
ers. All of these approaches subsequently encourage fo-
cused listening and developmental exploration and creativ-
ity with the tools available in the software.

7. FUTURE DEVELOPMENTS

While ongoing production and small enhancements for CwS
are planned across Windows and Mac OS, two significant
developments are currently underway under the umbrella
of the Interfaces project. The first of these is the addition
of an audio visual layer to the software that would allow
users to sequence music to video. This opens up the sys-
tem to a broader audience interested in sound for moving
image and sound design. The second major development
is the implementation of the Compose with Sounds Live
(CwS Live) platform. This tool aims to expose students to
the world of mixed media compositon and performance via
the transformation of live audio input alongside the trigger-
ing of recorded materials. The system is also designed to
encourage collaborative performance. To do so, the soft-
ware allows control data to be sent to other instances of the
itself on a local area network via UDP.
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ABSTRACT 

Sound synthesis represents an indispensable tool for 

modern composers and performers, but achieving desired 

sonic results often requires a tedious manipulation of var-

ious numeric parameters. In order to facilitate this pro-

cess, a number of possible approaches have been pro-

posed, but without a systematic user research that could 

help researchers to articulate the problem and to make 

informed design decisions. The purpose of this study is to 

fill that gap and to investigate attitudes and habits of 

sound synthesizer users. The research was based on a 

questionnaire answered by 122 participants, which, be-

side the main questions about habits and attitudes, cov-

ered questions about their demographics, profession, edu-

cational background and experience in using sound syn-

thesizers. The results were quantitatively analyzed in or-

der to explore relations between all those dimensions. 

The main results suggest that the participants more often 

modify or create programs than they use existing presets 

or programs and that such habits do not depend on the 

participants’ education, profession, or experience. 

1. INTRODUCTION

During the last five decades, sound synthesis strongly 

contributed in shaping the path of music evolution. The 

technology that allowed creating an endless variety of 

novel sounds brought greater freedom in expressing mu-

sical ideas and encouraged musicians to be more innova-

tive and ambitious in their artistic intentions. In order to 

increase flexibility of sound creation, synthesizers typi-

cally provide musicians with a large number of controlla-

ble parameters. However, since synthesis parameters do 

not necessarily bear acoustical meaning and they can de-

pend on each other, managing numerical parameters is a 

difficult and time-consuming activity which can negative-

ly affect inspiration and productivity [1]. 

In order to mitigate this problem, researchers have pro-

posed solutions based on automatic selection of synthesis 

parameters which allow musicians to create desired 

sounds more intuitively. Instead of controlling numerical 

parameters manually, musicians can define their require-

ments in several other ways: (1) by providing a sound 

sample perceptually similar to the target sound, (2) by 

describing the target sound by using attributes (such as 

bright and harsh), and (3) by using more intuitive inter-

faces (such as visualizations of timbre spaces and scoring 

of automatically generated sounds). Mapping those inputs 

or actions into synthesis parameters is a non-trivial prob-

lem that is usually approached using various computer 

science techniques. 

Automatic selection of sound synthesis parameters is a 

relevant research challenge, especially nowadays when 

artificial intelligence is starting to emerge as a mean of 

advanced automation. Besides being academically inter-

esting, automatic parameter selection has the potential to 

change the way how musicians use sound synthesizers. 

However, although this practical research topic is primar-

ily motivated by possible pragmatic improvements, it has 

not been informed or guided by user experience (UX) 

studies. While the research has been ongoing for almost 

three decades, existing solutions are still not widely ac-

cepted in practical use and they are scattered across a 

variety of approaches and problem definitions. 

A comprehensive study on attitudes and habits of musi-

cians who use sound synthesizer might help in articulat-

ing the research question in terms of defining which spe-

cific problems automatic parameter selection should ad-

dress. It may also help in explaining and assessing the 

relevance of different problem definitions and possible 

technical approaches. Thorough understanding of users’ 

needs, habits, and attitudes will help researchers opt for 

design decisions which maximize usability and useful-

ness of their solutions. Insights about the practical con-

text are also relevant for theoretical studies, which do not 

aim for applicability, but for demonstrating novel ideas 

and concepts, because the practical context provides the 

realistic expectations and allows the explicit ratio be-

tween theoretical knowledge and applicability. Finally, a 

study on users` habits and attitudes can also inform the 

process of designing new interfaces for sound synthesiz-

ers or at least serve as a starting point for further user 

research. Although a few UX studies related to sound 

synthesizers exist [2, 3] they are not fully aimed at in-

forming the research on automatic parameters selection. 

In light of that, the purpose of this paper is to investi-

gate attitudes and habits of musicians who use software 

or hardware sound synthesizers. The approach is explora-

tive and it also takes into account users’ demographic 

data, profession, educational background and experience 

in using sound synthesizers, relating those dimensions to 

their habits and attitudes. To reach this objective, we 

conducted a questionnaire that included 122 participants 

and quantitatively analyzed results. 

Copyright: 2019 Gordan Kreković. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 Unported License, 
which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited.
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The paper starts with a brief overview of certain previ-

ous studies on automatic selection of synthesis parame-

ters, which form an appropriate context of this research. 

The rest of the paper explains methodology, results, dis-

cussion, and conclusions of the quantitative research on 

programming sound synthesizers. 

2. RELATED WORK 

A considerable number of studies related to automatic 

selection of synthesis parameters emerged in the interdis-

ciplinary field of computer music technology during the 

last three decades. Those studies explored three afore-

mentioned ways of defining a desired sound: (1) by 

providing a perceptually similar sound, (2) by describing 

it using attributes, and (3) by interacting with a more in-

tuitive user interface. 

Matching a provided perceptually similar sound can be 

observed as an optimization problem in the space of syn-

thesis parameters with the aim to minimize the perceptual 

difference between the provided sound and the synthe-

sized result. Evolutionary algorithms are an appropriate 

approach to solving such kind of optimization problems, 

so they were the primary choice of many researchers, 

including the pioneers Andrew Horner and his col-

leagues. After reporting successful results with an FM 

synthesizer [4], they conducted similar studies for other 

sound synthesis techniques using the fitness function 

based on the same similarity measure – the absolute dif-

ference of two discrete Fourier transforms [5-7]. Some 

researchers noticed shortcomings of the selected similari-

ty measure and proposed their solutions taking into ac-

count psychoacoustic phenomena [8-10]. Target match-

ing using evolutionary algorithms with automatic calcula-

tion of the fitness function have been extensively studied 

and applied to various synthesis techniques including 

additive synthesis [11], subtractive synthesis [12], noise 

shaping [13], granular synthesis [14], plucked string syn-

thesis [8], dynamic stochastic synthesis [15], and even 

synthesizers with multiple synthesis engines [16]. In ad-

dition to similarity measures calculated from the signal, 

several authors explored interactive evolutionary algo-

rithms and proposed solutions that rely on the fitness val-

ues provided by the user [17-19]. 

Besides evolutionary algorithms, some studies explored 

and applied other computer science techniques such as 

fuzzy logic [20] and deep neural networks [21]. 

Marginally related to the problem of target matching 

are feature synthesizers capable of producing sounds 

from a given set of audio features that are either extracted 

from a target sound or provided by the user [22-26]. 

In contrast to automatic target matching, only several 

authors focused on controlling sound synthesizers using 

timbral attributes. Miranda presented a system based on 

decisions trees used to induce relations between quasi-

timbral attributes and synthesis parameters [1], while 

Gounaropoulos and Johnson employed a neural network 

to learn relations between adjectives and audio features of 

a sound characterized by those adjectives [27]. Another 

approach is decomposing the inherently complex problem 

into two simpler steps: the first one is mapping timbral 

attributes into audio features using an expert system 

based on fuzzy logic, while the second step is a pseudo-

heuristic search for appropriate synthesis parameters to 

match the target audio features [28]. 

Some other notable solutions include: a knowledge-

based system for controlling FM synthesizers [29], a sys-

tem for sound synthesis and transformation based on ad-

jectives, SeaWave [30], keyword analysis and clustering 

[31], an expert system for mapping adjectives directly to 

sound synthesis parameters [32], and an interactive evo-

lutionary algorithm extended with adjective control [33]. 

In most of the aforementioned literature, the focus was 

on technical solutions without detailed explanations of 

the problem from the users` point of view. Moreover, it is 

rarely clear how the proposed solutions are intended to be 

used – as a tool that supports users when creating new 

sounds, as a tool that completely offloads users from that 

type of work, as a tool for inspiring musicians, or some-

thing else. For that reason, the aim of this paper is to 

strengthen the user dimension and draw more attention to 

user experience. 

3. METHODOLOGY 

Quantitative results presented in this paper are obtained 

by analyzing responses to a questionnaire about habits 

and attitudes of sound synthesizer users when creating, 

modifying, and using sounds. The questionnaire, which 

mostly consisted of questions with predefined ordinal and 

categorical answers, was divided into two sections. 

The first section included the questions about partici-

pants’ demographics (gender and age), primary field of 

work or education (since some synthesizer users might 

not be professional musicians or music students), level of 

music education, and experience with sound synthesizers 

(i.e. duration of use). 

The second section dealt with participants’ habits and 

attitudes regarding using, modifying, and creating pro-

grams in sound synthesizers. The questions from the sec-

ond section were about (1) their tendencies to use prede-

fined or existing programs, modifying existing programs, 

and creating new programs from scratch, (2) actions the 

participants are likely to take when the desired sound is 

not predefined, (3) impediments of creating and modify-

ing programs manually, (4) features of sound synthesizers 

that can help them most in creating and modifying pro-

grams, and (5) potential helpfulness of hypothetical func-

tions for automatic or semiautomatic selection of synthe-

sis parameters. Most of the questions consisted of a 

common part (e.g. “How often do you take the following 

actions when using sound synthesizers?”) and a specific 

statement (e.g. “Using predefined programs from the syn-

thesizer without modifications”, “Creating your own pro-

grams from scratch”) treated as an ordinal question with a 

5-point Likert scale (e.g. “never”, “rarely”, “sometimes”, 

“very often”, “always”). Besides the questions with pre-

defined ordinal or categorical answers, there was also an 

optional question about the challenges that users face 

when creating or modifying programs. The whole ques-

tionnaire is available here: 
https://goo.gl/forms/3Tc7XBolkLjzr19k2 

When the questionnaire was ready and validated 

through test runs, it was disseminated using Facebook 
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groups, Internet forums, and direct contacts. One Face-

book group was more oriented towards researchers, while 

all other groups and forums were general user groups not 

focused on any particular music creation tools, brand, or 

product of music industry. 

The quantitative analysis of the collected responds in-

cluded calculating statistics for each question, as well as 

analyzing pairs of answers. Appropriate statistical tests 

were selected based on answer types: Wilcoxon rank-sum 

test for pairs of categorical and ordinal answers, chi-

squared hypothesis tests for pairs of categorical answers, 

and Spearman’s rank correlation for correlations between 

ordinal answers. 

Such quantitative research methods are typically used in 

the field of human-computer interaction and the same 

methodology was applied to some topics related to music 

[34-36].  

4. RESULTS 

4.1 About Participants 

The demographic structure of the participants suggests a 

significant gender bias with 95.1% of male participants 

and only 2.5% of female participants. Since the responses 

were collected using a non-discriminatory, unbiased, and 

anonymous method, this statistic may indicate a gender 

bias in the field, similar to disproportions found in other 

technical domains [37]. The mean age of participants is 

41.3, while the standard deviation is 12.2. 

As their primary field of professional work or formal 

education, most of the participants stated computers and 

technology (28.2%), music (28.2%), arts and communica-

tions (12.1%), and management, business and finance 

(9.7%). Regarding their educational background in mu-

sic, one participant had no education in music, 28.2% are 

self-taught, 17.7% had some training or lessons, 11.3% 

have basic music education (elementary music school, 

preparatory school, etc.), 23.4% have an advanced formal 

education, while 17% completed a conservatory or acad-

emy (Bachelor or Masters of Music and higher) as shown 

in Figure 1. As expected, the Wilcoxon rank-sum test 

confirmed that participants who are professional musi-

cians or music students have significantly higher levels of 

music education than the others (p<.01). 

 

Figure 1. Participants’ music education levels. 

In general, the participants have a lot of experience with 

using sound synthesizers, since 71% of them have been 

using sound synthesizers for more than 10 years, 14.5% 

between three and ten years, 9.7% between one and three 

years, and 2.4% between three months and a year, while 

the remaining 2.4% are novice users with less than 3 

months of experience. According to the Spearman’s cor-

relation coefficient, there is a very weak positive correla-

tion between the participants’ experience and the level of 

music education (rs=.14, p<.01), and a moderate positive 

correlation between the experience and their age (rs=.48, 

p<.01). 

4.2 Usage Habits 

In order to ascertain the usage habits, the participants 

were asked to state how often they take the following 

actions when using sound synthesizers: 1) using prede-

fined programs (i.e. presets) without modifications (activ-

ity A1), 2) using existing programs created by others 

without modification (A2), 3) modifying predefined or 

existing programs (A3), and 4) creating programs from 

scratch (A4). For each activity, the possible answers were 

based on a Likert frequency scale. The distributions per 

action are shown in Figure 2. The results of the Wilcoxon 

rank-sum tests between all pairs of activities indicate that 

the participants more often modify existing programs 

(A3, Median=Very often) or create new programs from 

scratch (A4, Median=Very often) than they use presets 

(A1, Median=Sometimes) or existing programs without 

modification (A2, Median=Sometimes). All Wilcoxon 

rank-sum tests conducted between the pairs A1-A3, A1-

A4, A2-A3, and A2-A4 confirmed statistically significant 

differences between answers (p<.01 for all the aforemen-

tioned pairs), while no such differences were found be-

tween A1-A2 and A3-A4. These observations have been 

made considering all the participants as one group, but 

the same results have been obtained on specific sub-

groups: the participants with less than 3 years of experi-

ence with sound synthesizers, the participants who are 

not professional musicians or music students, and even 

the participants without formal music education (i.e. 

those without any education, self-taught participants, and 

those who had some trainings or lessons). 

 

Figure 2. Frequencies of taking different actions when 

using sound synthesizers. 

The indication that the aforementioned habits are nei-

ther related to the participants’ experience nor their music 

education level has been confirmed by calculating 

Spearman’s correlation coefficients between those di-

mensions. All the values of the obtained coefficients were 

between -0.1 and 0.1 with p>.5.  

The next question in the survey also referred to the us-

age habits. The participants were asked how likely they 

318

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



would take the following actions if they needed a sound 

that was not included in the presets: 1) use another syn-

thesizer that might have such a program (action B1), 2) 

search for an appropriate program for their synthesizer 

(e.g. online) (B2), 3) modify one of the presets (B3), and 

4) create their own program from scratch (B4). The re-

sults suggest that the participants are in general least like-

ly to search for an appropriate program (B2, Medi-

an=Unlikely), undecided when it comes to using another 

sound synthesizer (B1, Median=Undecided), and likely to 

modify one of the presets (B3, Median=Likely) or create 

new programs from scratch (B4, Median=Likely). The 

series of Wilcoxon rank-sum tests between the pairs of 

answers confirmed that there are statistically significant 

differences between B1-B2, B1-B3, B1-B4, B2-B3, and 

B3-B4 (p<.01, for all the pairs), while there is no signifi-

cant difference between B3-B4. These findings have been 

made by considering all participants, but the same results 

have been obtained for the subgroup of the participants 

without formal music education and those who are not 

professional musicians or music students. 

The Spearman’s correlation coefficients show that the 

likelihood of taking aforementioned actions is neither 

monotonically correlated with the participants’ experi-

ence nor their music education level, because all of the 

coefficient values were between -0.1 and 0.1 with p>.5.  

4.3 Impediments of Synthesizer Programming 

Understanding impediments is as equally important as 

understanding usage habits. The participants were asked 

to express their level of agreement on a five-point Likert 

scale with the following statements about impediments of 

creating and modifying programs manually: 1) it can be 

time consuming (impediment I1), 2) it can distract them 

from focusing on music (I2), 3) it can be difficult and not 

intuitive to learn how to use a particular synthesizer (I3), 

and 4) it rarely leads to the desired results (I4). The par-

ticipants in general agreed with the statements about the 

time consumption (I1, Median=Agree), distraction (I2, 

Median=Agree), and lack of intuitiveness (I3, Medi-

an=Agree), but disagreed with the last statement (I4, Me-

dian=Disagree). The same results have been obtained for 

all participants, but also for the specific subgroups: the 

participants with less than 3 years of experience, the par-

ticipants who are not professional musicians or music 

students, and those without formal music education. 

A weak negative monotonic correlation has been found 

between the statement I4 and the participants’ experience 

(Spearman’s correlation: rs=-0.30, p<.01) generally sug-

gesting that the longer the participants use the synthesiz-

ers, the less they agree that manual programming rarely 

leads to the desired results. An even more interesting 

finding is a weak positive monotonic correlation between 

the education level and the statement I3 (Spearman’s cor-

relation: rs=0.25, p<.01). The higher education partici-

pants have, the more they agree that it can be difficult and 

not intuitive to use a particular sound synthesizer. 

Regarding the relations between habits and impedi-

ments, the participants who use presets without modify-

ing them more often (A1), rated all the statements about 

impediments with generally higher points. The Spear-

man’s correlation coefficients suggest weak positive 

monotonic correlations between the activity A1 and the 

statements I1 (rs=.20, p<.05), I2 (rs=.26, p<.01), I3 

(rs=.29, p<.01), and I4 (rs=.27, p<.01). On the other hand, 

the more often participants create programs from scratch, 

the less they consider the lack of intuitiveness (I3) and 

the risk of getting undesired results (I4) as impediments. 

The Spearman’s correlation coefficients indicate weak 

negative correlations between the activity A4 and state-

ments I3 (rs=-0.22, p<.01) and I4 (rs=-0.28, p<.01). Fig-

ure 3 illustrates the mentioned relations between the pairs 

I3-A3 and I3-A4. 

 

Figure 3. Left: relation between the statement about 

difficulty of synthesizer programming and the frequency 

of modifying existing programs. Right: relation between 

the statement about difficulty and the frequency of creat-

ing programs from scratch. 

The participants could optionally answer an open-ended 

question to expand on other challenges they face when 

creating and modifying programs manually. Out of 122 

participants, 34 of them decided to take the opportunity 

and share their opinion. Most of the answers can be orga-

nized in four main groups: 1) challenges related to user 

interfaces (11 answers), 2) challenges related to learning 

and understanding the synthesis process (7 answers), 3) 

challenges related to limited or missing features of specif-

ic sound synthesizers (7 answers), and 4) challenges root-

ed in the creative process (5 answers). 

 Inefficient user interfaces were most frequently men-

tioned in the participants’ comments. Some of them fo-

cused on problems with deep menus (e.g. “Straight-

foward vs menu-divey interfaces” and “Menu diving. 

Wish more manufacturers would surface more of their 

controls.”), while the others criticized inconsistency (e.g. 

“Some knobs are named different for the same effect” and 

“Thinking more of VI synths - there is so much incon-

sistency in the UI design that much time is lost under-

standing what the devs actually want you to do.  In con-

trast, physical synths often (though certainly not always) 

offered a clearer view of the signal path, simply by their 

physical layout.”). 

 The participants also identified a lot of challenges re-

lated to learning, especially due to diversity among sound 

synthesizers (e.g. “All synths are so different in charac-

ter, knobs, etc, it takes time to get used to them” and “Dif-

ferent sorts of synthesis require different background 
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knowledge, most of which have steep learning curves that 

are at least partially exclusive. In other words, there is an 

enormous investment of time to deeply learn how the dif-

ferent forms of synthesis work. This learning is a prereq-

uisite to effective use of synthesizers.”).  

A significant number of comments touched upon limita-

tions and lacking features in sound synthesizers. Some 

examples are: “Running into 'dead ends', i.e. discovering 

that a certain function or effect is needed to achieve the 

desired result, e.g. delay or an extra LFO, or settings not 

reaching far enough.”, “Usually only limitations of that 

synth, or polyphonic Vs monophonic, number of oscilla-

tors”, and “The limitation of the synthsiser, in that they 

all have their own "sound" (as generally defined by it's 

Oscilators and Filters) and so if you're aiming for a re-

sult on the edge of that "sound" then you can get close to 

or (worse) hit the limits of that synth”. 

Finally, the comments about the creative process were 

not directly related to sound synthesizers, but opened 

interesting concerns highly relevant in the context of syn-

thesizer programming, e.g.: “Building the acoustic land-

scape across multiple patches”, “Having a listen to inspi-

rations and being 100% unmotivated to even try”, and “If 

working with other musicians, who aren't present, your 

sound cannot be considered complete until you've played 

it in context with the other parts”. 

4.4 Facilitating Synthesizer Programming 

The last part of the questionnaire focused on aspects that 

help users in creating and modifying programs manually. 

The first question in that section had a categorical list of 

all improvements from which the participants could 

choose exactly one that could help them most, or write 

their own answer in the “Other” category. The partici-

pants mainly opted for intuitive user interfaces (58.1%), 

informative guides on how to use the synthesizer such as 

manuals, tutorials, and online material (25.8%), and ex-

cellent presets that can inspire users or serve as a starting 

point for modification (11.3%). 

The participants who selected one of those three most 

frequent answers have been divided in three groups based 

on their answers.  Usage habits between those groups 

were compared using a set of Wilcoxon rank-sum tests. 

The results indicate that the participants who think that 

the user interface can help them most create new pro-

grams more often (p<.01), but modify existing programs 

less often than the participants who think that excellent 

presets can help them most (p<.05). Other statistically 

significant differences have not been found. 

In the last question, the participants were asked to rate 

potential helpfulness of the following functions in creat-

ing synthesizer programs: 1) the user chooses a category 

and the system generates new, random programs that fit 

the category (F1), 2) The user describes a desired sound 

using attributes (e.g. bright and percussive) and the sys-

tem generates such a program (F2), 3) the user provides 

an audio sample and the system generates a program that 

sounds similarly (F3), and 4) the user manipulates the 

graphical interpretation of the sound using an intuitive 

GUI and the system modifies the program appropriately 

(F4). The results of the Wilcoxon rank-sum tests between 

all pairs of activities indicate that the participants consid-

er functions F3 (Median=Helpful) and F4 (Medi-

an=Helpful) more helpful than functions F1 (Medi-

an=Slightly helpful) and F2 (Median=Slightly helpful). 

All the Wilcoxon rank-sum tests conducted between the 

following pairs: F1-F3, F1-F4, F2-F3, F2-F4 confirmed 

statistically significant differences between the answers 

(p<.05 for all the aforementioned pairs), while no such 

differences were found between F1-F2 and F3-F4. These 

findings have been made considering all participants, but 

the same results have been obtained for the participants 

without formal music education and those who are not 

professional musicians or music students. 

The participants with a higher music education might 

consider using attributes (F2) more helpful, as indicated 

by a weak positive Spearman’s correlation coefficient 

(rs=0.23, p<.05). No monotonic correlation has been 

found between the participants’ usage experience and the 

helpfulness of the proposed functions. Still, usage habits 

seem to be related to the perception of helpfulness: the 

more often participants modify existing programs, the 

more helpful they consider all the functions (Spearman’s 

correlation for F1: rs=0.24, p<.01, for F2: rs=0.22, p<.05, 

for F3: rs=0.29, p<.01, and for F4: rs=0.15, p<.01). On 

the other hand, the more often the participants create new 

programs from scratch, the less helpful they consider 

function F2 (Spearman’s correlation: rs=-0.22, p<.05).  

5. DISCUSSION 

Before discussing the results, this section starts with sev-

eral topics regarding the methodology and scope that are 

important for interpreting the results. 

Since the study primarily relies on the quantitative sur-

vey methodology, some known potential biases can affect 

the results. The questionnaire was carefully designed to 

minimize those biases: the questions were formulated 

showing a neutral stance toward different answers, while 

the terminology was selected and refined during test runs 

to be as accurate as possible. Also, the introductory text 

emphasized that the goal of this independent research is 

to better understand attitudes and habits regarding pro-

gramming sound synthesizers. However, one particular 

type of biases, which could have appeared in this re-

search, was not fully controllable by the survey design 

and the selection of participants. It is the social desirabil-

ity bias. The questionnaire was disseminated in multiple 

groups on social networks and online forums that gather 

synthesizer enthusiasts, hobbyists and professional practi-

tioners, and even researchers in the field of computer 

music technology. Deep exploration of sound synthesiz-

ers, manual synthesizer programming and tweaking syn-

thesis parameters are probably considered as highly re-

spected activities within some of those groups. Even 

though there is no clear evidence that this fact affected 

the questionnaire results, the social desirability bias and 

post-rationalization represent possible risks for quantita-

tive data regarding usage habits. To explore these risks 

further and mitigate them in future studies, different re-

search methodologies can be used such as diary/camera 

studies or unmoderated user experience studies.  
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Another important observation is that habits may be re-

lated with purposes of using sound synthesizers (e.g. stu-

dio recording vs. live performance, playing different in-

struments vs. experimenting with sounds, different music 

genres, etc.). Additionally, as mentioned by one of the 

participants in the Facebook comments, usage habits may 

be different for different types of sound synthesizers, 

especially because of differences between hardware and 

software synthesizers that might have various concepts of 

user interfaces and incomparable levels of affordability. 

Although the questionnaire was designed to cover multi-

ple dimensions, the questions about usage purposes and 

types of sound synthesizers were not included. The rea-

son is that those topics would require multiple additional 

questions, as participants may use various types of syn-

thesizers for various purposes. Such extensions of the 

questionnaire would significantly increase the complexity 

of analysis and broaden the scope of the study, possibly 

removing the focus from the current research questions. 

However, that does not mean that purposes and types are 

not important dimensions. Understanding users’ habits 

and attitudes in relation to purposes and types of sound 

synthesizers may be very valuable insights for making 

comprehensive conclusions. Now, when this study has 

shown that the music education and the usage experience 

do not have a significant impact on the usage habits, fu-

ture research can be more focused on purposes and syn-

thesizer types. 

One of the most notable finding in this research is the 

fact that the questionnaire participants more often modify 

or create programs manually than they use presets or pro-

grams created by others. This is especially interesting 

because apparently such habits do not depend on music 

education or experience in using sound synthesizer. A 

possible concern is that this conclusion may be specific to 

the group of participants involved in this study. If the 

group contained more keyboard players who prefer using 

imitative sounds, the percentage of participants who often 

rely on existing programs would probably be higher. 

However, since there were 122 participants acquired from 

multiple online forums and Facebook groups, the group 

size and the acquisition procedure should have mitigated 

a potentially strong sampling bias. Considering the num-

ber of participants and their experience in using sound 

synthesizers, it is valuable to quantitatively analyze habits 

and attitudes habits of such users, and the results are at 

least indicative. The synthesizer users similar to the sur-

vey participants seem to enjoy the process of creating 

novel and authentic sounds. The less experienced partici-

pants more often acknowledge the fear of getting unde-

sired results by manual synthesizer programming, but that 

does not seem to demotivate them, as their habits are 

same as the habits of more experienced users. 

Another consistent conclusion is related to user inter-

faces. A significant number of the participants stated that 

better user interfaces could help them most in synthesizer 

programming. They also mentioned various specific 

problems with user interfaces within their open-ended 

responses. Knowing that the users generally modify or 

create programs quite often, user interfaces are inevitably 

the crucial medium between the user and the synthesis 

engine, strongly influencing the perception, expectations, 

and general experience with synthesizer programming. 

This seems to be recognized by manufacturers of hard-

ware and developers of software synthesizers, as layouts 

with lots of direct controllers have restored their populari-

ty during the last decade. Another recent trend are hard-

ware devices – so called synthesizer programmers – that 

can be attached to synthesizers in order to extend their 

user interfaces. Together with the results of this study, the 

recent trends provide evidence about the importance of 

user interfaces. For that reason, user research practices 

should have a very high priority among those research 

activities aimed at improving user experience with syn-

thesizer programming. All pragmatically-oriented and 

technical solutions should be grounded on the UX stud-

ies, but this is not the case at the moment. 

The open-ended response revealed one interesting point 

that was not covered by predefined questions in the sur-

vey. Some of the participants mentioned limitations or 

missing features in sound synthesizers as a problem that 

reflects on synthesizer programming. Therefore, it seems 

that improving user interfaces may not be sufficient to 

improve the general user experience. Evidently, some 

users feel that they sometimes cannot achieve desired 

sounds, not because of inefficient user interfaces or their 

lack of knowledge, but because of characteristics of un-

derlying synthesis engines. User interfaces together with 

synthesis engines have an inseparable effect on sound 

creation, so both parts should be designed by following 

informed choices based on UX research. 

This study has also shown what the participants think 

about functionalities for automatic selection of synthesis 

parameters. The corresponding question was deliberately 

formed to cover the main approaches explored the previ-

ous work in this field. Since the participants expressed 

more hope in potential helpfulness of target sound match-

ing and GUI-based methods, the results should be inter-

preted carefully, as the participants did not have an op-

portunity to try those functions in practice or learn more 

about them, so they could have had very different ideas 

about the mentioned functions. For that reason, the future 

research direction should not be based on this single 

question, but the results are again indicative, especially 

the fact that the participants, who modify programs more 

often, consider all of those functions more potentially 

helpful. It is generally encouraging to see a positive or at 

least neutral attitude toward such novel and non-standard 

approaches. 

With other results taken into consideration, it seems that 

supportive technology should only partially facilitate syn-

thesizer programming, and not fully take control. The 

participants like to modify and create programs, and 

technology should help and inspire them, not hinder their 

creative engagement. In practical sense, that would mean 

introducing more interactive possibilities [15-17, 31] or 

generating multiple programs that users can selectively 

apply for further modifications. The latter concept can be 

inherently supported by all of those algorithms that rank 

potential programs and then present only the best one as a 

result. Examples are solutions based on genetic algo-

rithms that can be easily extended to present multiple 

programs to users.  
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6. CONCLUSION 

The conclusions outlined in this section are based on the 

quantitative results and the subsequent discussion, except 

the first one that emerges from the literature review. The 

presented conclusions can serve as inputs for synthesizer 

design, future studies on automatic selection of synthesis 

parameters, and future user research in the field of sound 

synthesis. 

The first conclusion, based on the literature review, 

concerns the observed lack of user research in the exist-

ing solutions for automatic selection of synthesis parame-

ters. While technical solutions employ advanced comput-

er science techniques to resolve the problem of synthesiz-

er programming, there is no evidence that the problem is 

appropriately formulated. Some of the previous studies 

conducted user testing, but only to demonstrate that solu-

tions work well. The missing part is an investigation 

whether the solution would be more usable if it was based 

on a different approach. User experience studies should 

serve as one of information sources when deciding upon 

the solution’s architecture and its argumentation in scien-

tific publications. 

The second conclusion is one of the most important 

quantitative results of this study. It is the fact that the 

participants more often modify or create programs manu-

ally than the use existing presets and programs. This re-

sult can influence the future direction of developing solu-

tions for automatic parameter selection that target users 

similar to the participants of this research. Instead of aim-

ing at synthesizing final sounds, those solutions could be 

designed to efficiently support the synthesizer program-

ming process that enthusiastic users apparently prefer 

over using existing programs. 

The existing and missing correlations in the result sug-

gest that the habits regarding synthesizer programming 

are not related to user’s music education or experience, 

but on the other hand, they are related to users’ percep-

tion of impediments and helpfulness of possible solu-

tions. For example, the participants who modify existing 

programs more often, agreed more with all the impedi-

ments and also considered all proposed functions more 

potentially helpful, but that was not the case with the us-

ers who create programs more often. Of course, the corre-

lations do not confirm causalities and it is not possible to 

conclude whether habits form a perception of impedi-

ments, impediments form habits, or those dimensions are 

not causally related at all. However, the correlations are a 

very important reminder that not all users are the same 

and that particular solutions should aim to satisfy specific 

needs and expectations. When designing a novel solution 

for automating selection of synthesis parameters, a start-

ing point should be based on the intended purpose and 

target users. 

Finally, as a general remark regarding possible solu-

tions for more efficient synthesizer programming, the 

results of this study show that the participants believe that 

the most helpful improvements would be those in user 

interfaces. While this result may be affected by the fact 

that users perceive the sound synthesis technology and its 

possibilities through user interfaces and thereby assign all 

problems and potential solutions to the interface level, 

this is still an interesting insight, especially for practical-

ly-oriented solutions. Improvements of user interfaces or 

interactive approaches to automatic synthesis parameters 

selection are surely not the only mean of facilitating syn-

thesizer programming, but they may be a safe starting 

point. Although the results of this research may provide 

some general guidelines for user interface design and 

overall solution conceptualization, they are not sufficient 

to inform all design decisions, as their purpose was to 

provide insights in habits and attitudes regarding synthe-

sis programming and not to answer specific questions. 

Therefore, the design process should be informed by a 

carefully conducted user research based on the appropri-

ate methodology. 
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ABSTRACT

Experimental research into the fundamental acoustic as-
pects of musical instruments and other sound generating
devices is an important part of the history of musical acous-
tics and of physics in general. This paper presented ex-
perimental proof of dispersive wave propagation on metal
guitar strings. The high resolution experimental data of
string displacement are gathered using video-kymographic
high-speed imaging of the vibrating string. The experi-
mental data are indirectly compared against a dispersive
Euler-Bernoulli type model described by a PDE. In order to
detect the minor wave features associated with the disper-
sion and distinguish them from other effects present, such
as frequency-dependent dissipation, a second model lack-
ing the dispersive (stiffness) term is used. Unsurprisingly,
the dispersive effects are shown to be minor but definitively
present. The results and methods presented here in general
should find application in string instrument acoustics.

1. INTRODUCTION

Modern acoustic guitar strings are made of different metal
alloys. Metal string produces a different sound to nylon
or gut strings. Guitar strings may be “plain”, consisting
only of a single material, like steel, nylon, or gut. Also
they may be wound, having a core of one material and an
overwinding of another.

Usually, plain guitar strings are not associated with sig-
nificant dispersive effects like e.g. the bulkier steel piano
strings are [1]. Thin guitar strings have a relatively low
bending stiffness. The aim of this paper is to experimen-
tally investigate and prove the possibility of transverse dis-
persive wave propagation on the second and third strings
used in acoustic guitars.

Several models of transverse wave propagation on a stiff
string, of varying degrees of complexity, have appeared in
the literature [2–6]. Models with great emphasis on real-
istic frequency-dependence loss profiles are [7, 8]. These

Copyright: c© 2019 Dmitri Kartofelev et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

models, intended for the synthesis of musical tones, are
always framed in terms of a partial differential equation
(PDE), or a system of PDEs. The simplified starting point
for such models is the one-dimensional wave equation [9].
More realistic features, such as dispersion, various nonlin-
earities and frequency-dependent losses, are incorporated
through several extra terms. Discussion in this paper is in-
formed by the model equation proposed by Bensa et al. in
[6], i.e., Euler-Bernoulli.

Some direct measurements of string vibration have been
previously conducted. The methods of string displacement
measurement can be roughly divided into three categories:
the electromagnetic methods, electric field sensing, and
optical methods. The electromagnetic methods exploit Fara-
day’s law, and the principle of the string displacement de-
tection is the following: An electromagnetic coil is placed
near the string, and the motion of the string induces a volt-
age in the circuit that is proportional to the string’s velocity
from which the displacement of the string is obtained. This
method was used and described in [10].

The electric field sensing makes use of the phenomenon
of capacitance change between two electrodes, when the
distance between them is varied. In the simplest approach,
a conducting string is grounded, and direct current (DC)
voltage is applied to an electrode plate. The string’s move-
ment modulates the voltage between the string and the plate,
and the information about the string’s displacement is ob-
tained cf. [11].

The optical methods exploit various light or laser emit-
ting and detecting sensors to capture vibration. For exam-
ple, high speed cameras with suitable video analysis have
been used to measure string vibration successfully [12].
Also, different devices that convert laser light into a uni-
form parallel beam and detect their shadows can ensure the
result [13]. Devices that are based on various photovoltaic
detectors have also been successful [14].

Our experimental approach can be classified under the
aforementioned optical methods. We use a non-invasive
video-kymographic method based on the exploitation of a
digital high-speed line-scan camera (LSC) imaging. The
method has been used successfully in musical acoustics re-
search [15–17]. A monochord equipped with a guitar str-
ing is measured 1. Experimentally obtained string vibration

1 String set: Earthwood Light 2148. String gauge: 0.015 (15, 1115).
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Figure 1. Operating principle of the LSC compared to an
ordinary high-speed camera. Geometry of the area that is
being imaged is shown on the white screen with the dashed
red lines. Placement of the LSC with respect to the string
vibrating in the z-direction while recording the vibration.

Figure 2. LSC recording string displacement. Cross-
section of the recorded string is shown with the grey bullet.

data are then compared directly or indirectly against theo-
retical models, expanded upon below, with the aim to de-
duce some beneficial observations and reach conclusions.

Organisation of the paper is the following: Sec. 2 explains
the experimental approach and set-up; Sec. 3 presents the
dispersion analysis of the dispersive Euler-Bernoulli type
model [6]. Numerically integrated solution of this model
is presented and compared against its dispersion analy-
sis; Sec. 4 presents a simpler time-stepping model of lossy
non-dispersive string vibration, that is used here to iden-
tify dispersive features present in experimental data, and
to distinguish them from other effects, such as frequency-
dependent dissipation; Sec. 5 presents the experimental re-
sults and compares them against our assumptions and pre-
sented theory (the simplified model). Analysis and dis-
cussion of the results is directly informed by the Euler-
Bernoulli type model; Sec. 6 concludes the paper.

2. EXPERIMENTAL MEASUREMENTS

The string displacement is measured using a LSC. The
camera produces two-dimensional digital images (not vi-
deos) called the kymographs. The geometry of a digital
imaging sensor of the LSC differs from a commonly used
video camera. Usually, the video camera sensor pixels are
placed in rows and columns forming a grid. The LSC sen-
sor consists only of a single pixel array, referred here to, as
the line, see Fig. 1. While filming the camera continuously
stacks these lines to form an image. In addition, the global
shutter technology allows for all pixels in a line to work
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Figure 3. (a) Kymograph of vibrating string. Image
recorded at 44 100 lines/s. String displacement u(xm, t)
tracking with line convolution method (2) is shown with
the overlaid dashed line. (b) Calibrated string displace-
ment time-series corresponding to the kymograph above.

Figure 4. Dual polarisation measurement set-up [15].

as one (collect light simultaneously), preventing any im-
age distortions to influence the recordings. Figures 1 and 2
show the perpendicular placement of the LSC with respect
to the string while recording.

The string displacement time-series extraction from a ky-
mograph is based on the discrete one-dimensional convo-
lution integral of the individual kymograph lines

c[i] = (p ∗ k)[i] =
∞∑

n=−∞
p[n] k[i− n], (1)

where i ∈ [1, 1024] is the pixel number in any given line,
p[i] is the image depth or colour value in bits, and k[i] is the
convolution kernel — the image feature we are interested
in. The kernel is selected to be roughly similar in shape
to the string (its image), this guarantees that the convolved
line c[i] will have a clear maximum (or minimum) that will
coincide with the string position [16]. Thus, for any given
line the pixel corresponding to string position

i = arg max c[i] (or i = arg min c[i]). (2)

This procedure is repeated for all kymograph lines. Figure
3a shows an example kymograph and the result of the im-
age analysis. Figure 3b shows the calibrated time-series
where the line number is multiplied by dt = 1/44 100
s since the camera is recording at audio sampling rate of
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Figure 5. Schematic of the problem studied. Triangular
shaped initial condition exited at x = xe = L/4 is shown
with the solid black line, and the corresponding traveling
waves (overlapping) are shown with the green line. The
dashed line shows the string displacement at one half of the
period. Vertical dash-dotted line shows the measurement
coordinate x = xm used in the experiment.

44 100 lines/s, and the pixel number i is multiplied by dx
which value is determined by filming an object (high-con-
trast calibration sheet) with known dimensions.

2.1 Proof of planar vibration

In case a dual-polarisation measurement is required the
LSC is used in combination with a mirror. The mirror is
placed behind the string under a 45◦ angle with respect to
the optical axis of the camera, as shown in Fig. 4. One half
of the kymograph will contain displacement data for the
vertical z-axis, and the other half for the horizontal y-axis.

The following method of controlled and repeatable str-
ing excitation is used in this study. The method is based
on the fact that a thin cotton thread, when under great ten-
sile load, snaps quite rapidly when heated abruptly (burned
with a flame). The thread is looped around the string at the
desired excitation point x = xe along the string’s speaking
length, the string is then displaced to a suitable initial am-
plitude A in the desired direction with respect to the LSC.
This procedure creates a triangular shaped initial condition
shown in Fig. 5. Figure 6 shows that the guitar string exited
in such a manner is capable of sustained planar vibration.
At least for some time after the excitation.

3. DISPERSIVE STRING MODEL

The planar transverse vibration of a lossy stiff string can
be described by

∂2u

∂t2
= c2

∂2u

∂x2
− γ2 ∂

4u

∂x4
− 2α

∂u

∂t
+ 2β

∂3u

∂x2∂t
, (3)

where u(x, t) is the string displacement in z-direction and
the non-negative α, β, γ and c are the system parameter.
The first term on the right-hand side of the equation, in
the absence of the others, gives rise to ideal wave vibra-
tion, with traveling wave speeds c [9]. The second term
introduces dispersion and is responsible for frequency-de-
pendent wave velocity where constant γ is proportional to
the bending stiffness. Last two terms allow for losses, and
if β 6= 0, decay rates are frequency-dependant.
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Figure 6. Persistent planar vibration. String displacement
u is recorded at x = xm using the measurement set-up
shown in Fig. 4. Subscripts y and z indicate the direction
of vibration as shown in Figs. 1 and 4.

3.1 Dispersion analysis and characteristic equation

The solution to Eq. (3) is assumed in the form

u ' u0e
ςt+iκx, (4)

where the complex frequency ς = ς(κ) is a function of
wavenumber κ and κ ∈ R+, i is the imaginary unit, and u0

is an initial amplitude. Solving the characteristic equation

ς2 + 2q(κ)ς + r(κ) = 0, (5)

where

q(κ) = βκ2 + α, r(κ) = c2κ2 + γ2κ4, (6)

for ς gives
ς± = −q ±

√
q2 − r. (7)

These roots determine the behaviour of the general solu-
tion (4) of Eq. (3). Condition that the initial value problem
corresponding to Eq. (3) be well posed is that roots (7) have
real parts which are bounded from above as a function of κ;
this is to say that solution growth can be no faster than ex-
ponential, see assumption (4). Another physically relevant
condition is that roots (7) have non-positive real parts for
all κ, so that all exponential solutions are non-increasing
(infinite string displacement). This condition is satisfied
because q(κ) > 0, r(κ) > 0 for positive κ. We rewrite the
complex frequency using new variables

ς = Re(ς) + Im(ς) = σ + iω. (8)

Substituting (8) into general solution (4) gives

u ' u0e
(σ+iω)t+iκx = u0e

σtei(ωt+κx), (9)
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Figure 7. Losses σ(κ) corresponding to Eq. (3) shown for
parameter values (12).

from here it is easy to see that imaginary part of roots (7)
corresponds to oscillation frequencies, and real part

σ(κ) = −q = −α− βκ2, (10)

to losses. Clearly, for real wavenumbers κ such that q2 ≤ r
imaginary part

ω(κ) =
√
q2 − r =

=
√
−(α+ βκ2)2 + c2κ2 + γ2κ4 6= 0, (11)

and the resulting string vibration corresponds to normal
damped wave propagation. For realistic values of parame-
ters in (3), the condition q2 ≤ r (traveling wave solution)
holds for the vast majority of the audible frequency range.
Also, notice that for α, β ≥ 0, loss σ = −q depends on κ,
the damping rates are wavenumber and thus frequency de-
pendent, moreover, the losses increase as a function of κ.
On the other hand, if q2 > r, then both roots (7) are purely
real and non-positive, yielding damped non-traveling so-
lutions. A more detailed analysis of this model has been
performed by Bensa et al. in [6].

In order to demonstrate the obtained analytic results real-
istic parameter values, taken from [6], for Eq. (3) are cho-
sen as follows:

c ' 200
m
s
, γ ' 1

m2

s
, α ' 1

1

s
, β ' 10−4 m2

s
. (12)

These values correspond to a highly dispersive piano string
rather than the guitar string considered below. In further
discussion we are ignoring small wavenumber (extremely
long wavelength) modes (in this case κ . 0.760) 2 . The
behaviour for κ . 0.760 is most likely non-physical due to
the heuristics of the manner in which Eq. (3) was derived.
Additionally, wave motion related to these wave compo-
nents is outside the audible range of wavenumbers.

Figure 7 shows the decay curve for the selected param-
eters (12). As expected the exponential decay rates be-
come greater as a function of κ. Phase velocity vp(κ) =
ω/κ and group velocity vg(κ) = dω/dκ curves are shown
in Fig. 8. For all κ > 0, vg > vp which means that
with the passage of time a pulse propagating on the str-
ing will distort in a manner such that a high-frequency
oscillating tail will tend to appear in front of the pulse.

2 Criterion for determining the value: solve dvg/dκ = 0 for κ > 0.
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Figure 8. Group velocity, shown with the solid line, and
phase velocity, shown with the dashed line, corresponding
to Eq. (3) and calculated for parameter values (12).
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Figure 9. Group delay corresponding to Eq. (3) shown for
parameter values (12).

This type of dispersion is referred to as the anomalous dis-
persion. The group delay, unit length multiplied by the
inverse of the group velocity, shown in Fig. 9 also con-
firms that high-frequency wave components travel faster
than the low-frequency ones. This behaviour can be con-
firmed by numerically integrating Eq. (3). The initial value
problem is solved on an infinite half-plane x ∈ (−∞,∞),
t ∈ [0,∞) to eliminate any effects of wave interactions for
t � 1 caused by the fast traveling high-frequency wave
components reflecting from the edges of a finite integra-
tion domain. We select a bell-shaped initial condition

u(x, 0) = A sech2 ηx =
4Ae2ηx

(1 + e2ηx)2
, (13)

whereA = 2 mm is the string amplitude, η = 2 is the pulse
width parameter. This parameter selection results in an ap-
proximately 2 m wide pulse — not too dissimilar from the
realistic wavelengths found in string instruments. Figure
10 shows the integration result for parameter values (12)
and for three space positions. The pulse evolution is ex-
actly as predicted by the dispersion analysis. A dispersive
high-frequency oscillating tail emerges in front of the main
pulse by arriving earlier and becomes more prominent fur-
ther the pulse propagates.

A careful look at the expressions of the phase and group
velocities reveals that limκ→∞ vp =∞ and limκ→∞ vg =
∞. These results are clearly not physical. In a realistic
physically-sound models these curves should plateau out
to some finite dynamic velocity value. One could fix this
problem by adding appropriate small magnitude higher or-
der terms to model (3). Once again, as in the case κ � 1,
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Figure 10. (a) Numerical integration of the initial value
problem corresponding to Eq. (3), initial condition (13)
and parameter values (12). Results are shown for space
positions: x1 = ±7.50 m, x2 = ±48.75 m, x3 = ±90.00
m. (b) Magnified pulse shape, case x = x2. (c) Magnified
pulse shape, case x = x3.

we conclude that this behaviour is non-physical and luckily
for us outside the audible range of frequencies.

4. NON-DISPERSIVE STRING MODEL

In order to identify the high-frequency and low-amplitude
dispersive wave propagation in the experimental measure-
ments presented below, we also consider a non-dispersive
model with frequency-independent loss. The heuristics of
our approach are directly determined by the d’Alembert
formula (traveling wave solution). Modeling approach pre-
sented here is similar to [18, 19].

We consider vibration of a lossy ideal string described by
wave equation

∂2u

∂t2
= c2

∂2u

∂x2
− 2α

∂u

∂t
, (14)

where u(x, t) is the displacement, c =
√
T/µ is the speed

of the waves traveling on the string, T is the tension and µ
is the linear mass density (mass per unit length) of the str-
ing. In the context of a real string Eq. (14) can be used as
an approximation of thin homogeneous elastic string vibra-
tion under a small amplitude restriction. In this case wave
speed c =

√
T/(ρA◦), where ρ is the volumetric density,

A◦ = πr2 is the cross-section area of a cylindrical string,
and T is the tension. Second term on the right-hand side
of (14) introduces frequency-independent loss, much the
same way as in Eq. (3). It is easy to show that for α > 0 all
frequency components will decay ∼ e−αt. As in the case
(3), this term can be seen as a perturbation term acting on
the wave equation in the following form:

∂2u

∂t2
= c2

∂2u

∂x2
, (15)

thus its linear effects on the final solution can be added
separately. For now we focus on Eq. (15). It is well known
that Eq. (15) has an analytical solution. For infinite string
(ignoring boundary conditions for now), for initial condi-
tions u(x, 0) = u0(x), and ∂u(x, 0)/∂t = 0 the solution
takes the following form:

u(x, t) =
1

2
(u0(x− ct) + u0(x+ ct)) . (16)

This solution represents a superposition of two traveling
waves: u0(x − ct)/2 moving to the right (positive direc-
tion of the x-axis); and u0(x + ct)/2 moving to the left.
Function u0/2 describes the shape of these waves and stays
constant with respect to x-axis, as they are translated in op-
posite directions at speed c.

In general, a wave on any arbitrary segment of the string
can be understood as a sum of two traveling waves that do
not need to be equal. It can be written as

u(x, t) = r(x− ct) + l(x+ ct), (17)

where r(x − ct) is the traveling wave moving to the right
and l(x+ ct) is the traveling wave moving to the left.

A well-known time-stepping method for implementing
d’Alembert formula is the following. We discretise xt-
plane into n × m discrete samples. We discretise the x-
axis with grid spacing ∆x = L/n where L is the speak-
ing length of the string, and the t-axis with grid spacing
∆t = tmax/m, where tmax is the integration time. We
let xi = i∆x, where 0 ≤ i ≤ n and tj = j∆t, where
0 ≤ j ≤ m. From here it follows that uji = u(xi, t

j),
rji = r(xi, t

j), and lji = l(xi, t
j). And, by applying

rj+1
i = rji−1, (18)

lj+1
i = lji+1, (19)

for all grid points i and j in a sorted order one gets transla-
tion of numerical values rji and lji propagating in opposite
directions with respect to the xi-axis. This result agrees
with d’Alembert formula (16) or (17) and can be under-
stood as a digital waveguide based on traveling wave de-
composition and use of two delay lines. The equivalence
between the model used here and digital waveguide mod-
eling is shown in [20].

So far we have not addressed the boundary conditions of
Eq. (15). We assume that the string is fixed at both ends.
The following boundary conditions apply:

u(0, t) = u(L, t) = 0, t ∈ [0, tmax], (20)

where tmax is the desired integration time. By applying
boundary conditions (20) to the general solution (17) The
reflected traveling wave located at x = 0 can be found in
the following form:

u(0, t) = r(−ct) + l(ct) = 0⇒ r(−ct) = −l(ct), (21)

and similarly for x = L:

u(L, t) = r(L− ct) + l(L+ ct) = 0⇒
⇒ l(L+ ct) = −r(L− ct). (22)
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Figure 11. (a) Output of the model based on Eq. (14). (b)
Experimental measurement. (c) Difference between model
(14) and the experiment.

These results are discretised according to the discretisation
scheme discussed above. The traveling wave (21) reflected
from the left boundary at x = 0 is

rj0 = −lj0, j ∈ [0,m], (23)

and the traveling wave (22) reflected from the right bound-
ary at x = L is

ljn = −rjn, j ∈ [0,m]. (24)

In order to obtain the resulting string displacement uji , for
the selected initial and boundary conditions, a superposi-
tion of traveling waves (18), (19), (23), and (24) is found
in accordance with general solution (17)

uji = rji + lji , i ∈ [0, n], j ∈ [0,m]. (25)

Finally, there remains the question of loss introduced in
(14). Since loss is∼ e−αt in the continuous domain and in
the discrete domain ∼ e−αj∆t we update (18) and (19) to

rj+1
i = rji−1e

−αj∆t/j = rji−1e
−α∆t, (26)

lj+1
i = lji+1e

−αj∆t/j = lji+1e
−α∆t. (27)

5. RESULTS AND DISCUSSION

Figure 5 shows the experimental set-up schematically. The
following values of parameters were used: speaking length
of the string L = 0.65 m; fundamental frequency f0 =
196.36 Hz; excitation point for triangular initial condition
x = xe = 0.25L = 0.163 m; initial amplitude A = 1.76
mm; loss parameter α = 1.1 s−1. All time and frequency
domain results are shown or calculated for string displace-
ment u(xm, t) where measurement point xm = 0.41L =
0.266 m. The spectrograms and power spectra are calcu-
lated using the Fast Fourier Transform algorithm. In calcu-
lating spectrograms a sliding window approach, in combi-
nation with the Hanning window function are used. Here,
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Figure 12. Magnified time-series of the results shown in
Fig. 11. Model (14) output shown with the black line, the
experiment shown with the red and the difference with the
blue line. (a) First 25 ms of vibration. (b) Last 25 ms of
vibration. (c) Magnification of the convex valleys of the
signals shown in Fig. 11 displayed for 5 ≤ t ≤ 35 ms.

window size is 70 ms and window overlap value is 20%
of the window size. The Short Time Fourier Transform
(STFT) spectrogram is calculated using window size 1.4
ms and the overlap value is 95%.

Figures 11 and 12 show the time domain results. A com-
parison of the simulated vibration, based on model (14),
to the experiment is shown for the first 200 ms of vibra-
tion. The presented waveforms match up relatively well,
given the simplicity of the model (14), especially at the
beginning of the vibration. The differences between the
presented results (blue lines) are growing with the passage
of time which means that all processes not described by
model (14) are progressively accumulating. We remind
that the dispersion is a progressively accumulating phe-
nomenon. Naturally, we consider two candidates for these
unidentified processes: the anomalous dispersion, and the
frequency-dependent loss as described by the more realis-
tic full model (3).

Let us consider the possibility of dispersion. We assume
that the experimental data has losses similar to (10) of full
model (3). The losses associated with the large wavenum-
bers (see Fig. 7), remain non-dominating for the first peri-
ods of vibration, in fact, that is clearly evident in Fig. 12a
where the model (14) is almost equal to the experiment.
Small differences are present only for the discontinuous
edges of the peaks and valleys of the modeled time-series.
Not surprisingly, these regions are associated with extre-
mely large wavenumbers κ. As long as we focus on the
regions in-between the pointy edges, the losses should be
minimal, especially for t � 1. Figure 12c shows the ex-
perimental evidence of the anomalous dispersion. The evo-
lution of the vibration is qualitatively similar to the result
shown in Fig. 10. A dispersive high-frequency oscillating
tail emerges from the right-hand side of the signal’s valley
and propagates to the left. This happens for every succeed-
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Figure 13. (a) Modeled time-series (14) and the corre-
sponding spectrogram. (b) Time-series and spectrogram
of the experiment. (c) Power spectra of the above signals.
Spectral centroids are indicated by the dash-dotted lines.

ing period with the oscillation amplitude becoming pro-
gressively larger. Although, the geometry (boundary con-
ditions) of the problem discussed here compared to the one
shown in Fig. 10 is different the conclusions regarding the
leading high-frequency tail evolution still hold.

Figure 13 shows the frequency domain results. At the
beginning of the vibration partial contents of the modeled
signal (14), in comparison to the experiment, has higher
peaks for f & 1 kHz. This is most likely due to a combina-
tion of the absence of the frequency-dependent attenuation
in model (14) and the unrealistic discontinuities present in
the initial condition shown in Fig. 5. The decay rate of
high-frequency partials, as seen on the spectrograms, is
greater for the experimental result which agrees with the
dispersion analysis of full model (3). No obvious high-
power inharmonic partials are visible in the power spec-
tra shown in Fig. 13c. The identified dispersive wave fea-
tures present in the experimental data are extremely weak
due to the low bending stiffness of the thin guitar string
used in the experiment. Additionally, the dispersion is also
masked by the frequency-dependent losses. The attenu-
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Figure 14. (a) Magnified time-series of the difference
between the model (14) and the experiment shown in
Fig. 11c. (b) STFT spectrogram of the above signal.

ation is particularly overwhelming for large wavenumber
modes, associated with our dispersive oscillating leading
tail. This means that with the passage of time, the high-
frequency oscillations simply decay much faster compared
to the low-frequency modes.

Figure 14 shows another line of evidence for the existence
of dispersion. It presents the STFT spectroscopic analysis
of the difference signal shown in Fig. 11c. This way of
visualising effects of dispersion was suggested by Wood-
house [21]. The window size of 1.4 ms is related to the
highest partial present in the signal (≈ 7 kHz). The distinct
vertical “formants” can be seen slanting to the left. This
result in combination with the time domain result shown
in Fig. 12c indicates that high-frequency wave components
arrive sooner in comparison to the low-frequency ones.

It is natural to treat the numerical approach presented in
Sec. 4 as a digital waveguide and apply digital filters to the
traveling waves (18) and (19). All-pass dispersive filters
could be used to tune our time-stepping model to the exper-
imental data and thus synthesise realistic sounds [22–24].
If one wishes to remain true to the full model (3) it is pos-
sible to derive a digital filter based on it. Bensa et al. in [6]
show how one can relate the full model to a digital waveg-
uide structure using dispersion relations (10) and (11).

6. CONCLUSIONS

This paper presented results of the experimental study of
dispersive wave propagation on guitar strings. The evi-
dence of the dispersion was found and presented. Unsur-
prisingly, the effect was minor but definitively present.

The high-resolution experimental data of the string dis-
placement was gathered using the video-kymographic high-
speed imaging. The experimental data was then compared
against the non-dispersive model described by Eq. (14) that
was used to identify dispersive features present in experi-
mental data, and to distinguish them from other effects,
such as frequency-dependent dissipation shown to be promi-
nent in the more realistic model described by Eq. (3).

The video-kymographic experimental method presented
here has proven to be highly reliable for our purposes. We
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strongly suggest to use this method for measurements of
rapidly moving sub-millimetre sized object and displace-
ments in applications where high spatial and temporal res-
olution of measurement results are required.
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ABSTRACT

This paper studies deep neural networks for modeling of 
audio distortion circuits. The selected approach is black-
box modeling, which estimates model parameters based 
on the measured input and output signals of the device. 
Three common audio distortion pedals having a different 
circuit configuration and their own distinctive sonic char-
acter have been chosen for this study: the Ibanez Tube 
Screamer, the Boss DS-1, and the Electro-Harmonix Big 
Muff Pi. A feedforward deep neural network, which is a 
variant of the WaveNet architecture, is proposed for mod-
eling these devices. The size of the receptive field of the 
neural network is selected based on the measured impulse-
response length of the circuits. A real-time implementation 
of the deep neural network is presented, and it is shown 
that the trained models can be run in real time on a mod-
ern desktop computer. Furthermore, it is shown that three 
minutes of audio is a sufficient amount of data for training 
the models. The deep neural network studied in this work 
is useful for real-time virtual analog modeling of nonlinear 
audio circuits.

1. INTRODUCTION

Guitar distortion effects are traditionally based on analog 
audio circuitry. These circuits contain nonlinear compo-
nents, such as diodes, transistors or triodes to produce the 
desired distortion effect. As most of music production to-
day is carried out using digital audio workstations (DAWs), 
there is an increasing demand for faithful digital emula-
tions of analog audio effects. The field of virtual analog 
(VA) modeling is concerned with creating these digital em-
ulations, which allow musicians to record and produce mu-
sic without investing in expensive analog equipment.

A common approach for VA modeling of distortion ef-
fects is “white-box” modeling [1–4]. White-box model-
ing is based on analysis and discrete-time simulation of 
the analog circuitry. If the circuit and the characteristics of 
its nonlinear components are known, white-box modeling 
can be very accurate. However, circuit simulation can get 
computationally demanding when there are many reactive
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is an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited.

components and nonlinear elements in the circuit, and the
involved design process can be labor intensive.

An alternative approach for VA modeling is “black-box”
modeling. Black-box modeling is based on measuring the
circuit’s response to some input signals, and creating a
model which replicates the observed input-output mapping.
Black-box models for VA modeling include block-oriented
models, which are based on assumptions about the design
of the modeled circuit [5–9]. As an example, a Wiener
model [5, 8] emulates the circuit as a linear filter followed
by a static nonlinearity. Other black-box modeling meth-
ods include Volterra series models [10,11], dynamical con-
volution [12] and kernel regression [13].

In our previous work, a deep neural network for black-
box modeling of nonlinear audio circuits was presented,
and applied to the modeling of a vacuum tube amplifier
[14]. The model is based on the WaveNet convolutional
neural network [15]. The proposed neural network model
is made up of a series of convolutional layers, which con-
sist of a filter followed by a nonlinear activation function.
As the filtering and nonlinear processing are applied in sev-
eral stages, the neural network should be suitable for mod-
eling of a broad range of nonlinear audio circuits.

This work follows the previous work with an emphasis
on the real-time performance of the model. Three gui-
tar distortion pedals are modeled in this work: the Ibanez
Tube Screamer, the Boss DS-1, and the Electro-Harmonix
Big Muff Pi. A hyperparameter search is conducted to
find a suitable trade-off between modeling accuracy and
computational load. Experiments are carried out to find
the minimum amount of data required for successful train-
ing. Finally, a low-latency implementation of the proposed
deep neural network, which can be run in real time on a
consumer-grade computer, is presented.

The rest of this paper is structured as follows. Section 2
provides backround on the modeled distortion effects. Sec-
tion 3 details the proposed deep neural network for black-
box modeling. In Section 4, the developed real-time im-
plementation of the model is presented. In Section 5, the
hyperparameter search and its results are detailed, and the
effect of the amount of training data on the modeling accu-
racy is examined. Section 6 presents the modeling results.
Finally, Section 7 concludes the paper.

2. MODELED DEVICES

Three guitar distortion effects are considered in this study:
the Ibanez Tube Screamer, the Boss DS-1, and the Electro-
Harmonix Big Muff Pi. Detailed circuit analyzes of all
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Figure 1: Block diagrams of the distortion effects.

three pedals can be found online [16].

2.1 Ibanez Tube Screamer

The Ibanez Tube Screamer is one of the most well known
guitar overdrive pedals. There have been several reissues
of the pedal since the release of the original TS808 in the
late 1970s [17]. For this study, the TS7 version, which was
introduced in the early 2000s, was used. Digital models
for the Tube Screamer have been previously proposed by
Yeh et al. [1, 18], Werner et al. [4], and Eichas et al. [8].

The simplified structure of the Tube Screamer pedal is
shown in Figure 1a. The nonlinear behavior of the pedal
occurs in the clipping amp. It is an op-amp-based bandpass
filter with diodes in the feedback path of the op amp. After
the clipping amp, there is the tone stage, which consists of
a passive lowpass filter followed by an active filter, which
can act as a low-pass or a high-pass filter depending on the
position of the tone potentiometer.

2.2 Boss DS-1

The Boss DS-1 is a famous distortion pedal released in
the late 1970s [16]. Its nonlinear characteristics resemble
those of a hard clipper. Before this work, digital models
for the DS-1 have been proposed by Yeh et al. [2, 18].

The DS-1 has two nonlinear stages, as shown in Figure
1b. The transistor booster stage performs high-pass filter-
ing and amplification of the input signal. Nonlinearities
are introduced to the signal when the boosted peak-to-peak
voltage of the signal exceeds the 9V supply voltage.

The actual distortion effect is produced by the clipping
amp. The clipping amp is an op-amp-based bandpass fil-
ter with two diodes shunting the output signal to ground.
This placing of the diodes introduces a hard-clipping ef-
fect. This is in contrast to the soft-clipping effect produced
by placing the diodes in the feedback path, as in the Tube

CONVx[n]

c[n]

. . .

LINEAR MIXER

ŷ[n]

CONV  CONV

. . .

. . .

Conditioning (user controls)

Input signal

Output signal

z1[n] z2[n] zK[n]

Figure 2: Proposed deep neural network model.

Screamer [16]. The tone stage has passive low-pass and
high-pass filters whose outputs are mixed based on the set-
ting of the tone knob. Setting the tone knob to the middle
position results in a bandstop response, with a center fre-
quency at approximately 500 Hz [16].

2.3 Electro-Harmonix Big Muff Pi

The Big Muff Pi is a distortion/fuzz effect known for its
distinctive long-sustain sound [16, 19]. Electro-Harmonix
began mass-producing the pedal in the early 1970s. Since
then, various models have been released with different ex-
teriors and with slight circuit modifications [19]. Digital
models for the Big Muff have been proposed [8, 20]

A simplified block diagram of the Big Muff is shown in
Figure 1c. The circuit has two identical clipping amps in
series. However, in some versions, the two clipping amp
circuits have different component values, such as different
collector resistors [19]. The clipping amp is a transistor-
based bandpass filter. As with the Tube Screamer, the clip-
ping in the Big Muff is produced by two diodes placed in
the feedback path. The combined effect of the two cas-
caded soft-clipping amps is hard clipping. The tone stage
is similar to the one in the Boss DS-1.

3. DEEP NEURAL NETWORK MODEL

The proposed model for black-box modeling is based on
the WaveNet neural network [15]. The original WaveNet is
a convolutional autoregressive model, where the previous
output sample is fed back to the model for making the next
prediction. In our previous work, a feedforward variant
of the WaveNet architecture was presented and applied to
modeling of a vacuum tube amplifier [14].

The proposed model is shown in Figure 2. The neural
network consists of a series of convolutional layers. The
raw input waveform is given as input to the first convolu-
tional layer. The convolutional layers apply linear filtering
and a nonlinear activation function to the signal.

Optionally, the output of the network can be conditioned
on user controls. In the previous work [14], the gain set-
ting of the vacuum tube amplifier was fed to the model
along with the input signal, allowing the model to repre-
sent different playing configurations of the amplifier. In
the experiments of this work, the conditioning is left out,
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since we are measuring physical devices, and automatic
knob adjustment and data collection is left for future work.

In the previous work, the outputs of the convolutional lay-
ers were fed to a three layer “post-processing module” with
1 × 1 convolutions and nonlinear activation functions. In
convolutional neural network terminology, a 1 × 1 convo-
lution refers to a matrix multiplication applied at each time
step in the signal. In this work, the post-processing module
is replaced by a linear mixer, i.e., a single linear 1× 1 con-
volution layer. According to our experiments, the network
performs similarly or better with the linear output layer,
while reducing the complexity and the computational load
of the network.

3.1 Convolutional Layer

The convolutional layer used in the model is shown in Fig-
ure 3. The input signal is first processed by the dilated
causal FIR filter Hk(z

dk), where k is the layer index and
dk is the integer-valued “dilation factor” of the filter. Since
the convolutional layers generally have multiple channels,
the filtering is performed as a multiple-input and multiple-
output (MIMO) convolution with a kernel Hk. This means
that a filter is learned for each pair of input and output
channels. The individual filters in the kernel have impulse
responses

h[n] =

M−1∑

m=0

wmδ[n−mdk], (1)

where δ[n] is the Kronecker delta function, and wm are the
non-zero coefficients of the filters learned by the network.

Next, a nonlinear activation function f(·) is applied to the
biased convolution output, producing the layer output

zk[n] = f [(Hk ∗ xk)[n] + bk], (2)

where ∗ denotes the convolution operator, and bk is the
learned bias term.

The layers include a residual connection, which means
that the input to the next layer is

xk+1[n] = Wkzk[n] + xk[n], (3)

where the 1×1 convolution kernel Wk controls the mixing
between the layer input xk and the layer output zk before
the next layer.

Each convolutional layer is a Wiener model: a linear filter
followed by a static nonlinearity. Conventional black-box
approaches are often based on a Wiener [5, 8], a Hammer-
stein [6] or a Wiener-Hammerstein [7, 9] model assump-
tion. As a cascade of Wiener models, the proposed neu-
ral network makes fewer assumptions about the design of
the modeled device, and is expected to be applicable to

Input 

Hidden layer 
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Hidden layer 
Dilation = 2 

Final layer 
Dilation = 4 

nn1n2n3n4n5n6n7
Time

Figure 4: Visualization of three convolutional layers in se-
ries and the resulting receptive field of N = 8. The figure
has been adapted from [15].

the modeling of a broad range of nonlinear systems. Fur-
thermore, the deep learning approach optimizes the system
response jointly, and not block-by-block, so not only the
model but also the optimization makes fewer assumptions
about the behavior of the device under study.

3.2 Receptive Field

The proposed neural network is modeling the device un-
der study in a feedforward fashion. The predicted output
sample at a time instant n depends only on the N latest
input samples, where N is called the receptive field of the
model, or the order of the feedforward model. The recep-
tive field depends on the number of convolutional layers,
and the lengths of the filters in the layers. This is illustrated
in Figure 4. The example network has 3 convolutional lay-
ers with dilation factors dk = {1, 2, 4}, and M = 2 non-
zero coefficients for each filter. It can be seen that in this
case, the current output sample depends on eight latest in-
put samples. That is, the network has a receptive field of
N = 8. Generally, the receptive field is given by

N = (M − 1)

K∑

k=1

dk + 1, (4)

where K is the number of convolutional layers. By in-
creasing the dilation by a factor of two in each layer, the
model order can be increased to thousands of samples with
relatively few layers, allowing feedforward modeling of
systems with long impulse responses.

To estimate the required receptive field for modeling of
the distortion effects, their linear impulse responses were
estimated using the swept-sine technique [6, 21]. A low-
level sine sweep was used in order to minimize the ef-
fect of circuit nonlinearities in the measurement. The es-
timated lengths of the impulse responses were approxi-
mately 35 ms for the Big Muff, and approximately 45 ms
for the Tube Screamer and the DS-1. With a 44.1-kHz
sample rate, these correspond to required receptive fields
of approximately 1500 to 2000 samples, respectively.

3.3 Loss Function

The neural network was trained by minimizing the error-
to-signal ratio (ESR) with respect to the training data. Dur-
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Figure 5: The processing speeds of models with different
numbers of layers and convolution channels. The models
use the gated activation. The cases above the horizontal
dashed line can run in real time.

ing training and validation, a “pre-emphasis” filter was ap-
plied to the output and target signals before computing
the ESR. For the ith training example, the pre-emphasized
ESR is given by

E{i} =
∑∞
n=−∞ |y

{i}
p [n]− ŷ{i}p [n]|2

∑∞
n=−∞ |y

{i}
p [n]|2

, (5)

where y{i}p is the pre-emphasized target signal, and ŷ{i}p is
the pre-emphasized neural network output. The ESR can
be considered as an energy-normalized sum-of-squares er-
ror. Without the energy normalization, the segments in the
training data with most energy would dominate the loss.

The pre-emphasis filter was chosen as the first-order high-
pass filter with transfer function

H(z) = 1− 0.95z−1, (6)

which is very commonly used in speech processing [22].
The purpose of the filtering is to emphasize middle and
high frequencies in the loss function. According to our
experiments, the neural network struggles at modeling the
high-frequency content introduced by the distortion effects
without the pre-emphasis filtering.

4. REAL-TIME IMPLEMENTATION

The proposed black-box models were implemented in C++,
because the goal was to run the optimized model in real
time. The real-time application was built using the open
source JUCE framework. JUCE allows building cross-
platform audio applications as well as VST, AU, and AAX
plugins from a single source code. The Eigen library was
used for matrix and vector operations. The source code is
available at https://github.com/damskaggep/WaveNetVA.

The C++ implementation of the deep neural network does
not currently support model training. Instead, the models
are trained using the Tensorflow library. The model hy-
perparameters and the values of the learned convolution
kernels and biases are stored to a JSON file. The trained
models can then be loaded to the C++ application.
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Figure 6: The processing speeds of the 18-layer model
with different activation functions and different numbers
of convolution channels. The cases above the horizontal
dashed line can run in real time.

The real-time performance of the C++ code was estimated
for several model configurations. The models were tested
using an Apple iMac with an 2.8 GHz Intel Core i5 pro-
cessor, using a short processing buffer of 64 samples and a
sample rate of 44.1 kHz. During the test, all other applica-
tions were shut down and the computer was disconnected
from the internet. This was done to minimize the effect of
other processes in the test.

Figure 5 shows the processing speed of the model with
different numbers of layers and different numbers of con-
volution channels. The models use the gated activation.
The processing speed is expressed as a factor of the re-
quirement for real-time application. Clearly, the computa-
tional load increases as the number of layers and channels
is increased. The largest model running in real time uses 18
layers and 16 channels in the convolutional layers. With 24
layers, a model with 8 convolutional channels can be run
in real time.

Figure 6 shows the processing speed of the 18-layer model
using different activation functions. The activation func-
tions are detailed in Section 5.2.2. The rectified linear unit
(ReLU) is the computationally cheapest and the gated ac-
tivation is the most computationally expensive activation.

5. EXPERIMENTS

For the experiments described in the following, the neu-
ral networks were trained using the Adam optimizer [23].
The validation error was computed after each epoch. Early
stopping was used with a patience of 20 epochs. The train-
ing data was split into 100 ms training examples, and a
mini-batch size of 40 was used. A sample rate of 44.1 kHz
was used in the experiments.

5.1 Dataset Generation

Training data was generated by processing audio through
the modeled distortion effects. The devices were measured
using an audio interface connected to a computer via USB.
One output of the audio interface was connected to the in-
put of the measured device. The output of the device was
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recorded by connecting it to one of the inputs of the au-
dio interface. The output of the audio interface was also
directly connected to another input of the audio interface,
in order to estimate the effect of the audio interface in the
measurement, as suggested in [9]. The recorded direct sig-
nal from the audio interface and the recorded output from
the device under study make up the input/target pairs used
in the training of the network.

The input sounds processed through the device were ob-
tained from the guitar and bass guitar datasets 1 2 described
in [24, 25], respectively. A random subset with 5 minutes
of audio was picked from the datasets, with 2.5 minutes of
guitar and 2.5 minutes of bass sounds. The data generated
using these sounds was used for training. An additional
minute of audio was randomly selected for validation. For
testing of the networks, the test set signals from the previ-
ous work were reused [14].

All three modeled devices have a knob to control the in-
tensity of the distortion effect and a “Tone” knob to control
the filter in the tone stage. For the measurements, all knobs
were set to the 12 o’clock, or middle, position. Filtering
occurs in the tone stages of all pedals even when the Tone
knob is set to the middle position [16]. That is, the middle
position of the knob does not indicate an allpass setting for
the filters in the tone stages.

5.2 Model Selection

The performance of the proposed neural network depends
mostly on the number of channels used in the convolutional
layers, the activation function, and the dilation pattern. The
choice of these hyperparameters also affects the computa-
tional load of the model, as shown in Section 4. Therefore,
a hyperparameter search was conducted to find a suitable
trade-off between model performance and computational
load.

5.2.1 Dilation Pattern

Three different dilation patterns were considered:

dk = {1, 2, 4, . . . , 512},
dk = {1, 2, 4, . . . , 256, 1, . . . , 256}, and
dk = {1, 2, 4, . . . , 128, 1, . . . , 128, 1, . . . , 128}.

These dilation patterns correspond to models with 10, 18,
and 24 convolutional layers, respectively. The number of
non-zero coefficients in the filters was set toM = 3, which
means that, according to Eq. (4), the 10, 18, and 24-layer
networks have the receptive fields of N = 2047, 2045, and
1530 samples, respectively. At the 44.1-kHz sample rate,
these receptive fields correspond to approximately 46, 46,
and 35 ms, respectively.

5.2.2 Activation Functions

For the convolutional layers, the performance of the fol-
lowing activation functions are compared: the hyperbolic

1 https://www.idmt.fraunhofer.de/en/business units/m2d/smt/guitar.
html

2 https://www.idmt.fraunhofer.de/en/business units/m2d/smt/
bass lines.html

tangent:
z = tanh(H ∗ x), (7)

the rectified linear unit (ReLU):

z = max(0,H ∗ x), (8)

and the gated activation, which was used in the original
WaveNet [15]:

z = tanh(Hf ∗ x)� σ(Hg ∗ x), (9)

where� is the element-wise multiplication operation, σ(·)
is the logistic sigmoid function, Hf and Hg are the fil-
ter and gate convolution kernels, respectively. Finally, the
softsign-gated activation, as used in [26], was evaluated:

z = g(Hf ∗ x)� g(Hg ∗ x), (10)

where the hyperbolic tangent and the logistic sigmoid of
the standard gated activation are both replaced by the soft-
sign function:

g(x) =
x

1 + |x| . (11)

The softsign nonlinearity can be computationally cheaper
than the hyperbolic tangent and the logistic sigmoid func-
tions, as shown in Section 4, while having a similar shape.

With the gated activations, the convolutional layer used
in the model can no longer be considered a Wiener model.
Instead, it can be described as two parallel Wiener models,
whose outputs are multiplied together to produce the layer
output.

5.2.3 Results

In the following, the results of the hyperparameter search
are presented. As there is an interest on the real-time per-
formance of the models, the validation loss is shown as
a function of the processing speed on the developed real-
time C++ implementation of the model.

The effect of the choice of dilation pattern on the vali-
dation loss is shown in Figure 7. The validation loss is
reported as an average loss over all the modeled devices.
All models shown in Figure 7 use the gated activation, as
given by Eq. (9). The number of convolution channels was
varied with values 2, 4, 8, 16, and 32. It can be seen that the
10-layer model performs favorably with respect to the pro-
cessing speed, while still obtaining a relatively low ESR.
The 10-layer model with 16 channels has an average ESR
of 4.2%, and runs 1.9 times faster than real time. The 18-
layer model with 16 convolution channels had the lowest
ESR of the models which run faster than real time. The
model has an average ESR of 3.1%, and runs 1.1 times
faster than real time.

Overall, the 24-layer model performs more poorly than
the 18-layer model. It is possible that this is because the
receptive field of the 24-layer model is slightly shorter than
the estimated impulse response lengths of the Ibanez Tube
Screamer and the Boss DS-1.

The effect of the choice of activation function is shown
in Figure 8. The models shown in Figure 8 use 18 layers
and the number of convolution channels was again varied
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Figure 7: The validation error-to-signal ratio (ESR) as a
function of the processing speed, using different numbers
of layers and convolution channels. All models shown use
the gated activation. The number of convolution channels
used is indicated next to each model.
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Figure 8: The validation error-to-signal ratio (ESR) as a
function of processing speed with different activation func-
tions and different numbers of channels in the convolu-
tional layers. The number of convolution channels used
is indicated next to each model.

with values 2, 4, 8, 16, and 32. It can be seen that the
hyperbolic tangent activation performs worst out of all ac-
tivations. The other activation functions perform similarly
with each other. This suggest that the ReLU, the softsign-
based gated activation and the standard gated activation are
all viable options for a real-time application.

Based on the hyperparameter search, three models were
chosen for the final evaluation. The hyperparameters of the
selected models are shown in Table 1. Only models which
run faster than real time were selected. WaveNet1 is the
fastest of the selected models, and it has the worst ESR on
the validation data. WaveNet3 is the slowest model, and it
has the best ESR on the validation data. WaveNet2 is an
intermediate model.

5.3 Training Data Length

An interesting question regarding neural networks for vir-
tual analog modeling is the amount of data required for

Table 1: Hyperparameters of selected neural networks.

Model WaveNet1 WaveNet2 WaveNet3
Activation Gated Gated Gated
Layers 10 18 18
Channels 16 8 16
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Figure 9: The validation energy-to-signal ratio (ESR) with
different amounts of training data.

training a model. To assess the effect of the amount of
training data, models were trained with different amounts
of training data, and the effect on the validation loss was
examined. The results are shown in Figure 9 for WaveNet3,
the largest of the selected models. The results are averaged
across the three modeled devices.

The validation loss decreases as the amount of training
data is increased from 10 seconds to 3 minutes. Increasing
the amount of training data past 3 minutes appears to have
no significant effect on the validation loss.

6. RESULTS

Table 2 shows the ESRs of the selected models for the Tube
Screamer, the DS-1 and the Big Muff. The reported ESR
values were computed without pre-emphasis using the un-
seen test data set.

All selected models achieve a very small ESR on the Tube
Screamer, suggesting that the proposed approach leads to
a very accurate digital model. With the DS-1 and the Big
Muff, the achieved ESR values are higher than with the
Tube Screamer. In the tested configurations, the DS-1 and
especially the Big Muff are highly nonlinear, due to their
cascaded nonlinear stages. We believe that this explains
the higher errors when compared to the Tube Screamer,
which only has a single soft clipping stage. Overall, the
WaveNet3 model has the lowest ESR and WaveNet1 has

Table 2: Error-to-signal ratio for selected test cases.

Model TS7 DS-1 Big Muff
WaveNet1 0.069% 2.9% 9.9%
WaveNet2 0.050% 3.2% 7.1%
WaveNet3 0.041% 2.1% 6.9%
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Figure 10: Waveforms of a guitar sound processed through
the Boss DS-1, and through the WaveNet1 model.
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Figure 11: Spectra of a bass guitar sound processed
through the Big Muff, and through the WaveNet3 model.

the highest ESR of the tested configurations. However, the
differences between the models are relatively small.

The processing speeds of the models are shown in Table
3. The least accurate model (WaveNet1) runs fastest at
1.9 times faster than real time, whereas the most accurate
model (WaveNet3) runs 1.1 times faster than real time.

Figure 10 shows the output waveform of the Boss DS-1
distortion effect to an electric guitar input signal from the
test data set, and the corresponding output of the WaveNet1
model. The plot shows a good match between the target
signal and the model prediction. Figure 11 shows the spec-
trum of a bass guitar signal processed through the Big Muff
distortion effect, and the spectrum of the same signal pro-
cessed through the WaveNet3 model. The spectrum of the
model output matches the target spectrum well.

In order to estimate the aliasing introduced by the models,
Figure 12 shows the spectrum of a 1245 Hz sinusoid fed
through the WaveNet2 model of the Big Muff pedal. It ap-
pears that even though the models were trained with non-
aliased data, the learned models suffer from aliasing. How-

Table 3: Processing speeds of the selected models reported
as real-time (RT) factors. The fastest result is highlighted.

Model WaveNet1 Wavenet2 WaveNet3
Speed (× RT) 1.9 1.6 1.1
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Figure 12: Spectrum of a 1245 Hz sinusoid fed through the
WaveNet2 model of the Big Muff pedal. The black circles
indicate the non-aliased components.

ever, while the aliasing is evident with a high-frequency
sinusoidal input, no clear aliasing could be heard in the
guitar and bass sounds processed through the models.

Several audio samples from all models are available on-
line at the accompanying web page [27].

7. CONCLUSIONS

This work considered the use of deep neural networks for
modeling of audio distortion effects. Three well-known
guitar distortion pedals were modeled using a feedforward
variant of the WaveNet neural network. Different model
configurations were examined to find a suitable compro-
mise between modeling accuracy and computational load.
A real-time and low-latency implementation of the pro-
posed deep neural network was developed. The results
suggest that the proposed deep learning approach can be
used to train accurate digital models of analog distortion
effects, which can be run in real-time on a consumer-grade
desktop computer. Future work will further study the alias-
ing behavior of neural network models.
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time modeling of audio distortion circuits with deep
learning,” accompanying web page, available on-
line at: http://research.spa.aalto.fi/publications/papers/
smc19-black-box/.

339

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



MI-GEN∼: AN EFFICIENT AND ACCESSIBLE MASS-INTERACTION
SOUND SYNTHESIS TOOLBOX

James Leonard
Univ. Grenoble Alpes, CNRS, Grenoble INP*

GIPSA-Lab, 38000 Grenoble, France
james.leonard@gipsa-lab.fr

Jerome Villeneuve
Univ. Grenoble Alpes, CNRS, Grenoble INP*

GIPSA-Lab, 38000 Grenoble, France
jerome.villeneuve@gipsa-lab.fr

ABSTRACT

Physical modelling techniques are now an essential part
of digital sound synthesis, allowing for the creation of com-
plex timbres through the simulation of virtual matter and
expressive interaction with virtual vibrating bodies. How-
ever, placing these tools in the hands of the composer or
musician has historically posed challenges in terms of a)
the computational expense of most real-time physically
based synthesis methods, b) the difficulty of implementing
these methods into modular tools that allow for the intu-
itive design of virtual instruments, without expert physics
and/or computing knowledge, and c) the generally limited
access to such tools within popular software environments
for musical creation. To this end, a set of open-source tools
for designing and computing mass-interaction networks for
physically-based sound synthesis is presented. The audio
synthesis is performed within Max/MSP using the gen~
environment, allowing for simple model design, efficient
calculation of systems containing single-sample feedback
loops, as well as extensive real-time control of physical
parameters and model attributes. Through a series of bench-
mark examples, we exemplify various virtual instruments
and interaction designs.

1. INTRODUCTION

Over the last few decades, physically-based sound syn-
thesis methods have evolved from computationally expen-
sive & mostly non real-time techniques to one of the most
active fields in Computer Music, now widely employed
in digital sound synthesis, including in various commer-
cialised solutions. Alongside historic methods, such as
digital waveguides [1], modal synthesis [2] or lumped mass-
interaction modelling [3], recent trends show an increasing
number of methods rooted in mechanical and acoustical
simulation, such as finite-difference-time-domain systems
(FDTD) [4] or finite-element modelling [5]. Moreover,
scattering techniques can be used to connect wave-based
methods to Kirchhoff-based methods [6], enabling hybrid
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modelling strategies and thus benefiting from the strengths
of each individual paradigm.

1.1 Tools for physical modelling sound-synthesis

Advances in physical modelling and simulation techniques
have, in most cases, been accompanied by the development
of frameworks and tools allowing the afferent concepts to
be manipulated. However, approaches differ significantly
depending on the end goal:

• A number of tools, such as the Synthesis Toolkit [7]
or Block Compiler [6] allow for expert users to de-
sign complex numerical simulations of musical in-
struments. They generally require a solid background
in both computing and physics, and as such are tar-
geted for the researcher or engineer rather than the
musician or composer.

• Other tools hide some of the inner complexity of
discrete-time physical models, offering more approach-
able concepts so that a composer or musician may
be able to assimilate and incorporate them into a cre-
ative process, with little prior scientific knowledge.
GENESIS [8] and MODALYS [2] are examples of
such systems.

1.2 Modularity considerations

Another distinction between tools for creation by means of
physical modelling is the degree of modularity that is made
available to the user:

• Non-modular systems such as model-based digital pi-
anos 1 [9], the Brass project [10] or Physical Audio’s
reverb plate 2 present the user with a fixed physical
model to play, possibly allowing him/her to manip-
ulate physical parameters or chose between several
modes of excitation, etc.

• Semi-modular systems generally propose a base of
common physical structures (strings, plates, etc.)
available as primitives that can be assembled together
to create virtual objects [2, 11, 12].

• Entirely-modular systems such as GENESIS [8] al-
low the user to design virtual structures “from the
ground up” by assembling basic physical elements
(masses, springs, non-linear interactions).

1 www.pianoteq.com
2 https://physicalaudio.co.uk/PA1
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We note that as methods such as finite-difference time-
domain schemes evolve, offering evermore realistic synthe-
sised sound, the inherent complexity of such models renders
intuitive modification of the instruments difficult for non-
expert users; higher-level tools are generally limited to a
semi-modular approach [13] by connecting plates, strings
or bars through locally handled lumped interactions.

Systems aiming for a more fundamental, constructivist,
type of modularity must strike a compromise by leaning
on physical formulations that can be split into fundamental
“atomic” elements: such is the case of mass-interaction
physical modelling.

1.3 Modular physical modelling for artistic creation

1.3.1 (Unsupervised!) modelling

The study of mass-interaction modelling for musical cre-
ation is largely documented, essentially through work con-
ducted since the early 80’s at ACROE [3, 8]. One of the
key features of this approach - and an essential distinction
from most other physical modelling methods - is that virtual
physical objects can be designed intuitively (or empirically)
by assembling basic physical elements into a network.

In this case, “modelling” does not necessarily refer to
creating a virtual simulation that presents similar behaviour
to that of an existing physical instrument (see [14]); rather,
modelling is the activity of exploring virtual mechanical
constructions in order to discover behaviours and sounds
that are judged interesting (regardless of any criteria of
realism). Emphasis is consequently placed on providing
various tools for the construction, generation and analysis
of virtual physical networks in order to assist the composer
or musician during the design process [15, 16].

1.3.2 Towards open tools for mass-interaction modelling

Recent years show a regain of interest for modular and
more accessible physically-based synthesis methods such
as mass-interaction modelling, stimulated partly by the
possibilities of force-feedback interaction with such mod-
els [17, 18].

Efforts have been made to provide accessible open-source
tools for environments such as Max/MSP. The HSP project
[19] presents masses and interactions directly as Max ob-
jects, that can be interconnected to form a network. How-
ever, the single sample delay (cf. Section 2) needed for the
position/force feedback loop imposes that Max runs with a
VectorSize of 1, hindering the performance of general audio
workflow in order to preserve the integrity and stability of
the discrete physical computation.

Synth-A-Modeler [20] is based on the Faust compiler 3 and
allows creating and compiling mass-interaction models (and
also hybrid models with waveguide and modal synthesis)
for a variety of targets (PureData, Max, standalone, etc.).
Compiled models are then available as black-box objects
that can be acted upon and observed through inlets and
outlets.

3 Recent work on the formalisation of mass-interaction networks in
FAUST was also conducted by the authors [21].

1.3.3 Presented work: mi-gen~

By leveraging the properties of the gen~ system, the work
presented in this paper allows for efficient implementation
of mass-interaction models within Max/MSP. These mod-
els can be generated using a dedicated scripting tool, or
coded directly within gen’s codebox object, leaving the
user free to modify them at any time. Large scale models
can be designed (with guaranteed single-sample loopback),
visualised, interacted with, and integrated into complex
workflows within Max.

First, we provide a brief introduction to algorithmic and
computational aspects of mass-interaction physical mod-
elling. Then, we present how such models can be coded
and computed with the mi-gen~ toolbox. Examples and
system performance are then discussed, with perspectives
for future work.

2. MASS-INTERACTION PHYSICAL
MODELLING BASICS

As the name suggests, mass-interaction models are com-
posed on the one side of mass-type elements, and on the
other interaction-type elements. The modularity of the for-
malism stems from the fact that the basic equations for
each are discretised individually, and can then be assem-
bled freely by following a small number of connection
rules [3, 22, 23]. The principles of mass-interaction mod-
elling can operate on position and force data of any spatial
dimension (scalar values, 2D or 3D vectors, etc.). The equa-
tions below and the implementation in this paper are 1D,
meaning that all masses move along a single axis.

A discrete-time implementation of a punctual mass is
obtained by applying the second order central difference
scheme to Newton’s second law (f is the force applied
to the mass, m is its inertia, a its acceleration, and x its
position):

f = ma = m
d2x

dt2
(1)

Resulting in the following normalised form (with discrete-
time positions and forces noted X and F ):

X(n+1) = 2X(n) −X(n−1) +
F(n)

M
(2)

With M , the discrete time inertial parameter defined as
M = m/∆T 2 (where ∆T is the sampling interval).

As an example of a simple interaction element, the visco-
elastic force applied by a linear spring (with stiffness coeffi-
cient k, damping coefficient z and resting length of l0 = 0)
connecting a mass m2 at the position x2 to a mass m1 at
the position x1 is given by:

f1→2 = −k(x2 − x1)− z d(x2 − x1)

dt
(3)

Approximating the velocity by applying the backward
Euler difference scheme, we obtain:

F(n) =−K(X2(n) −X1(n))

− Z((X2(n) −X2(n−1))

− (X1(n) −X1(n−1)))

(4)
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Figure 1. Screenshot of a Max patch implementing a string model. Control parameters are sent as messages to the gen~
patch, and external position and force inputs are provided as audio-rate signals.

With the discrete-time stiffness parameter K = k, and the
discrete-time damping parameter Z = z/∆T . The result-
ing force is applied symmetrically to each mass (Newton’s
third law):

F1(n)− = F(n)

F2(n)+ = F(n)

(5)

Each interaction acting upon a mass effectively sums its
calculated force into a buffer, which equates (after weight-
ing by M ) to the total acceleration applied to the mass dur-
ing this time-step. The computation of a mass-interaction
network consists in a closed-loop computation of the masses
and of the interactions. By convention, we will say that the
vibration of 1D topological structures occurs along the z-
axis.

3. THE MI-GEN~ LIBRARY

The mi-gen~ toolbox is an open-source Max package, avail-
able on GitHub 4 . It is composed of several documentation
and example patches, as well as a library of functions for
gen’s codebox object. Codebox is a textual coding environ-
ment within gen~ (based on a syntax similar to C), giving
access to all gen~ specific functions such as History, Delay,
Buffer/Data access, etc.

As in all gen~ patches, feedback paths with a single sam-
ple of delay are possible regardless of Max’s VectorSize,
which is crucial for implementing the closed loop calcu-
lations of equations (2) and (4) for all of the masses and
interactions in the physical model. Figure 1 shows a Max
patch centred around a “fretted string” gen~ physical model.

4 https://github.com/mi-creative/mi-gen

3.1 Code structure

The sequence in Figure 2 shows the code structure of a
simple model: a harmonic oscillator (a mass, connected to
a fixed point by a dampened spring) that can be subjected
a force input via the first inlet of the codebox object, and
can be struck using a contact interaction (with stiffness,
damping and threshold distance parameters) by another
mass whose position is controlled by the second inlet.

3.1.1 Physical variables and initial states

Material points of the model (including “avatars” for exter-
nal position inputs) are stored as Data objects (equivalent
to an array of floating point 64-bit values). Each one is
composed of three values, corresponding respectively to the
point’s current position, previous position, and accumulated
force buffer. These attributes are set to initial conditions
during an initialisation phase. By convention, modules are
set with an initial position and velocity (inferred by the
previous position), and with null acceleration.

Interactions have no physical variables other than their
own parameters, since an interaction acts directly (and sym-
metrically) on the Data structures of the two masses that it
connects.

3.1.2 Computational loop

The simulation of the model’s dynamics is performed by
computing all of the mass-type algorithms then all of the
interaction type algorithms, for each time step (each audio
sample in our case). All of the physical algorithms are
implemented inside the migen-lib.genexpr file.

External position inputs are applied to the “avatar” mod-
ules during the mass-phase, and external force inputs are ap-
plied to corresponding masses during the interaction-phase.
Position and/or force values from “observed” masses are
collected at the end of the cycle and routed to outputs.
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r e q u i r e ( ” migen− l i b ” ) ;

/ / Model d a t a s t r u c t u r e s
Data m in2 ( 3 ) ;
Data gnd ( 3 ) ;
Data m1 ( 3 ) ;

/ / C o n t r o l Ra te P a r a m e t e r s
Param Z ( 0 . 0 0 0 1 ) ;
Param K( 0 . 0 1 ) ;
Param M( 1 . ) ;

H i s t o r y m o d e l i n i t ( 0 ) ;
/ / Model i n i t phase
i f ( m o d e l i n i t == 0) {

i n i t m a t ( m in2 , 1 , 1 ) ;
i n i t m a t ( gnd , 0 , 0 ) ;
i n i t m a t (m1 , 0 , 0 ) ;
m o d e l i n i t = 1 ;

}

/ / Model c o m p u t a t i o n
u p d a t e i n p u t p o s ( m in2 , i n 2 ) ;
compute ground ( gnd ) ;
compute mass (m1 , M) ;
c o m p u t e c o n t a c t (m1 , m in2 , 0 . 1 , 0 , 0 ) ;
a p p l y i n p u t f o r c e (m1 , i n 1 ) ;
c o m p u t e s p r i n g d a m p e r (m1 , gnd , K, Z ) ;

ou t1 = g e t p o s (m1) ;

Figure 2. A simple mass-interaction model expressed in
genexpr code, using the mi-gen~ library.

3.1.3 Parameters of the physical algorithms

The physical parameters expressed inside mi-gen~ are nor-
malised discrete-time parameters as defined in Section 2.
On the one hand, this renders the behaviour of models de-
pendent on the sample rate for a given set of parameters,
on the other it provides a direct view of stability condi-
tions, defined at each mass as 4M > K + 2Z (with M
the inertia of the mass, and K and Z the summed stiffness
and damping applied to this mass by interactions - see §7).
Translations to and from standard unit parameters can easily
be established allowing the user to manipulate either one.

Parameters may be:

• hard-coded values that are immutable once the patch
is compiled,

• control-rate parameters that can be dynamically mod-
ified by sending messages to the gen~ object,

• audio-rate parameters, added as signal inputs to the
codebox patch.

The latter is preferable for fast-varying parameters [24],
for instance in cases such as dynamically re-tuning the pitch
of a model according to input MIDI notes.

3.2 The MIMS scripting system

Although creating physical models directly in codebox is
fairly intuitive, designing larger scale objects is much easier

using higher level tools to describe the topology. MIMS 5

(Mass-Interaction Model Scripter) is a basic editor written
in Python for this purpose, providing compilation into dsp
code for either gen~ or FAUST [21].

Models are described in a format similar to PNSL [16]:
each physical element is given a unique identifier, or label
(e.g. @mass1), that can be referenced by other elements
(e.g. when connecting an interaction between two masses).
For instance:

@spr springDamper @m1 @m2 0.1 0.001

creates a dampened spring connecting masses m1 and
m2 with a discrete-time stiffness of 0.1 and discrete-time
damping of 0.001. The inputs and outputs of the gen~ patch
are also based on labels:

@in1 frcInput @m1
@out2 posOutput @m2

routes a force signal from the inlet in1 to the mass m2 and
routes an observation of m2’s position to the outlet out2.

Parameters also function as labels and can be used in
place of hard-coded values in the definition of any module’s
parameters as follows:

@M param 1.
@K param 0.01
@Z param 0.001

...
@cel osc M K Z 0. 0.1

The above code creates labelled inertia, stiffness and
damping control-rate parameters and then creates an in-
tegrated harmonic oscillator with these parameters, set at
initial position z = 0 with an initial velocity of 0.1 metres-
per-sample. Audio-rate parameter inputs are automatically
placed after any explicitly defined inputs for the patcher.

MIMS also provides rudimentary functions for automated
generation of larger scale topological structures, such as
strings, rectangular, triangular and hexagonal membranes.

4. REAL-TIME VISUALISATION

4.1 Visualising deformations using Motion Buffers

So far, we have only been able to observe points of a physi-
cal model that we route to outlets at the audio rate. However,
understanding the behaviour of a mass-interaction model
is greatly facilitated by visualising the deformations of the
entire object, even if we only “listen” to it in a few points.
This is achieved by creating motion buffers. Motion buffers
are simple MSP buffer~ objects, used a little unconvention-
ally: instead of storing a temporal waveform, the buffer
stores an instantaneous snapshot of the positions of a set of
masses. MIMS provides two uses for motion buffers:

• A 1-channel generic buffer, containing the motion of
all the mass-type elements in the model along the z
axis (in order of creation).

5 https://github.com/mi-creative/MIMS
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Model Name Nb. Masses Nb. Int. Comp. Time. CPU Load
1000 Mass String 1000 1002 ∞ -
Mesh (25x20) 506 965 3 min 67%
Mesh (15x15) 225 430 22 s 15%

Fretted String 155 203 7.7 s 8%
Bowed String 152 158 5.8 s 7%

Plucked Harmonics 152 158 5.4 s 6%
Drunk Triangles* 4 5 <1 s ≈ 16%

Table 1. Benchmarking: Number of masses and interactions, compilation time, and Max/MSP CPU load. Measurements
were made on a Dell Precision 5530 running Windows 10 & Max 7.3.5. Specs: Intel i7-8850H 4 cores at 2.6GHz, 16GB
RAM, 44.1kHz sampling rate, buffer size & vector size of 256 samples. * Drunk Triangles is a small model instantiated
dynamically with up to 100 voices, using poly~.

Figure 3. Vibratory deformations of a mesh attached at
each corner. Underlying physical model: 20x20 masses.
NURBS-based rendering in Jitter.

• Specific 3-channel buffers, containing the motion of
a set of mass-type elements in the model along the z
axis, as well as fixed x and y coordinates. Masses are
added to buffers by adding the buffer name and extra
x-y coordinates after the standard module parameters.

The former allows quick visualisation of the model state
by drawing the motion buffer with the plot~ object. The
latter is useful for creating visual arrangements that corre-
spond to the topological nature of a mass-interaction net-
work, e.g. grid-based distributions along x and y according
to generated mesh patterns, which allows to represent modal
deformations and wave propagation along the matter.

Inside the gen~ patch, the motion buffers are refreshed
with new positions once every 200 audio steps (a rate of
220.5 Hz for a sampling rate of 44.1kHz). This limits the
computational costs of writing the data, as it is only used
for visualisation purposes.

4.2 Rendering techniques

Within Max, Jitter offers powerful tools for visual render-
ing, including surface rendering algorithms such as Non-
Uniform, Rational, B splines (NURBS). This technique is
used to render smooth curves and surfaces from a limited
number of control points (in our case, the x-y-z positions
of the masses of a physical model). Using specific motion
buffers as discussed above, simple model topologies such
as strings and rectangular membranes can be rendered as
shown in Figure 3.

5. BENCHMARKING & EXPERIMENTATION

The mi-gen~ toolbox provides a set of tutorial and exam-
ple patches 6 , showing a hands-on approach to designing
models and control/interaction strategies within Max/MSP.

5.1 Performance benchmark

Table 1 shows the results of a selection of models (mostly
examples from the toolbox), in terms of complexity, compile-
time of the gen patcher, and CPU usage within Max.

Results show that the main limitation for large scale mod-
els stems from the gen compilation phase: models with
approx. 650 modules take over 20 seconds to compile, but
only occupy around 15 % of the CPU when running. The
load displayed by the Max/MSP monitor is reasonable for
all models that pass the compilation phase, and shows no
noticeable difference whether the visualisation of motion
data is active or not.

Beyond a certain volume of codebox code, the compilation
of the patch hangs (cf. the 1000 Mass String in Table 1).
Reasons for this limitation will be investigated. It is worth
noting that the authors experienced similar issues with the
Faust compiler [21].

Performance of complex models can be optimised by
means of dynamically allocated voices using the poly~ sys-
tem, as is the case in the Drunk Triangles example, which
contains up to 100 instances of a simple mass dropping
and bouncing on a “triangle” resonator (shown in Figure
4). Each instance is tuned according to a pseudo random
sequence generated with Max’s drunk object, and frees
its voice when it detects that the mass has stopped bounc-
ing. Figure 5 shows a visual representation of the entire
instrument.

Figure 4. Schematic representation of the Drunk Triangles
model.

6 Video demonstrations are provided at: mi-creative.eu/tool migen.html
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Figure 5. Visual representation of the Drunk Triangles
polyphonic instrument: bouncing masses in red, resonating
structures in blue.

5.2 The fretted string model

Plucked or struck string instruments have long been a topic
of interest in physical modelling, from the acoustical prop-
erties of the string itself [25] to the non-linear collisions
[26, 27] that occur in fretted instruments. Below we present
a simple mass-interaction implementation of such a model.

5.2.1 Fretting mechanisms in 1D space

Previous work by the authors [28] presented fretted string
mass-interaction models with an analogy to the guitar fret-
board, where certain string masses are pinned down against
fixed points, set underneath them. However, this poses prob-
lems since, unlike in real life where fretting gestures are
orthogonal to strumming ones, in the 1D virtual model the
string is excited in the same axis as the fretting gesture. This
forces frets to be placed very low and distributed unevenly
beneath the string in order to avoid fret buzz.

A more functional analogy in our case comes from the
tuning forks found on concert harps. When rotated by oper-
ating the instrument’s pedals, they apply pressure in both
directions simultaneously, pinning the string without caus-
ing excess displacement. Within Max, it is straightforward
to setup two opposite position signals that operate the tuning
fork “clamp”, and to replicate the mechanism in as many
points as desired.

5.2.2 Model description and behaviour

The vibrating model is a simple string attached between
two fixed points. An external force input triggers a mass
that moves downwards and collides with the string. Multi-
ple external position inputs control seven frets (or clamps),
positioned at intervals corresponding to the diatonic scale.
The height of the frets and the speed of the clamping mech-
anisms can be modified in real-time: we can choose to
completely avoid any fret-buzz, or dial in just enough for
things to sound lively and interesting... or even go crazy
with extremely rattly down-tuned strings! The Max patch
is shown in Figure 1.

Figure 6. Schematic representation of the fretted string
model (clamping mechanisms on the left side).

5.2.3 “Physical Interaction” Realism

Once again, we stress that the created model does not strive
for any true acoustical realism: indeed, the string’s masses
are limited to transverse motion, it is modelled with lin-
ear springs, has no vibrating body, the discrete number of
masses imposes slightly off-key fret positions... the list
goes on. However, even in this extremely reductive model,
careful physical interaction design brings forth perceptually
important emergent non-linear behaviour, inferring charac-
ter and unpredictability to the instrument.

We could say that the mass-interaction paradigm yields
physical interaction realism, in the sense that it faithfully
represents anything that can be represented with Newtonian
point-based mechanics, and that any path the user chooses
to follow from there on - be it searching to reproduce real-
life phenomena or exploring the unknown - is entirely up to
him.

6. DISCUSSION

This paper has presented mi-gen~, a new library and set of
tools for mass-interaction physical modelling sound synthe-
sis in Max/MSP. In comparison to existing tools, it offers
efficient computation entirely within Max, without precom-
piling the models into static black boxes. This allows for
on-the-fly iterative model design, direct access to physical
parameters and to the model state (which can be visualised
using any method seen fit) and - maybe most importantly
- it empowers the user by providing a hands-on program-
ming framework for 1D mass-interaction physics, with vast
possibilities for customisation. As such, it constitutes a new
experimentation ground for combining mass-interaction
physics with the immense panoply of signal-based tools
available inside of Max, for any sound synthesis, transfor-
mation or analysis purpose.

An immediate perspective of this work is integration with
affordable force feedback systems (such as the FireFader
or the Haply 7 device). A more fundamental perspective
for musical creation is considering sound synthesis with
3D mass-interaction models, as modelling virtual objects
with spatial attributes naturally addresses many of the limi-
tations of 1D modelling, in particular regarding non-linear
dynamics.

It is our hope that this work will constitute another step
towards opening mass-interaction modelling to a larger
spectrum of users, in the Computer Music community and
beyond. Despite the apparent simplicity of the formalism,
we are convinced that much has still to be said, discovered,
and experimented.

7. APPENDIX: STABILITY CONDITIONS FOR
THE HARMONIC OSCILLATOR

Following equations (2) and (4), the discrete time recur-
rence of the linear harmonic oscillator composed of a mass,
dampened spring and a fixed point can be expressed (in the
absence of external forces other than the spring) as:

7 http://haply.co
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X(n+1) +
(K+Z

M
−2
)
.X(n)+

(
1− Z

M

)
.X(n−1) = 0 (6)

The associated characteristic polynomial is:

r2 +A.r+B = 0 (7)

with A =
(
K+Z
M −2

)
and B =

(
1− Z

M

)
, giving the

discriminant ∆ = A2 − 4B.

7.1 Case 1: Oscillating conditions (∆ < 0)

If ∆ < 0 equation (7) possesses complex roots and gives an
oscillating solution. We can therefore express the physical
parameters that bound oscillating solutions as:

(K+Z

M
−2
)2

− 4
(

1− Z

M

)
< 0 (8)

Which can be developed into:

(K + Z)2 < 4KM (9)

The pseudo-periodic resulting oscillator is of the form:

X(n) = χρncos(nωp + ϕ) (10)

With ρ =
√
B and ωp = arccos

(
− A

2
√
B

)
. Oscillations

converge towards 0 for 0 < Z
M < 1 and are divergent

otherwise.

7.2 Case 2: Non-oscillating conditions (∆ ≥ 0)

∆ = 0 leads to a single real root and a solution of the form:

X(n) = (α+ βn)
(
− A

2

)n

= (α+ βn)
(

1− K+Z

2M

)n (11)

This condition equates to critical damping in the oscillator:

Z = 2
√
KM −K (12)

This solution converges if |1−
√

K
M | < 1, resulting in the

following stability limits:

0 <

√
K

M
< 2 (13)

If ∆ > 0, equation (7) has two real roots r1 and r2 and
the solution is of the form:

X(n) = α(r1)n + β(r2)n (14)

with roots:

r1,2 =
−A±

√
∆

2
(15)

X(n) converges towards zero if |r1| < 1 and |r2| < 1.

Taking |−A+
√

∆
2 | < 1 we can express two inequalities:

√
∆ < 2−A
√

∆ < 2 +A
(16)

Which after developing ∆ and squaring the inequalities
(assuming 0 < K+Z < 4M so that both sides are positive)
results in:

A−B < 1

A+B > −1
(17)

Leading to the final stability conditions as functions of M ,
K and Z:

K

M
> 0

K + 2Z < 4M
(18)

7.3 Final stability conditions

The stability conditions and regimes for our mass-interaction
harmonic oscillator are given in Figure 7. The oscillator
is numerically stable if the stiffness, damping and mass
parameters verify:

K + 2Z < 4M
K/M > 0

Additionally the system will be in an oscillatory regime if
the same parameters verify:

(K + Z)2 < 4KM
0 < Z/M < 1

Figure 7. Stability conditions for the harmonic oscillator.

Generally speaking, the static regime stability condition
for a mass connected to any number of linear springs and/or
dampers can be expressed by analysing the harmonic oscil-
lator with Keq =

∑
K and Zeq =

∑
Z.
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ABSTRACT

This paper describes a novel framework for real-time
sonification of surface textures in virtual reality (VR),
aimed towards realistically representing the experience of
driving over a virtual surface. A combination of captur-
ing techniques of real-world surfaces are used for mapping
3D geometry, texture maps or auditory attributes (aural
and vibrotactile) feedback. For the sonification rendering,
we propose the use of information from primarily graphi-
cal texture features, to define target units in concatenative
sound synthesis. To foster models that go beyond current
generation of simple sound textures (e.g., wind, rain, fire),
towards highly “synchronized” and expressive scenarios,
our contribution draws a framework for higher-level mod-
eling of a bicycle’s kinematic rolling on ground contact,
with enhanced perceptual symbiosis between auditory, vi-
sual and vibrotactile stimuli. We scanned two surfaces rep-
resented as texture maps, consisting of different features,
morphology and matching navigation. We define target tra-
jectories in a 2-dimensional audio feature space, according
to a temporal model and morphological attributes of the
surfaces. This synthesis method serves two purposes: a
real-time auditory feedback, and vibrotactile feedback in-
duced through playing back the concatenated sound sam-
ples using a vibrotactile inducer speaker.

1. INTRODUCTION

Contact between interacting objects in a natural environ-
ment often conveys information about the objects them-
selves. For instance, when walking on a surface, the con-
tact between our feet and the ground will provide auditory
and haptic feedback, which in many cases may be suffi-
cient for us to recognize the surface we are walking on [1].
For initial surface identification, humans may utilize vision
[2], but studies have shown how the multimodal percep-
tion of surfaces contributes to our experience and recog-

Copyright: c© 2019 Eduardo Magalhães et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-
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nition of surfaces [3]. If vision does not convey sufficient
surface information, we may be able to discern it through
other sensory channels. An example would be when grad-
ually investigating a frozen lake, to test for safety. Sim-
ply looking at the lake will likely not provide sufficient in-
formation, so we gradually test from feedback; tapping or
stepping on the lake to gauge its thickness from the mul-
tisensory feedback it causes. How does it sound? How
does it feel? Does the stepping even produce visual feed-
back, from changes such as cracks or any other visible re-
actions to weight or impact? However, there seems to be
no definitive consensus on what constitutes a texture [4],
but perception of surface textures can be considered multi-
dimensional (rough/smooth, fine/rough, slippery/resistant,
etc.) as well as multisensory (experienced through haptics,
vision and audition) [2]. As such, we expect surface inter-
action feedback, whether we need it to explore a surface
(e.g. ice thickness) or simply expect it to be part of our
contact experience in natural environments.

To our knowledge, most solutions to aural and vibrotac-
tile feedback in virtual reality (VR) rely on static, fixed
or synthetic solutions, triggered by binary states (i.e., on
and off) or random variation. While these methods have
been assessed as expressive and natural, in light of the de-
gree they play within complex multimodal scenarios, no
systematic evaluation has addressed the degrees of corre-
spondence between modalities at finer temporal granulari-
ties [5]. In this context, our work strives for a method ca-
pable of generating audio streams with highly controllable
nuances for aural and vibrotactile feedback using concate-
native sound synthesis (CSS) [6]. Despite the lack of use-
cases adopting this sample-based synthesis in VR, the tech-
nique has proven to be quite robust in generating dynamic,
evolving and ever-changing sound textures from short au-
dio excerpts. Additionally, it enables the creation of audio
streams, at different temporal granularities.

The integration of CSS in VR can tackle two important
limitations of the technique, as identified in [6]: 1) the eval-
uation of a descriptors’ salience, notably the difference be-
tween the aural and the vibrotactile descriptor spaces, and
2) the definition of targets which convey both the finer de-
gree of user-controllable actions interacting with the Vir-
tual Environment (VE). Ultimately, we aim to foster a
unified aural and vibrotactile framework, which stresses a
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high level of control, adaptation and presumably a greater
sense of immersion engendered by congruent sensory feed-
back.

In this paper, we advance a framework for the expressive
sonification of a continous ground contact, applicable for
driving type experiences (e.g. biking). More specifically,
we aim towards driving experiences, where a part of the
VR interaction includes forward-moving wheels, making
contact with surface material, while moving across the vir-
tual landscape. The paper presents a preliminary case sce-
nario using an instrumented training bicycle, for interact-
ing with two surface textures: asphalt and dirt road (cov-
ered with leaves). Using image texture features and their
intrinsic structure derived from displacement maps, we aim
to foster a method to dynamically map repetitive user ac-
tions to a CSS engine. In this context, the main novelty is
the use of CSS for aural and vibrotactile feedback, which
to the best of our knowledge, has not been thoroughly ex-
plored and tested. Ultimately, the contribution aims to
explore a larger framework that addresses spatiotempo-
ral rolling friction with a high level of visual-aural-haptic
synchronism and congruence. We show some promising
preliminary results, which propose that sound descriptor-
based models within CSS, can provide a real-time adaptive
method to induce vibrotactile feedback within VR.

2. RELATED WORK

The human somatosensory (haptic) system is commonly
divided into cutaneous and kinesthetic senses. Cutaneous,
also frequently referred to as tactile sensation, refers to ex-
teroreceptors responding to stimuli across the entire sur-
face of the skin, including touch, pressure, vibration, tem-
perature and pain [7]. Kinesthetic sensation refers to the
perceptual receptors in the joints, tendons and muscles
which give information about position and movement of
the body (proprioception). It constantly monitors if body
movement is caused by self-directed motion or an exter-
nal force (such as the vibration from the bike while cross-
ing rough terrain) [8]. Haptic technology has the ability
to evoke human somatosensory stimulation, by providing
tactile or kinesthetic cues through e.g. ground-referenced
haptic devices [9], for example, force feedback or vibration
to physical steering props [10].

On a real bicycle ride, several sensory channels assist
each other in maintaining balance and control, and vision is
one of the most predominant modalities to elicit appropri-
ate responses. However, other mechanical sensory systems
are equally important to perform complex motor tasks. The
vestibular system is responsible for sensing head move-
ment, orientation and balance, and is tightly linked to the
kinesthetic sensation and the visual system [7]. The multi-
sensory integration of these different sensations assist hu-
mans in creating a unitary understanding of the world, e.g.
through active haptic exploration. For example, the vi-
sual system can, with a greater range, anticipate incoming
obstacles and changes in surface structure, which necessi-
tates preparation of the body to respond accordingly, with
both speed and precision to uphold balance and stability.
Thus, recognition of surface textures and geometric varia-

tions is paramount to maintaining control of a real life bike.
Equally, the perception of texture from a tactile perspec-
tive, can be viewed as a product of vibration during sur-
face exploration with a lateral movement of the hand [11],
or vibrotactile stimulation of the feet [3]. In VR, this sen-
sation can be simulated through active haptics, such as vi-
brotactile actuators or force feedback systems [9]. It has
been shown that mediating such information can increase
the sense of realism of a virtual experience [12, 13], aid
in the identification of surface information [14], as well as
improving task performance and precision [15, 16].

Previous studies have shown that the human post-
perceptual system will integrate conflicting information, in
which case a bias towards the stronger modality may ap-
pear, also known as intersensory bias [17] or sensory dom-
inance [2]. One of the most famous example of this, is
the visuotactile cross-modal interaction of the rubber hand
illusion [18]. In the experiment, a majority of subjects per-
ceived a rubber hand as their own hand, when observing
the rubber hand being brushed simultaneously as their own
hand, while the real hand was in the same approximate po-
sition, but visually hidden. This sensory illusion persists,
because the visual cues dominate the sense of propriocep-
tion. Furthermore, another study has shown that when ex-
posed to a visuotactile discrepancy, the haptic sensation
adapts to vision when visual stimuli is more reliable, but
haptic exploration dominate vision when the reliability of
the visual stimuli was decreased [19]. Similar results of
haptic dominance was shown by [20] when participants
were presented with ambiguous visual cues.

The perceptual system will go to great length to form
and maintain a unitary experience. But while being an
adept and capable system, it also shows a considerable re-
liance on specific pattern interpretations, and may easily
be affected when its logic is challenged, whether intention-
ally or accidentally. Especially considering the latter; the
range of multisensory feedback potential with immersive
VR technology is comprehensive. The illusion of being
present in the VE, requires that it represents a coherent
perceptual experience with sensory consistency [21]. So
while sensory integration from congruent stimuli may aid
the intelligibility of an object or amplify the experience
of its sensory feedback, incongruent stimuli may quickly
become disruptive, confusing, or even hinder a sense of
presence.

For VR experiences, where a central user experience (or
interaction design aspects) depends on correct perceptual
interpretations of VE content/objects (e.g. for interpre-
tation of valid actions), consistent and congruent stimuli
should be a crucial consideration [21]. Studies on natural
interactive walking has shown how exactly auditory and
active haptic feedback has been able to convey the mul-
tisensory experience of walking surfaces [3]. For an im-
mersive experience of driving across simulated virtual sur-
faces, real-time auditory and vibrotactile feedback medi-
ated with technology of high temporal and spatial resolu-
tion, is naturally likely to play an essential part as well, but
differs from human plantigrade gait due to the mechanical
differences between the interrupted surface contact of the
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feet and that of a spinning wheel which maintains constant
and continuous contact.

While studies on exercise biking show that virtual nature
environments can be used to augment the exercise expe-
rience for motivational purposes with elderly users [22],
these augmentations focus primarily on visuals for envi-
ronment mediation. Experiencing nature content and trav-
eling the environments, showed to be defining parts of el-
derly users’ motivation to exercise [23]. For some users,
introducing a VR headset to increase system immersion
[21] further improved motivation and the user experience,
partly due to experiencing of increased presence, but more
qualitatively from feeling ’closer’ to the (virtual) nature en-
vironment [24].

2.1 Visual world capture

For realistic experiences of feedback, e.g. from interactive
virtual objects, congruence logically depends on the per-
ceived realism of objects themselves, through all sensory
modalities. In a study on the perceptual relationship be-
tween audio, video and audiovisual quality, results showed
that high image quality positively affects the perception
of (accompanying) audio quality, and vice versa [25, 26].
As the quality of the visual display is steadily increas-
ing, it can be cogently derived that rendering techniques
for interfaces targeting other sensory modalities must be
paid equal attention and enhancement, to maintain sensory
consistency. Photo-realistic capturing techniques, such as
photogrammetry, can be supplied by affordable camera
hardware (e.g., a standard smartphone-embedded camera)
with tangible post processing time, to enable accessible 3D
’scanning’ procedures of real-life objects. These captures
can be merged into 3D geometry meshes, or surface cap-
ture for texture mapping, etc. [27]. The process includes
combining a vast amount of photographs of an object from
different angles for perfect alignment and capture of depth,
to create a mesh and textures that resembles the captured
object. High resolution meshes can be simplified in sev-
eral ways, but often includes creating normal maps to sim-
ulate the fine geometric surface detail, and thus achieving
the same level of detail and perceived granularity, with a
decreased amount of vertices. However, the issue with
normal maps is that the meshes themselves are often flat,
which will be revealed when perceived from extreme an-
gles. Displacement mapping is a different technique used
to render details on a simple mesh, but where surfaces are
actually displaced, based on a greyscale texture map (also
known as a displacement map). Displacement maps are
derived from height fields and elevation is encoded in each
texel in a range from 0 (black) to 255 (white), in an 8-
bit image, generating an actual displacement of the ver-
tices along the surface normals [28]. Black-colored pixels
are translated to minimum height, and white-colored pix-
els are translated to maximum height. Displacement maps
typically requires a high level of vertices to achieve a good
result, however some displacement procedures also afford
a tessellation phase (i.e. adding additional subdivisions to
the mesh before applying the displacement itself) [29].

Fig. 1 shows the process of adding geometry to a mesh

Figure 1. Texture mapping with an added displacement
map. The results is a visually noticeable geometrical
change of the surface, based fundamentally on the origi-
nal texture map.

based on a displacement map and additional subdivision of
the mesh (c). Here a texture map (a) is added to a primi-
tive plane shape, and based on a displacement map (b) the
mesh is tessellated and vertices are displaced along surface
normals.

Although displacement mapping is a great way of achiev-
ing additional sense of depth and details, the addition of
vertices also means an increased load on the graphical pro-
cessing unit (GPU) [29]. For the developer, considera-
tions towards optimization are always relevant, often re-
lated to the conflict of performance versus quality. For
the purposes of this paper, the visual rendering of sur-
faces specifically (but not necessarily the remaining en-
vironment), should prioritize quality (displacement- over
normal maps). Displacements and other geometric details
in the visual surface representation, should be visually ob-
servable. Especially for moving forward, vision allows
a user foresight of what surface features the vehicle will
cross momentarily. It sets expectations for the translation
of the visual cues into multimodal surface feedback. This
can be the case for more prominent objects on the surface,
but also simply for parts of the surface that are distinguish-
able or unique. And example would be a hard rock during
on a soft dirt path, or a pile of crisp leaves on a sidewalk.
The former (rock) would likely rely on displacement with
multimodal feedback being focused quite a bit on the hap-
tics, while the latter (leaves) would unlikely demand much
displacement or haptic feedback, but would elicit strong
auditory feedback.

2.2 Concatenative Sound Synthesis

Concatenative sound synthesis (CSS) is a sampling tech-
nique that creates audio streams by combining snippets
from a large audio database [30]. It can be seen as an ex-
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tension of granular synthesis [6,31], towards greater levels
of control and automation by adopting content-based au-
dio description methods from Music Information Retrieval
(MIR).

Historically, CSS has been largely applied to the syn-
thesis of sound textures/environmental sounds and mu-
sic [32]. In the former category, of great relevance to
the current work, CSS successfully tackles the pervasive
post-production problem of extending a given audio clip,
[33, 34], to more creative solutions within games, VR and
interactive installations; and even to procedurally gener-
ate highly controlled nuances that match external actua-
tors [31, 35].

CSS builds up a database of pre- or live-recorded units
(i.e., segments or snippets with typical lengths of 50 ms to
a few seconds) from an input audio source. Relevant sonic
properties of each unit, such as pitch, loudness, noisiness,
or spectral shape, are merged into a feature vector, which
represents the units in the system. Due to their reduced di-
mensionality compared with the raw audio signal, feature
vectors allow efficient search and retrieval from extensive
data bases. New audio streams are created by specifying
target queries, for which the best match is retrieved from
the database to be played back.

The selection of attributes in the feature vector and tar-
get queries, as well as the metrics used to compare them
are crucial to the system performance and quality. In this
context, the nature of the input audio source, application
domain and target definition (by navigating in a descrip-
tor space) are fundamental to the parametrization of the
system algorithms. For a comprehensive comparison of
these variables and their implications in the musical re-
sults, please refer to [36].

3. METHODOLOGY

Fig. 2 shows the architecture of a concatenative sound syn-
thesis engine for aural and vibrotactile feedback in VR. To
the CSS prototypical component modules of this synthesis
technique (in grey), we introduce a novel target definition
method driven by texture map features from photogram-
metric models of the provided surfaces (identified by their
ID). Within this application context, particular emphasis
is given to repetitive activities, such as walking, pedaling,
and swimming, whose attributes are defined in the system
by their angular velocity. Next, we detail each of the com-
ponent modules of the architecture, using as a case-base
scenario a bicycle ride on two surfaces asphalt and dirt road
covered with leaves.

3.1 Source sounds

We recorded real bicycle rides on two different surfaces:
asphalt and dirt road covered with leaves. The choice of
these surfaces aims at designing a preliminary battery of
multimodal tests, which enforce scenarios where the vi-
brotactile and aural feedback is known to have different
impact. While the vibrotactile feedback of these two sur-
faces was expected to have a minimal discrepancy, the au-
ral feedback was expected to be quite distinctive. At two

Figure 2. System architecture for a concatenative sound
synthesis engine for vibrotactile and aural feedback (grey
blocks) in VR. Target definition is driven by texture fea-
tures from photogrammetric models, texture ID and angu-
lar velocity (white blocks).

of the recording sessions, microphones were mounted to a
bicycle with 1) a standard cardioid microphone, pointing
at the bicycle wheel to capture audio generated by the tire
against the surfaces , and 2) a contact microphone attached
to the chassis of the bike to capture the vibrations propa-
gating through the wheel caused by the changing surface
texture. The adopted audio capture techniques aimed at
a clear distinction between synchronized auditory sources
to test both the descriptors efficiency in discriminating the
sources.

3.2 Segmentation and analysis

To segment the recordings, we chopped the signal into
equal-length units of 50 ms. This simple and efficient
segmentation method was favored instead of more com-
plex and structure-aware segmentation methods (e.g. us-
ing peaks from a spectral novelty function), as the source
sounds are largely monotonic and repetitive in nature. Fur-
thermore, the adopted unit length typically ensures a high
degree of stationary behavior across its duration, thus pro-
moting a more robust analysis of the signal.

Each unit was then analyzed using the entire set of eight
low-level audio descriptors within MUBU [37]: frequency,
energy, periodicity, first-order autocorrelation coefficient
(AC1), loudness, spectral centroid, spectral spread, and
spectral skewness. Hence, an eight-dimensional feature
vector was created for each unit. Each descriptor per unit
is represented by the mean value of overlapping windows
across its duration (window size≈ 11.6mswith 50% over-
lap).

3.3 Database

A hierarchical database architecture was adopted to store
all imported source audio files and generated data. The
former is stored into a buffer and can be easily retrieved by

351

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



accessing chunks of audio by an index (or sample) range.
The latter stores all generated data from the source files
during segmentation and analysis in a database using a
hierarchical structure. Its top-level hierarchy includes as
many entries as the number of surfaces, identified by an
ID. Within each surface ID, we can parse a sub-level with
three fields: 1) unit number, 2) unit onset (in samples), and
3) descriptors (feature vector).

3.4 Target

Targets are defined from displacement maps information
per texture, which is acquired from the surface shaders in
the Unity3D game engine. Acquiring surface information
is a process that requires several steps. First of all, to mea-
sure the speed of the bike, the angular velocity has to be
converted to meters per second, and the position of the
bike in world space (i.e the coordinate system of the game
scene) has to be logged to figure out which mesh the bike
is currently interacting with. In Unity, each game-object
can be assigned a unique identification tag. Identification
of surfaces is thus registered through a raycasting algo-
rithm which originates from the approximated ground con-
tact point of the front wheel of the virtual bike. When the
raycast registers a collision with a ground-surface it identi-
fies the surface-tag, and accesses the displacement map in
the subshader, to read the corresponding normalized pixel
value (between 0 and 1) in the texture coordinate (texco-
ord), defined by the position of the raycast-hit (see Fig.3.).

3.5 Unit selection

Units selection is the component module responsible for
finding the best matching units to be synthesized. It aims
to assess the database unit that best fits a particular tar-
get query–measured by its target cost, or distance in the
descriptor space–but also by minimizing the spectral dis-
placement between unit bounds–measured by concatena-
tion cost. In this context, we focus mainly in the first met-
ric, as the latter metric is implicitly modelled in the tar-
get definition. The better the targets capture the temporal
nuances of the repetitive actions, the more unnecessary is
the concatenation cost. Therefore, a simple real-time local
search for the best matching unit is used without consid-
ering its surrounding temporal dimensions. Furthermore,
we consider the adoption of jitter as a result of a flexible k-
nearest neighbour with a user-definable k value, to be em-
pirically tested.

3.6 Synthesis

Synthesis is done by two concatenating synthesis engines,
which generate unique streams for each capture technique,
i.e., aural and vibrotactile. These streams are then played
back through their correspondent channel. The aural feed-
back is sent to the headphones and the vibrotactile feed-
back is sent to a low frequency audio transducer (Butt-
Kicker BK-LFE).

Within each stream, selected units are concatenated with
a Gaussian amplitude envelope and an 50% overlap. We
adopt a spectral compressor-expander filter to enhance

Figure 3. This figure visualizes the procedures of 1) acquir-
ing surface information from a mesh through a raycast-hit,
and 2) reading the corresponding texture-coordinate (tex-
coord) value in the displacement map, and 3) continuously
sending that information to target units within the descrip-
tors space once every frame.

the quality of the unit concatenation by minimizing dis-
continuities between the spectral peaks of adjacent units.
Roughly, the signal process is done by applying on short-
term windows (≈ 50ms) a filtering mask resulting from the
interpolation of the spectral content from neighbor win-
dows.

4. PRELIMINARY EVALUATION

A preliminary evaluation of our framework aims to assess
particular design choices of a unified CSS engine for both
the aural and vibrotactile feedback in VR. In detail, we
intend to promote a better understanding of the idiosyn-
crasies of the descriptor spaces resulting from our dual cap-
ture technique. Ultimately, we can endorse our informal
perceptual hypothesis that the most expressive and salient
features in aural and haptic descriptor spaces differ, and
thus require different modelling strategies. To this end, we
conducted statistical analysis to assess 1) which descrip-
tors better represent each surface in a 2-D navigable space
and 2) if the dual aural-haptic synthesis require different
descriptors spaces to optimally navigate the corpus.

Following [34,38,39], we adopt a coefficient of variation,
Cv , as a dimensionless (i.e. scale-invariant) measure of
dispersion to identify the descriptors with greater salience.
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As such, we aim to better discriminate the sound source
in a 2-D navigable space and (conceivably) at a perceptual
level. The coefficient of variation, Cv , is computed as the
ratio of the standard deviation, σ, to the mean, µ, so that:

Cv =
σ

µ
. (1)

The result expresses a percentage value of the descriptor
extent of variability in relation to its mean.

Moreover, we adopt the Spearman’s rank correlation ρ to
determine the statistical dependence between the contact
and standard (condenser) microphones on their descriptors
degree of variability (or salience). The Spearman rank cor-
relation is expressed by a value in the +1 to -1 range. +1
indicates a perfect association and -1 indicates a perfect
negative association of ranks. The closer to 0, the weaker
the association between the variables.

Our informal perceptual expectation is that the asphalt
should provide a higher degree of descriptor dependency,
given its low aural and haptic feedback, but may be more
noticible in surfaces such as the dirt road with leaves, as
its aural feedback is notoriously more prominent than the
haptic feedback.

Table 1 shows the coefficient of variation, Cv , and mean
values, µ, descriptor statistics for the two surfaces under
study. The results are quite expressive across both surfaces
and capture techniques for the spectral low-level timbral
descriptors (centroid, spread, skewness and kurtosis). Con-
versely, the remaining temporal domain descriptors (fre-
quency, energy, periodicity and first-order autocorrelation
coefficient or AC1) show considerably less saliency. More-
over, the most salient descriptors (with the two high- est
coefficient of variation, Cv , for asphalt are the same for
both capture techniques (contact and condenser), while for
the dirt road with leaves surface, the descriptors correspon-
dence does not hold. To a certain extent, this reinforces our
perceptual hypothesis that both haptic and aural realities
are different and require different corpus and navigation
models. The Spearman’s rank correlation for each surface
across the two capture techniques shows a high degree of
dependency between the contact and standard (condenser)
microphones (ρ = .857 with p > 0.01) for the asphalt sur-
face. A weaker association is found for the dirt road with
leaves (ρ = .686 with p > 0.05). These results align with
our initial expectations that some surfaces will demand a
greater degree of separation in the modelling of trajecto-
ries and descriptor space definition (to optimize the 2-D
navigation).

Fig. 4 presents the 2-D navigation plots per audio cap-
ture technique, in which both surfaces are included. The
graphical representation suggests that some level of over-
lap between surfaces can be adopted in the architecture and
system design. In other words, we can envision a possi-
ble scenario where all surfaces coexist in the same corpus,
without the need to specify in the target a surface ID to
constrain the unit search.
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Figure 4. Two-dimensional visualization of the spectral
spread and spectral kurtosis descriptor space for the two
surfaces under study, i.e., asphalt and dirt road with leaves
and for the two miking methods.

5. CONCLUSIONS AND FUTURE WORK

This paper presents preliminary work towards creating a
novel approach to synthesize audiohaptic feedback from
surface textures capture through e.g. photogrammetry. Be-
sides facilitating visually realistic virtual objects, meth-
ods like photogrammetry represent new possibilities in a
broader scheme. The ability to visually ’capture’ reality
into a realistic virtual representations, promotes method-
ological considerations for similar approaches to other
modalities. The puzzle of constructing congruent integra-
tion of (synthetic) feedback, could become close to trivial,
if feedback is constructed from capture of the actual visual,
auditory and vibrotactile features of the real world object.

This work implementation and preliminary testing re-
vealed that the combination of CSS with high realistic
graphic assets, can provide a convincing and promising
method to induce realism within immersive virtual envi-
ronments. Furthermore, our preliminary results seem to
indicate that using specific descriptors to analyze sound
sources obtained from different capture methods can pro-
vide more precise clustering of sound units and sequences
for each type of sensory feedback, including a further look
into applications for realistic surface-haptic driving simu-
lations.

We observed some limitations as well, at this point and
related to some CSS intrinsic characteristics. A narrow
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Asphalt Dirt with Leaves
Contact Microphone Condenser Microphone Contact Microphone Condenser Microphone

Audio Descriptor Cv µ Cv µ Cv µ Cv µ
Frequency 13 502.800 22 449.211 13 499.54 23 370.001

Energy 38 .005 32 .007 39 .009 34 .001
Periodicity 18 .371 41 .153 19 .388 53 .066

AC1 1 .967 1 .979 1 .963 2 .966
Loudness 7 -48.292 6 -47.194 7 -42.534 5 -40.083
Centroid 35 894.746 41 1294.465 30 1020.219 34 2846.533
Spread 70 692946.875 57 2942106.250 50 891232.511 27 6386084

Skewness 38 4.024 37 3.468 32 2.983 72 1.197
Kurtosis 89 31.758 67 20.014 58 17.701 67 4.681

Table 1. Coefficient of variation, Cv , and mean values, µ, statistics for the asphalt and dirt road covered with leaves surfaces
per audio descriptor and for the two audio capture techniques.

sound corpus, if sound database is not broad enough. And
lacking audio representations of specific interactions might
result in less expressive and inaccurate sensory feedback.

This paper marks the first in a ongoing line of studies
using the model proposed. Studies of interest include ap-
proaches to practical implementations of the feedback sys-
tem (especially haptics, most likely), users perception of
realism based on the multimodal surface feedback, possi-
ble implications for vection with VR bike augmentation,
presence studies with elderly users, and a line of percep-
tion tests to further explore the best practices of the multi-
sensory balancing between the modalities and techniques.
Furthermore, future research should at least consider the
impact on system performance when introducing shaders
that are more demanding to the GPU, such as displace-
ment mapping. However, alternative methods exists that
do make use of the information derived from height fields
to simulate displacement without adding additional geom-
etry, e.g. parallax mapping. Such alternatives could still
utilize the same methodology while being more affordable
in terms of computational resources. A fundamental topic
in the near future is to test the use of accelerometers as
capture technique of the surface displacements. Our aim is
to learn which capture technique better drives the genera-
tion of vibrotactile feedback using CSS, towards a definite
methodology and a fully working prototype.
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ABSTRACT

In this work, we apply recent research results in loop-
back frequency modulation (FM) to real-time parametric 
synthesis of percussion sounds. Loopback FM is a vari-
ant of FM synthesis whereby the carrier oscillator “loops 
back” to serve as a modulator of its own frequency. Like 
FM, more spectral components emerge, but further, when 
the loopback coefficient is made time varying, frequency 
trajectories that resemble the nonlinearities heard in acous-
tic percussion instruments appear. Here, loopback FM is 
used to parametrically synthesize this effect in struck per-
cussion instruments, known to exhibit frequency sweeps 
(among other nonlinear characteristics) due to modal cou-
pling. While many percussion synthesis models incorpo-
rate such nonlinear effects while aiming for acoustic accu-
racy, computational efficiency is often sacrificed, prohibit-
ing real-time use. This work seeks to develop a real-time 
percussion synthesis model that creates a variety of novel 
sounds and captures the sonic qualities of nonlinear per-
cussion instruments. A linear, modal synthesis percussion 
model is modified to use loopback FM oscillators, which 
allows the model to create rich and abstract percussive hits 
in real-time. Musically intuitive parameters for the percus-
sion model are emphasized resulting in a usable percussion 
sound synthesizer.

1. INTRODUCTION

Synthesis of plates, membranes, and other percussion 
instruments have been realized using several different 
modeling techniques including modal synthesis (MS) [1], 
the Functional Transformation Method (FTM) [2], finite 
difference schemes (FDS) [3], and the digital waveguide 
mesh (DWM) [4]. When real percussion instruments are 
struck with a large velocity excitation, nonlinear effects 
often result. Examples of these nonlinearities include the 
cascade of energy from low to high frequency components 
that give cymbals their characteristic sound and pitch 
glides heard with gongs [5].

Many nonlinear percussion synthesis models are compu-
tationally expensive and may exhibit stability issues that 
render them unsuitable for real-time synthesis on standard 
computers [1–3]. An exception to this is described in [6], 
where computationally heavy calculations are approx-
imated so that a nonlinear membrane model is able to

Copyright: c© 2019 Jennifer S. Hsu et al. This is an open-access article distributed 
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Figure 1. The loopback FM percussion synthesis method.

simulate up to 1000 modes in real-time at a sampling rate
of 44.1kHz. For the percussion models in [7] and [2], the
most computationally expensive component is the nonlin-
ear calculation. Though the linear version of each model
can be efficiently computed, they produce sounds that are
less interesting than when nonlinearities are added. With
this understanding, one may like to use a linear system
to synthesize percussive sounds and approximate the
nonlinearities in an efficient and perceptually similar way.

For example, in [2], Avanzini and Marogna present
a sound synthesis simulation of a nonlinear, tension-
modulated percussion membrane. The model consists of a
linear portion and a nonlinear feedback section simulating
tension modulation. The linear model is computationally
efficient, but the nonlinear tension modulation requires a
feedback calculation for every sample, a computational
complexity that makes it unable to run in real time. In a
following paper [8], the nonlinear feedback calculation
is replaced with an efficient approximation that can be
calculated with the computational expense similar to that
of the linear model.
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Instead of striving for an acoustically accurate simulation
as some previous research has done, the aim here is to cre-
ate a percussion synthesizer that creates a variety of novel
sounds inspired by the dynamic and nonlinear phenomena
heard in percussion instruments. Similar to the strategy
used in [9], in which the pitch glide capabilities of a Duff-
ing oscillator are explored in the sound synthesis of a gong,
the work presented herein employs the nonlinear effects of
loopback FM, a technique initially presented in [10] and
further developed in [11]. Here, loopback FM oscillators
are used to enhance a modal synthesis (MS) of percussion
sound (see Figure 1). Loopback FM is a variant of FM
synthesis where the carrier signal is looped back to modu-
late its own frequency, resulting in complex spectra (much
like traditional FM), and interesting frequency trajectories
that resemble the nonlinearities observed in real percussion
instruments when the loopback coefficient is made time
varying.

In Section 2, we explore traditional MS and how it can
be used to synthesize percussive sounds. Section 3 re-
views loopback FM equations relevant to the current con-
text. Section 4 explains how traditional MS can be mod-
ified with loopback FM oscillators to create a wide vari-
ety of percussion sounds. Synthesis parameters are dis-
cussed in Section 5. Section 6 presents synthesis examples
of a marimba, tom tom, and circular plate. Concluding
thoughts and future research directions are considered in
Section 7.

2. PERCUSSION SYNTHESIS USING
TRADITIONAL MODAL SYNTHESIS

MS is a technique that resynthesizes the sound of an
acoustic object according to its acoustic modes or vibra-
tional patterns. The resonant frequencies of an acoustic
object arise through the sinusoidal motion of the object’s
modes. With traditional MS, each mode is synthesized
using a second-order resonating filter with a corresponding
frequency, initial amplitude, and decay [12].

To synthesize a percussive sound with MS, we begin with
a list of Nf modal frequencies fi, the values of which can
be obtained from acoustic experiments, spectral analysis
of recorded or physically modeled sounds (e.g. DWMs,
FDSs, etc), or calculated using theoretical equations.

Though MS traditionally models each frequency mode
with a second-order bandpass resonant filter with center
frequency fi, in this work the filters are replaced by si-
nusoidal oscillators of frequency (or center frequency if
frequency is time varying) fi. This allows for a straight-
forward comparison with the loopback FM version (also
implemented here with oscillators) than if traditional MS
bandpass filters had been used. A sinusoidal component
with carrier frequency ωc,i = 2πfi is expressed as si(n) =
sin(ωc,inT ) for time sample n and period T = 1/fs for
sampling rate fs. Each sinusoidal component is multi-
plied with an amplitude envelope wi(n). For percussive
sounds, wi(n) are typically exponentially decreasing en-
velopes with possibly different initial amplitudes and de-
cay rates for different modes. For example, for natural
sounding results, higher-frequency modes should be made
to decay more rapidly. Enveloped sinusoidal components
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Figure 2. Traditional MS for three modal frequencies.

are added together to form the MS output given by

ms(n) =

Nf−1∑

i=0

wi(n)si(n), (1)

the spectrum of which is shown in Figure 2 for Nf = 3.
MS is efficient and useful for recreating the sound of ob-

jects that consist of a small number of resonant frequency
modes. However, MS is a linear method and (1) is inca-
pable of capturing nonlinear effects. A simple modifica-
tion to the sinusoidal components of the MS framework
allows the system to create complex and dynamic sounds
reminiscent of nonlinear vibrations in percussion instru-
ments. In this modification, each sinusoidal component is
looped back to modulate its own carrier frequency, a syn-
thesis technique coined by the authors as “Loopback FM.”

3. LOOPBACK FM

Loopback FM is a self-modulated form of FM where
the oscillator loops back and modulates its own carrier
frequency according to a feedback coefficient. This differs
from Feedback FM [13], in which the output is used to
modulate its own initial phase. Loopback FM with a static
feedback coefficient, B, and feedback FM both create
peaks in the spectrum at integer multiples of a sounding
frequency. As described in [10], the difference between
the two synthesis methods is that with loopback FM, the
feedback coefficient B can be varied over time to create
both predictable pitch and spectral changes. Conversely,
feedback FM preserves pitch (in some contexts a desirable
feature) and only introduces spectral changes. As shown
in [11], loopback FM and its closed-form IIR approxima-
tion, an expression that resembles the transfer function of
a “stretched” allpass filter [14] but for which only the real
part is used as a time-domain signal, can be used to create
complex frequency spectra and pitch contours. Here, we
present the equations for loopback FM and its closed form
representation with static pitch and timbre followed by
their time-varying formulations, which can be used to
modulate timbre and sounding frequency.

3.1 Loopback FM Formulation

The loopback FM equation involves a carrier frequency
ωc = 2πfc where ωc is the angular frequency and fc is
the frequency in Hz, and a feedback parameter B, which
controls the output’s timbre and fundamental frequency.

The loopback FM equation for static B and time sample
n is

zc(n) = ejωcT (1+B<{zc(n−1)})zc(n− 1), (2)
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with the initial condition zc(0) = 1 causing oscillation.
The output that we listen to is the real part of zc(n). The
fundamental frequency of this oscillator is not ωc but rather
ω0 = 2πf0, where f0 is the sounding frequency in Hz. The
relationship between ω0 and ωc is described by

ω0 = ωc

√
1−B2, −1 ≤ B ≤ 1, (3)

which shows that for ω0 to remain real, the value ofB must
be within the interval (−1, 1).

3.2 An Alternate Representation of the Loopback FM
Oscillator

The loopback FM oscillator zc(n) given in (2) with static
pitch and timbre may also be represented by the closed-
form representation

z0(n) =
b0 + ejω0nT

1 + b0ejω0nT
, (4)

which is similar to the transfer function of a “stretched” all-
pass filter used in [14]. In this synthesis context, (4) is used
as a time-domain signal that is a function of time sample
n, where b0 influences spectrum, ω0 specifies the sound-
ing frequency, and the sound is the real signal given by
<{z0(n)}. Parameters b0 and ω0 are related to the loop-
back FM feedback coefficient B. With (4), timbre and
pitch can be independently controlled, but this is not pos-
sible with loopback FM parameters ωc and B given in (2).
Coefficient b0 in z0(n) is related to loopback FM parame-
ter B through

b0 =

√
1−B2 − 1

B
. (5)

Note the singularity in (5) for B = 0. The relationship
between ω0 and ωc is shown in (3).

3.3 Time-varying B: Pitch and Timbre Modulation
with zc(n)

In (2), the feedback coefficient B can be varied over time
between (−1, 1) to create pitch glides and timbre varia-
tions over the length of the output signal. From (2), B is
replaced by B(n) to form

zc(n) = ejωcT (1+B(n)<{zc(n−1)})zc(n− 1) (6)

(3) reveals that when B is made to vary over time, ω0

also becomes time-varying. This creates a pitch trajectory
where the sounding frequency follows

ω0(n) = ωc
√

1−B2(n) (7)

3.4 Time-varying b0 and ω0: Pitch and Timbre
Modulation with z0(n)

Like (6), the parameters of H in (4) can be made to vary
over time to create pitch glides and spectral changes. Pa-
rameter b0 can be mapped to B(n) by

b0(n) =

√
1−B2(n)− 1

B(n)
(8)

and used in (9) to create spectral variations.

A desired pitch contour can be created by setting ω0(n) to
a pitch trajectory in the form of (7). Directly using ω0(n)
in place of ω0 in (4) will not result in the desired pitch
glide, and it is necessary to use a generalization of (4):

z0(n) =
b0(n) + ejΘ0(n)

1 + b0(n)ejΘ0(n)
. (9)

To understand Θ0(n), the instantaneous phase of the com-
plex exponential terms in (9), let ω0(t) be the continu-
ous counterpart of ω0(n) serving as the instantaneous fre-
quency, and Θ0(t) its integral with respect to time:

Θ0(t) =

∫ t

0

ω0(t)dt. (10)

Examples of the discrete-time form of (10) given by Θ0(n)
as used in (9), are shown in Section 5.5.

4. PERCUSSION SYNTHESIS WITH LOOPBACK
FM OSCILLATORS

The main steps involved in the loopback FM percussion
synthesis method are shown in Figure 1. The “Modal Syn-
thesis with Loopback FM” block consists of synthesizing
the vibrations of an abstract, nonlinear surface using MS
and (6) or (9) to produce output m(n). The “Commuted
Synthesis” block completes the percussion model by con-
volving a parametric excitation function and acoustic res-
onator impulse response with m(n).

4.1 Modal Synthesis with Loopback FM

Like the percussion MS technique described in Section 2,
the “Modal Synthesis with Loopback FM” block begins
with a list of modal frequencies fi of length Nf. Instead of
sinusoidal oscillators, Nf loopback FM oscillators are gen-
erated using the frequencies in fi. As described in [11],
the loopback FM oscillators can be expressed as resonat-
ing filters, though here, they are implemented as oscilla-
tors. This is similar to implementing MS with sinusoidal
oscillators as opposed to resonating filters as described in
Section 2. The loopback FM oscillator zc,i(n) has been
synthesized with carrier frequency ωc,i = 2πfi, where
subscript i means that ωc,i is set using the ith frequency
in fi.

The real part of each loopback FM oscillator is multiplied
with an amplitude envelope wi(n) and the enveloped loop-
back FM oscillators are summed to create the MS output

m(n) =

Nf−1∑

i=0

wi(n)<{zc,i(n)}. (11)

4.2 Commuted Synthesis

In [15], Smith efficiently models stringed musical in-
struments using commuted synthesis. This technique is
adapted here for percussion synthesis.

To complete the percussion instrument model, m(n)
must be excited by an excitation function, e(n), and
coupled to an acoustic resonator with impulse response
r(n). The equation to synthesize this relationship is

y(n) = e(n) ∗m(n) ∗ r(n) (12)
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where ∗ indicates convolution. Because there is no depen-
dence between m(n), e(n), and r(n), m(n) can be com-
muted with r(n). The excitation and resonator impulse
response can be convolved to form an aggregate excitation
a(n) = e(n) ∗ r(n).

Aggregate excitations can be stored for several excita-
tion and resonator combinations. During run-time, a low-
latency convolution method, such as the one described in
[16], can be used to convolve a(n) with m(n) to form the
final percussion model output

y(n) = a(n) ∗m(n). (13)

In our syntheses, we use a variety of resonator impulse re-
sponses as presented in Section 6 along with two different
types of parametric excitations.

4.3 Excitations

The “Excitation” block in Figure 1 involves p(n), a
function that describes the vertical position of a drum-
stick/mallet hitting a surface at time n. The excitation
signal e(n) = p(n) − p(n − 1), relates to the velocity of
the drumstick/mallet and is convolved with the acoustic
resonator impulse response to form a(n). Here, we use
raised cosine envelopes and filtered noise bursts for p(n).
These signals are parametric and affect the resulting
output timbre.

4.3.1 Raised Cosine Envelopes

The raised cosine envelope has a single parameter: the
window length L. The equation for the excitation is

p(n) =





0.5

(
1− cos

(
2πn

L− 1

))
, for 0 ≤ n < L

0, for n ≥ L
(14)

4.3.2 Filtered Noise Bursts

The parameters for a filtered noise burst are noise burst du-
ration td and low and high frequency cutoffs for a bandpass
filter flow and fhigh. Examples in this paper use white noise
filtered by a second-order Butterworth bandpass filter.

5. MUSICAL PARAMETERS FOR LOOPBACK FM
PERCUSSION SYNTHESIS

Musical parameters for the loopback FM percussion syn-
thesis method are presented here along with their corre-
sponding variables and equations.

5.1 Timbre: Oscillators created with zc,i(n) or z0,i(n)

The MS oscillators can be synthesized using zc,i(n) or
z0,i(n). To use z0,i(n) oscillators, replace zc,i(n) in (11)
with z0,i(n). While both forms produce almost identical
results from fc = 0 Hz to around fc = 2500 Hz at a
sampling rate of 44.1 kHz, when fc > 2500 Hz, the ver-
sion that uses zc,i(n) becomes much noisier, due to alias-
ing. If the sampling rate is increased, the output is the
same whether the oscillators are created using zc,i(n) or
z0,i(n). Like FM, both zc,i(n) and z0,i(n) produce signals
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Figure 3. MS using zc,i(n) and z0,i(n) with low carrier
frequencies create almost identical results.
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Figure 4. MS with zc,i(n) creates noisier output than MS
with z0,i(n) for high carrier frequencies.

that are not bandlimited. With loopback FM, a large fc
means a large feedback amount, which can mean increased
bandwidth and aliasing, similar to how a large index of
modulation corresponds to a wider bandwidth in traditional
FM. Figure 3 shows that the zc,i(n) and z0,i(n) MS os-
cillators produce similar spectrograms when the lowest of
3 modal frequencies is set to a low carrier frequency of
fc = 2000Hz. Vastly different spectrograms are produced
when the lowest of the 3 modal frequencies is set to a
higher carrier frequency of fc = 4000 Hz as shown in Fig-
ure 4. The MS using zc,i(n) synthesizes a noisier output
and can be used to create cymbal- and crash-like sounds as
shown in Section 6.3.

5.2 Timbre: B and b0

Loopback FM parameter B controls timbre in (2) while
z0(n) parameter b0 affects timbre in (4). For carrier fre-
quencies below 2500Hz, the frequency components cre-
ated using (2) or (4) are almost identical and are spaced at
integer multiples of f0. When B = 0 or b0 = 0, there are
no sidebands and the output is a pure tone. As B and b0
increase towards 1 (or decrease towards −1), more side-
bands appear and the timbre brightens. The sidebands log-
arithmically decrease in amplitude for each multiple of f0.
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Figure 5. The loopback FM magnitude spectrum. Fre-
quency components occur at integer multiples of the
sounding frequency, 300Hz, and the amplitude of the com-
ponents decreases logarithmically.

Figure 5 is a plot of the magnitude spectrum for a loopback
FM oscillator with static B = 0.9 and f0 = 300Hz. The
sounding frequency can be seen as a peak at 300Hz and the
sidebands are spaced at integer multiples of 300Hz with a
logarithmic decrease.

(5) explains the relationship between b0 and B, though
as described in Section 5.1, at high carrier frequencies, the
output from (2) will differ from that of (4).

5.3 Time-varying Timbre: B(n) and b0(n)

With (6), B(n) affects the time-varying timbre and sound-
ing frequency. When using (9), b0(n) controls the time-
varying timbre, independent of pitch. As in the static case,
as B(n) and b0(n) near 0, the output approaches a pure
tone, while as B(n) and b0(n) approach 1 and −1, the
number of sidebands created by the oscillators increases
and the timbre becomes brighter.

In Figure 6, B(n) = gn where g = 0.9999, b0(n) is ob-
tained according to (8), and amplitude envelopes are the
same for all modal frequencies. The top and middle plots
in Figure 6 compare spectrograms for a static timbre of
b0 = −0.6312 with (4) and a time-varying timbre where
b0(n) is used with (9). The sidebands in the top plot are
the same over the course of the signal, but the higher fre-
quency sidebands die out over time in the middle plot as
b0(n) increases from −1 to 0. Time-varying timbre be-
tween (6) and (9) can be compared using the middle and
bottom plots. In the bottom plot, time-varying B(n) cre-
ates timbre and pitch variation as n increases. In the mid-
dle plot, b0(n) changes the timbre without affecting the
frequency trajectories.

5.4 Sounding Frequency: ω0

For Eqs. 2 and 4, the sounding frequency can be controlled
with ω0 = 2πf0. For a desired ω0 with (2), one would use
(3) and either 1) set B to a desired value and solve for ωc
or 2) set ωc and solve for B.

Because the modal frequencies for percussive instru-
ments are often inharmonic, the sounding frequency for
percussion synthesis is not clearly defined. With MS using
z0,i(n) oscillators, ω0,i = 2πfi is used to set the sounding
frequencies of individual oscillators. For MS using zc,i(n)
oscillators, the carrier frequencies can be set to the modal
frequencies: ωc,i = 2πfi or the sounding frequencies can
be set to the modal frequencies: ω0,i = 2πfi. According
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Figure 6. Static and time-varying timbre with various MS
oscillators. Middle: b0(n) with (9) modulates timbre in-
dependently of pitch. Bottom: B(n) with (6) affects both
timbre and pitch.

to (3), when B = 0, ω0 = ωc, and setting either to the
modal frequencies would create the same output. When B
is large and close to 1 or −1, ω0 will be a lower frequency
than ωc. This means that using ωc,i = 2πfi produces
lower sounding frequencies while setting ω0,i = 2πfi
produces higher sounding frequencies, which will most
likely produce aliasing effects, especially with (2), as
described in Section 5.1. Figure 7 demonstrates that when
B is close to 1, ωc,i = 2πfi creates a toned output while
ω0,i = 2πfi creates a noisy output as higher frequencies
contribute to extreme aliasing effects.

5.5 Pitch Glides: B(n) and ω0(n)

With (6), a pitch glide can be added by varying B(n) over
time. This also produces timbral changes. A pitch glide
can be created with (9) by varying ω0(n) over time as de-
scribed in Section 3.4. To modify the pitch independently
of timbre with (9), b0 should be held constant.

As described in Section 5.1, differences between (6) and
(9) can be observed when ωc is high, and this effect oc-
curs with pitch glides. Figure 8 shows the high carrier fre-
quency difference for a pitch glide over three modal fre-
quencies using MS with (6) and (9). The pitch glide is
created with B(n) = 0.9999n, so timbre also changes. At
higher carrier frequencies, MS with Eq. 6 creates noise-
like output for the first 100ms and more spectral compo-
nents than MS with Eq. 9 from 100−250ms. From 300ms
through the remainder of the signal, the frequency compo-
nents are more similar.

Pitch glides are constrained to use exponential and linear
B(n) functions in the synthesis examples presented in this
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Loopback FM modal synthesis with f
0
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Figure 7. Loopback FM MS spectrograms for ωc,i = 2πfi
(top) and ω0,i = 2πfi (bottom). The top and bottom sig-
nals are generated using the same 3 modal frequencies with
B = 0.9.
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Spectrogram of MS using z
0,i

(n) oscillators with pitch glide, f
c
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Figure 8. MS using (6) vs. (9) at high carrier frequencies
with a pitch glide produce different spectrograms for the
first 250ms. The lowest oscillator frequency uses fc =
4000Hz.

research. This restriction onB(n) creates natural sounding
pitch glides and allows us to draw parallels between the
zc(n) and z0(n) forms.

5.5.1 Pitch Glides with Exponential B(n)

For the exponential case, B(n) = gn can be used directly
in (6) to produce a pitch glide. When using (9) for a pitch
glide, Θ0(n) can be found using B(n) = gn along with
Equations 7 and 10 which, as shown in [11], is given by

Θ0(n) =
ωc

log(g)
(
√

1− g2n − tanh−1(
√

1− g2n)) + C

(15)
where C is the constant of integration.

5.5.2 Pitch Glides with Linear B(n)

For the linear case, B(n) = kn + l produces a pitch glide
when used with (6). (9) uses the instantaneous phase given
by

Θ0(n) =
ωc

2k
((kn+ l)

√
1− (kn+ l)2

+ sin−1(kn+ l)) + C (16)

5.6 Decay Time: wi(n)

The decay time for the percussion signal can be con-
trolled through the amplitude envelopes wi(n). A
natural sounding way to set these envelopes is to model
them as exponentially decreasing envelopes over time:
wi(n) = A0e

−n/τ , with different initial amplitude values
A0, as shown in Figure 10, and/or different decay rates τ .

5.7 Commuted Synthesis Parameters

5.7.1 Attack Sharpness: Raised Cosine Envelopes

With raised cosines envelopes, small values of L create
sharper sounding attacks, while longer values ofL increase
the presence of low frequencies in the output and result
in bass-heavy sounds. Intuitively, L is proportional to the
mass of a hammer or mallet used to excite a drum head: a
longer L means a hammer/mallet with greater mass.

5.7.2 Attack Noisiness: Filtered Noise Bursts

For filtered noise burst excitations, a longer noise burst td
and higher bandpass frequency cutoff fhigh will create a
noisier attack. flow and fhigh should be tuned to filter out
undesired frequencies. For example, for a high pitched per-
cussion sound, the lower frequencies could be filtered out
from the noise burst by setting flow to a higher frequency.

5.7.3 Timbre: Acoustic Resonator Impulse Response r(n)

The acoustic resonator filters the synthesis output, so the
timbre can be further shaped by the frequencies present in
r(n). For an expansive and large sound, a room impulse re-
sponse with a long T60 may work well while for a shorter,
tuned sound, the impulse response of a small, acoustic tube
model could be used.

6. SYNTHESIS EXAMPLES

While the loopback FM percussion synthesis method is
capable of creating a variety of percussive sounds, this
section covers three sound synthesis examples that use
modal frequencies from [17]: the marimba, tom tom,
and circular plate. Although these modal frequencies
are associated with real, physical instruments, the aim of
this synthesis is not to recreate the naturally occurring
sounds. Rather, we seek to synthesize many different
types of sounds with nonlinearities similar to those that
occur in percussion instruments. For these examples,
differences between percussion synthesis using tradi-
tional and loopback FM MS are compared for the same
modal frequencies, decaying amplitude envelopes, and
commuted synthesis parameters. Sound examples can be
found at
http://musicweb.ucsd.edu/˜trsmyth/
other/percussionSynthesisLoopbackFM.html.

6.1 Marimba

Figure 9 compares the spectrograms of a marimba modeled
as a bar with two free ends using traditional and loopback
FM MS. This example sets ω0,i to seven modal frequencies
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MS of marimba with raised cosine excitation
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Loopback FM MS of marimba with raised cosine excitation
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Figure 9. Traditional (top) vs. Loopback FM MS (bottom)
using the modal frequencies of an ideal bar with two open
ends. The excitation is a raised cosine and the acoustic
resonator is an ideal tube synthesized using traditional MS.
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Figure 10. The marimba synthesis amplitude envelopes
are decaying exponentials. The initial amplitude of the en-
velopes is inversely proportional to the modal frequency of
the oscillator that is paired with the envelope.

calculated as

fi =

{
440, for i = 0

440 (2i+3)2

3.0112 , otherwise
(17)

The amplitude envelopes are decaying exponentials where
initial amplitudes decrease exponentially from 1 for the
first (lowest) modal frequency to 0.01 for the seventh
(highest) modal frequency. Figure 10 is a plot of the
amplitude envelopes used for this marimba example.
This example is created using zc,i(n) oscillators with
an 8-sample length raised cosine excitation and a pitch
glide created by setting B(n) = 0.9999n. The acoustic
resonator is an ideal, open-closed tube synthesized using
traditional MS. Compared to the signal generated using
traditional MS, the signal created using loopback FM MS
has more frequency components and a clearly increasing
pitch glide.

6.2 Tom Tom

The spectrogram of a tom tom synthesized using tradi-
tional vs. loopback FM MS is shown in Figure 11. The
modal frequencies used to synthesize the tom tom are

fi = 142 · [1, 2.15, 3.17, 3.42, 4.09, 4.80, 4.94] (18)

The amplitude envelopes are the same as those used for
the marimba as shown in Figure 10. The synthesis uses

MS of tom tom with filtered noise burst
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Loopback FM MS of tom tom with filtered noise burst
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Figure 11. Traditional (top) vs. Loopback FM MS (bot-
tom) using the modal frequencies of a tom tom. The exci-
tation is a filtered noise burst and the acoustic resonator is
a taiko drum recording.

z0,i(n) oscillators, b0 = −0.9, and the pitch glide is cre-
ated linearly increasing B from 0.55 to 0.91. The excita-
tion is a 0.05 second long noise burst filtered with a 2nd-
order Butterworth bandpass filter with frequency cutoffs at
120Hz and 4000Hz. The acoustic resonator is a recording
of a taiko drum retrieved from freesound.org. In Fig-
ure 11, there is more high frequency energy for the loop-
back FM MS than for the traditional MS, especially in the
beginning of the signal.

6.3 Circular Plate

In Figure 12, loopback FM MS of a simply-supported cir-
cular plate is compared to traditional MS of the same cir-
cular plate. The modal frequencies used are

fi = f0·[1, 2.80, 5.15, 5.98, 9.75, 14.09, (19)
14.91, 20.66, 26.99]

where f0 = 0.2287cL(h/a2) for plate thickness
h = 0.005m, plate radius a = 0.09m, and longitudinal
wave speed cL =

√
E/ρ(1− ν2) with Young’s modulus

E = 2 · 1011N/m2, plate density ρ = 7860kg/m3, and
Poisson ratio ν = 0.3. The amplitude envelopes are
decaying exponentials over time. The initial amplitude
of these envelopes decreases exponentially as frequency
increases from 1 for the lowest modal frequency to 0.5 for
the highest modal frequency. Using zc,i(n) oscillators, a
slight upwards pitch glide is created by linearly changing
B(n) from 0.91 to 0.90 over the course of the signal. The
excitation is an 8-sample long raised cosine envelope and
the acoustic resonator is a room impulse response retrieved
from echothief.com. In this example, the drastic
aliasing effects in loopback FM MS are used to create an
extremely “noisy” signal. Perceptually, the traditional MS
output sounds like a clean bell sound, while the loopback
FM MS sounds more like a noisy, struck cymbal.

7. CONCLUSIONS

This work has presented a real-time method to synthesize
novel, abstract percussion sounds using MS with loopback
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MS of circular plate with raised cosine excitation
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Loopback FM MS of circular plate with raised cosine excitation
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Figure 12. Traditional (top) vs. Loopback FM MS (bot-
tom) using the modal frequencies of a simply-supported
circular plate. The excitation is a raised cosine, and the
resonator is a room impulse response.

FM oscillators. Loopback FM creates complex spectra and
pitch glides similar to the nonlinear effects observed in
existing percussion instruments. The synthesis technique
allows for parametric control of musical dimensions in-
cluding sounding frequency, decay time, timbre, and pitch
glide. Synthesis examples using the modal frequencies of
a marimba, tom tom, and circular plate are examined.

A future research direction involves investigating the
aliasing that occurs with large carrier frequencies for both
loopback FM and its closed form expression. Another
research interest is to explore other methods of creating
nonlinearities in oscillators and using these methods with
loopback FM to create an even wider range of percussion
sounds.
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ABSTRACT

Anticipating a human musician’s tempo for a given piece 
of music using a predictable model is important for inter-
active music applications, but existing studies base such an 
anticipation based on hand-crafted features. Based on re-
cent trends in using deep learning for music performance 
rendering, we present an online method for multi-step pre-
diction of the tempo curve, given the past history of tempo 
curves and the music score that the user is playing. We 
present a linear autoregressive model whose parameters are 
determined by a deep convolutional neural network whose 
input is the music score and the history of tempo curve; 
such an architecture allows the machine to acquire a mu-
sic performance idioms based on musical contexts, while 
being able to predict the timing based on the user’s play-
ing. Evaluations show that our model is capable of improv-
ing the tempo estimate over a commonly-used baseline for 
tempo prediction by 18%.

1. INTRODUCTION

When multiple musicians play in a music ensemble for 
the first time, each player responds to one another by lis-
tening to each other and anticipating each others’ timing. 
Realizing this kind of on-the-fly online timing prediction 
for machines is important for interactive computer systems 
such as automatic accompaniment systems, since the sys-
tem needs to respond in real-time in spite of the delays in 
computer systems and/or mechanical actuators, which can 
be on the order of hundreds of milliseconds [1].

In this kind of problem setting, key requirements are (1) 
awareness to the common musical idioms associated with 
a particular music score, (2) awareness to how the human 
performer has executed the playing, and (3) interpretabil-
ity of the system behavior. Awareness to the music score is 
important because the music score and expressive parame-
ters are highly correlated [2]. For example, musicians of-
ten slow down before the end of the song. Awareness to the 
actual performance by the human musician is also impor-
tant because, as much as the music score provides strong 
cues on musical idioms, it is the performer who ultimately 
chooses to abide by or defy it. Interpretability is important

Copyright: c© 2019 Akira Maezawa. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

because it allows musicians to anticipate how the system
will respond to their playing.

Recently, it was shown in the analysis of duet interaction
[3] that using hand-crafted features from the music score
and the performance helps in timing prediction, as opposed
to using the performance features alone. However, it uses
simple hand-crafted features from the music score, poten-
tially limiting the kind of information captured from the
music score. To bypass design of handcrafted features, in
a different problem of music performance rendering, deep
learning has shown promise for acquiring features that are
relevant for the prediction of note strengths [4].

Inspired by these works, this paper presents a tempo pre-
diction method that takes into account both the music per-
formance context and the surrounding music score context,
and learns the feature representation in a data-driven man-
ner 1 . This is achieved by training a linear autoregressive
(AR) model of the tempo, whose coefficients are gener-
ated from a deep neural network (DNN) that takes both the
performance history and musical context as the inputs.

Our contributions are as follows:

1. We propose deep linear AR model, a linear AR model
whose coefficients are modeled with a DNN.

2. We apply the deep linear AR model for human tempo
prediction, allowing online tempo prediction that is
both music performance-aware and music context-
aware.

3. We evaluate our model, comparing it with other commonly-
used baseline methods for human tempo prediction
in interactive music systems and show that DNN-
based feature extraction surpasses hand-crafted fea-
tures. Furthermore, through application of perfor-
mance rendering, we shed light on the kind of musi-
cal context the system learns to acquire through the
DNN.

Audio examples of the inferences made by our method is
available at https://sites.google.com/view/
deep-linear-ar-for-tempo/.

2. RELATED WORK

2.1 Automatic accompaniment

Predicting the human player’s tempo is a critical compo-
nent in automatic accompaniment systems [5–8]. To tune

1 In this paper, we use the word “tempo” interchangably with the beat
duration.
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the prediction to a particular performer that plays a partic-
ular piece, such a system often learns a model of tempo
curve from multiple rehearsals. Timing prediction through
rehearsals, however, is agnostic to musical contexts, so it
is not possible to predict the expressive timing on a piece
that has never been rehearsed before. While it is possible
to use tempo markings written in the music score [9], but
it is often cumbersome to prepare such an annotation. This
paper is concerned with enabling the machine to anticipate
expressive timing on a piece that has not been played be-
fore, or to respond to spontaneous musical ideas for pieces
that have been rehearsed.

2.2 Music performance rendering

Music performance rendering method generates a human-
like tempo curve, given a previously unseen music score
[10, 11]. It is critical in this task to extract features from
the music score that are relevant to music performance, a
reign in which deep learning has shown promise, particu-
larly for predicting note strengths [4] and timings [12]. Un-
fortunately, predicting and responding to live human per-
formance is outside the scope of the problem definition.
This paper is concerned with using an external tempo curve
played by a human musician to predict the tempo curve,
using a model that is amenable to online inference.

2.3 Duet interaction

Duet interaction [3], the task of predicting the machine re-
sponse given a human playing in a human-machine en-
semble, exploits the music score to improve the quality
of timing and dynamics prediction with a few number of
rehearsals. A limitation is that the method requires hand-
crafted features from the music score. This paper is con-
cerned with using the idea of duet interaction for human
timing prediction.

2.4 Deep non-linear AR models

Recently, deep neural networks have been applied to se-
quence prediction tasks, where non-linear AR model [13]
has shown success. However, its behavior is often difficult
to predict ahead of time. In real-time systems like auto-
matic accompaniment, it is desirable for the system to ex-
hibit a known dynamics ahead of time, using models like
linear autoregressive models [5] for which stability and
sensitivity is easy to analyze. This paper is concerned with
generating a mathematical model based on linear autore-
gressive process, so that the behavior of the system for a
given piece of music can be anticipated beforehand, while
enjoying the high-level feature design that deep learning
offers.

3. OUR METHOD

The goal of our method is to predict the tempo curve of
a musician who plays a new piece of music score, as if a
group of musicians are anticipating each other’s timing for
a piece that they play for the first time. We require multi-
step predictions: at a given time instance when the user
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Figure 1: Overview of our method. Our method, given
the music score and the history of beat duration, predicts
the successive durations. It uses a DNN that generates AR
model coefficients to predict the beat duration from past
beat durations.

is playing some position n in the music score, we predict
the tempo at n plus p eighth notes, ranging from p = 1 to
p = P . This way, it is possible to predict the future play-
ing position for various interactive systems with different
latencies.

As shown in Figure 1, the music score is assumed to be
segmented at an eighth-note level, where the nth segment
is associated with a segment duration τn. When the player
has just finished playing the nth segment, our goal is to
predict the future segment durations, τn+1 to τn+P , given
the music score and the segment durations played by the
player up to now, {τn′}n′≤n.

Our method predicts the timing with an AR model of or-
der I . The AR coefficients are determined by two inputs.
First, since it is autoregressive, it uses the segment duration
history of the current performance, {τn′}n′≤n. Second,
since the music score and the tempo are highly correlated,
it uses the music score information around the current seg-
ment n, which we denote by Sn. It contains (1) the notes
written in the score, i.e., the pitches, the start times and the
durations, and (2) metric information, i.e., the meter and
the relative position inside the measure.

3.1 Deep linear AR model for timing prediction

We formulate the timing prediction as a multi-step predic-
tion problem. Suppose that the performer has played just
up to segment n. We assume that the expected segment
duration τn+p (p > 0) depends only on the performance
history τn′≤n and the music score Sn. Furthermore, we as-
sume that the residual follows a zero-mean Laplacian noise
with scale λ. We assume Laplacian noise because it is tol-
erant to outliers of the IOI. Then, based on the assumptions
described later in Section 3.1.1, we can formulate timing
prediction as a maximum likelihood estimation of the fol-
lowing probabilistic model:

τn+p|Θ, Sn, τn ∼ L
( I−1∑

i=0

ap,i(Sn, τn; Θ)τn−i, λ
)
, (1)
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Figure 2: The prediction coefficient function. It is a NN
that, given the music score feature and the performance
feature, generates the AR model parameters of order I , for
up to P -step prediction.

where L(µ, λ) is a Laplace distribution with the po-
sition parameter µ and the scale parameter λ, Θ de-
notes a set of arbitrary model parameters, and τn =
[τn−I+1 · · · τn]. Our goal is to design the non-linear func-
tion ap,i(Sn, τn; Θ), which we call the prediction coeffi-
cient function, and to learn its model parameters Θ.

We represent the prediction coefficient function ap,i as a
neural network composed of two fully-connected layers as
shown in Figure 2. The number of neurons for the hidden
layers is 300 and the number of output neurons is P × I . It
uses leaky rectified linear units (ReLU) for the activation
function and each layer is batch-normalized [14].

The inputs to the network are low-dimensional feature
representations of the music score Sn and the performance
τn. We denote these features respectively by un and vn
and call them the music score feature and performance
feature respectively.

3.1.1 Derivation of the deep linear AR model

We assume that at segment n, only the previous I coeffi-
cients contribute to the estimate of τn′>n. Then, we model
τn+p as the following non-linear AR process:

τn+p = fp(Sn, {τn′}n′≤n; Θ)+εn,p; εn,p ∼ L(0, λ). (2)

To make the model’s behavior more predictable, which is
beneficial for real-time interactive music applications, fp
is approximated by a first-order Taylor expansion with re-
spect to τ to yield the following:

τn+p ≈ τTn (∇τfp(Sn, τ ; Θ)|τ=0

+H(Sn, τn; Θ)) + εn,p, (3)

where H is the higher-order term left-divided by τTn , and
we assumed that the constant term is zero 2 . Thus, we ar-
rive at Equation 1, where ap,i = (∇τfp(Sn, τ ; Θ)|τ=0 +
H(Sn, τn; Θ))i.

2 Incorporating the constant term yielded in poor results in preliminary
experiments.

3.1.2 Relationship with linear AR and deep non-linear
AR models

Our model is a compromise between a linear AR model
used in automatic accompaniment systems [5] and a deep
non-linear AR model used in areas like speech generation
[13]. It is a linear AR process, whose model parameters
are governed by a non-linear function a(·).

Our modeling approximation is inspired by the success of
shortcut connections in deep learning [15, 16]: our model
can be thought of as having a multiplicative shortcut con-
nection from the input τn to the output, so that the output
gradient is able to fully exploit the input.

3.2 DNN for feature extraction

For computing the music score feature un, we extract the
following attributes from the music score Sn:

1. φ(1)n ∈ {0, 1}12: Denotes the downbeat phase; it
is a one-hot vector that indicates, at segment n, the
number of segments that have elapsed since the last
downbeat.

2. φ(2)n ∈ {0, 1}12: Denotes the meter; it is a one-hot
representation of the meter at the current measure,
expressed as the number of segments inside a mea-
sure, with the longest meter of 12/8.

3. φ(3)n ∈ {0, 1}128×20: Denotes the notated notes; it is
a binary piano-roll representation of the music score
between segment n − 2 and n + 2; the piano-roll is
quantized at 32nd-note level, and the pitch is repre-
sented as MIDI note number between 0 and 127.

Given these data, we extract the music score feature us-
ing a DNN shown in Figure 3. Namely, φ(1) and φ(2)

are concatenated and passed through a fully-connected
layer to obtain an intermediate feature φ(m). φ(3) is
passed through three convolutional layers followed by a
fully-connected layer to obtain another intermediate fea-
ture φ(p). We use leaky ReLU for activation, followed by
batch-normalization and max-pooling. The convolutional
layers and max-pooling layers are designed so that the net-
work becomes (1) sensitive to particular harmonic progres-
sions or note patterns, (2) sensitive to position in the score,
and (3) relatively invariant to transposition. Specifically,
for the first layer, we attempt to capture interval relation-
ship by using kernel size of twelve semitones by two 32nd
notes. Furthermore, to achieve invariance on transposition
while remaining sensitive to the temporal positions, max-
pooling is done only on the pitch axis, spanning four semi-
tones. To obtain the music score feature un, we concate-
nate these intermediate features from the current measure
and W neighboring segments, {φ(m)

n′ , φ
(p)
n′ }n+Wn′=n−W . By

evaluating from n−W up to n+W , we incorporate both
prior and upcoming contexts, both of which are relevant
for musical expression [17].

For the performance feature vn, we use τn, normaliz-
ing it to have zero mean and unit variance. Thus, at the
expense of ignoring the dependency of average tempo on
tempo expression [18], it expresses the local trend of the
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Figure 3: DNN for music score feature extraction.

tempo change, while being invariant under the change of
the average tempo at segment n.

3.3 Training

In our method, we train the parameters related to DNN for
music score feature extraction, and the parameters related
to the prediction coefficient function ap.i(un, vn; Θ). We
train the parameters as to maximize the likelihood of the
ground-truth segment duration, which amounts to mini-
mizing the l1 loss with respect all the parameters, accumu-
lated over all the songs in the training data. Specifically,
for each song in the training data, the loss is given as fol-
lows, where N is the number of segments in the song, τ̂n
is the ground-truth segment duration, and Ŝ is the music
score:

N∑

n=I

P∑

p=1

|τ̂n+p −
I−1∑

i=0

ap,i(un(Ŝ), vn(τ̂n))τ̂n−i|. (4)

3.3.1 Data augmentation strategies

Since the segment duration is expected to be invariant un-
der transposition, we augment the data by randomly shift-
ing the piano-roll φ(3) by -5 to +5 semitones. Further-
more, we simulate the motor noise of a human musician,
inspired by models of sensorimotor synchronization [19];
we add to τn a correlated Gaussian noise en, given as
en = εn − εn−1 where εn is a white noise with a stan-
dard deviation of 10 ms. Time-stretching, a common data-

augmentation strategy for audio [20], was not used, be-
cause our model is invariant under change of the average
tempo in a piece.

4. EVALUATION

To evaluate our method, we conducted three experiments.
First, we evaluated the effectiveness of incorporating the
music score and the performance history for tempo predic-
tion. Second, we conducted an ablation study for assess-
ing the effect of using a deep convolutional neural network
for music score feature extraction. Third, we qualitatively
analyzed the typical predictions made by our model, by
applying our model for tempo curve generation.

In the subsequence experiments, we let P = 8, I = 24,
and W = 24. To train the model, we used ADAM [21]
for seven epochs with a batch-size of 128, with the same
hyper-parameters used in [21]. We directly minimized the
loss function, with no pre-training.

4.1 Dataset

We evaluated our method on 52 virtuoso solo pieces played
by different people, mostly pieces from the Romantic era
such as Chopin, Liszt, Schubert, and virtuosic Beethoven
piano sonatas 3 . The pieces were chosen because they of-
ten contain extreme tempo fluctuations, owing to the high
freedom allowed in playing.

First, for each piece, a digital music score was prepared
as a standard MIDI file. Second, performance data for
each piece was obtained from Yamaha e-Piano competi-
tion, which contains performances by different performers
on a Yamaha Disklavier player piano to record the MIDI
performance data (up to sixteen interpretations per piece).
We obtained a total of 250 MIDI performance data. Fi-
nally, for each MIDI performance data, the ground-truth
segment durations and the music score were obtained by
aligning it to the corresponding music score MIDI data.
The alignment was obtained by using a symbolic align-
ment method, followed by a manual inspection by a trained
musician.

Of the 52 pieces, we used 47 pieces for training and 5
for testing, using ten-fold cross validation (about 712,000
training samples).

4.2 Evaluation of the prediction method

In this experiment, we evaluated the effectiveness of using
the performance feature and the music score feature. To
this end, we have evaluated the prediction error of multi-
step prediction. Specifically, for each prediction step p, we
computed the mean absolute error of the predicted duration
between the current segment n and segment n+ p, and the
actual duration. We have evaluated the prediction errors
using the following methods:

1. Condition MA: τn+p is predicted as a moving aver-
age of τn−I to τn−1, similar to [22].

3 A full list of the repertoire is available at the web page mentioned in
the introduction.
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Figure 4: Mean absolute error of multi-step prediction with
different baselines. Differences are statistically signifi-
cant for all pairs of the baseline and the proposed method
(Kruskal-Wallis Test applied pairwise, p < 0.01).

2. Condition AR: τn+p is predicted with a single AR(I)
model, similar to [5].

3. Condition LR(HC) (HC=Hand-Crafted): τn+p is
predicted with linear regression, using as the input
variables the timing history and hand-crafted fea-
tures used in duet interaction. Specifically, the hand-
crafted features consists of the segment durations,
the beat phase and the coefficients to the quadratic
regression of the highest and lowest notes. This con-
dition amounts to a simplified model of duet inter-
action [3], where the player’s performance is used to
predict his own timing. To make a fair comparison
on music score feature extraction, we omit features
that are not obtainable from the music score and the
beat duration history, such as the note strengths.

4. Condition LR(DNN-M): Same as LR(HC), except
instead of hand-crafted features, the DNN-based
music score feature is used.

5. Condition AR(HC): Same as LR(HC), except in-
stead of using linear regression on hand-crafted fea-
tures, autoregressive coefficients are directly esti-
mated from the hand-crafted features using the DNN
described in Figure 2.

6. Condition AR(DNN-M): The proposed method
without the performance feature. It uses a DNN-
based score feature extraction, and a DNN-based au-
toregressive coefficient extraction.

7. Condition AR(DNN-M+P): The proposed method.
It uses both performance and a DNN-based score
features, and a DNN-based autoregressive coeffi-
cient extraction.

4.2.1 Results and discussion

The results are shown in Figure 4. First, the proposed
method consistently outperforms the baseline methods, by
up to 18% when compared with MA for 8-step prediction.

Second, prediction with an AR model outperforms a LR
model, for both hand-crafted and linear features. That is,
AR(HC) outperforms LR(HC) and AR(DNN-M) outper-
forms LR(DNN-M). This is surprising because linear re-
gression is, in our context, auto-regression with an addi-
tional bias term explained by the features. This shows that

auto-regressive models without a bias term is beneficial for
expressive tempo prediction.

Third, feature extraction with DNN surpasses hand-
crafted features, for both linear regression and auto-
regressive models. That is, LR(DNN-M) outperforms
LR(HC) and AR(DNN-M) outperforms AR(HC). This
shows that directly training feature extraction from a sym-
bolic music information is beneficial for expressive tempo
prediction.

Finally, the incorporation of the performance history τ
improves the prediction. That is, AR(DNN-M+P) outper-
forms AR(DNN-M). The effect is more prominent when
making a prediction with a long forecast like a half note
ahead (4-step) or a whole note ahead (8-step).

4.2.2 Distributions of the prediction errors

The distribution of 8-step prediction error is shown in Fig-
ure 5. For sake of clarity, we only show distributions
that highlight properties of different features or prediction
models.

It first shows that moving average (MA), the simplest
method of all, is unbiased but suffers from the worst out-
lier. This is reasonable because it is good at tracking steady
tempo, but has no capability to anticipate the next tempo
during tempo changes.

Second, AR model tends to make negative errors, i.e., it
tends to anticipate that the next note will slow down. Such
a tendency arises because musicians tend to slow down
more often in a given song than they speed up. This kind of
asymmetric tempo change encourages the AR model to an-
ticipate every note to be slowing down when using squared
error for training.

Finally, the proposed method enjoys increased robustness
against outliers. Therefore the primary benefit of incorpo-
rating performance feature is the capability to prevent a
large mistake.

4.3 Evaluation of music score feature extraction

We have conducted an ablation study to assess which com-
ponents are effective for computing the music score fea-
ture. To this end, we have compared the multi-step pre-
diction errors when using different kinds of music score
feature extractor as follows:

1. Condition FC: The music score feature is obtained
using one fully-connected layer applied to the piano-
roll. Combined with the two fully-connected layers
in the prediction coefficient function, this model is a
perceptron with three hidden layers, making it simi-
lar in essence to the architecture used for generation
of expressive dynamics from the music score [4].

2. Condition Conv1: The music score feature is ob-
tained by one convolutional layer followed by max-
pooling and fully-connected layer.

3. Condition Conv2: Same as Conv1, except we use
two convolutional layers.
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Figure 5: Histograms of the prediction errors, centered about the origin (right), and zoomed in for tails (left).
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Figure 6: Multi-step prediction error with different ways of
computing the music score feature. Differences of absolute
errors are significant, except for condition FC and Conv1
of 2-step prediction and FC and Conv2 of 8-step prediction
(Kruskal-Wallis Test, p < 0.01).

4.3.1 Results and discussion

The results are shown in Figure 6. It can be seen that even
with simple network like FC, it helps to automate feature
extraction, as can be seen by comparing with AR(HC).
Furthermore, addition of more convolutional layers im-
proves the accuracy.

4.4 Analysis through performance rendering

To qualitatively analyze the kind of prediction made by
the model, we analyzed the tempo curve generated by the
model when it predicts the tempo based on its own predic-
tions. That is, instead of predicting the tempo curve based
on a human performance, we drove the AR model with its
1-step prediction, and apply the following low-pass filter
to let the prediction stay about some average m:

τn = (1− α)m+ α
I−1∑

i=0

a1,i(Sn, τn; Θ)τn−i. (5)

Here, α ∈ [0, 1] is a parameter that controls how much τn
reverts to m. m was set to the the mean tempo for each
piece, and α was set to 0.5.

4.4.1 Results and discussion

In Figure 7, we present two examples from songs not con-
tained in the training dataset, one demonstrating a perfor-
mance idiom pertaining to harmony and another specific to

piano playing. We invite the readers to listen to the exam-
ples at the web page mentioned in the introduction.

First, the method seems to capture performance idioms
related to cadences. To demonstrate, Figure 7a shows an
excerpt from a simple piece, Mozart’s Variations on Twin-
kle Twinkle Little Star. The generated tempo slows down
in the bounded rectangle, which is a perfect cadence. It
shows that the method is capable of capturing a common
idiom of slowing down before a cadence. This behavior is
quite consistent and also seen in other variations as well.

Second, the method seems to also capture a typical id-
iom pertaining to the left-hand technique. Figure 7b shows
an excerpt from a technically and harmonically more com-
plex piece, Rachmaninoff’s Piano Concerto No. 2. We
observe, qualitatively, a few idioms related to piano play-
ing. First, the beginning of the bar tends to start slowly,
forming an arc-like tempo curve (label “1” in Figure 7b).
This kind of playing is consistent with a typical piano play-
ing [2,23]. Second, this kind of behavior is not hard-coded,
but rather depends on the surrounding musical context; for
example, the tempo does not slow down in a non-cadence
progression (label “2,” a progression from D dim7 to C7/E,
which will resolve to Fm). Furthermore, the most promi-
nent drop in the tempo occurs at a climactic segment inside
the phrase (label “3”). These behavior seem concordant
with how this particular piece is played.

The generated tempo curve depends on harmonic changes
or accompaniment patterns, suggesting that the music
score feature extraction was able to learn relevant relation-
ship between music score and tempo changes. We believe
that the kind of predictions made by our method captures
the essence of music context and performance for making
sensible timing predictions in interactive music systems.
These results show the expressiveness of our model, de-
spite the fact it uses far fewer information from the score
than those typicaly used in music performance rendering
[11], but they also qualitatively address some limitations of
our method. First, it does not take into account the genre.
The generated tempo curves are mostly in the style of late
Romantic pieces which tend to exaggerate the tempo, but
sometimes such exaggerated tempo curves are stylistically
inappropriate for earlier music like the Mozart example.
Second, the system is agnostic to the larger structural con-
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(a) Example for Mozart’s Variations on Twinkle Twinkle Little Star, K. 265, variation 7. The model seems to acquire the idiomatic
slowing-down before a perfect cadence (boxed region).
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(b) Example for Rachmaninoff’s Piano Concerto No. 2, Mvt. 1, measure 52-61. The model seems to acquire the idiomatic arc-like
tempo curve (denoted 1), but the behavior is dependent on surrounding context (denoted 2). The most dramatic drop of tempo occurs at
Fm → E dim7/F progression (denoted 3).

Figure 7: Examples of the generated tempo curves.

text. For example, the Mozart example shows the A1 sec-
tion to a variation whose structure is ternary, i.e., A1BA2.
The system consistently slows down the last cadence, but
it is generally appropriate to only slow down the A2 sec-
tion. Third, the method is agnostic to (1) additional cues in
the music score, such as the phrase, the expression and the
tempo markings, and (2) performance cues like the articu-
lation and the dynamics.

4.4.2 On the ease of stability analysis

It is easy to analyze and modify the behavior of our model
since we model the prediction as a linear AR model, whose
properties are well-understood. We believe that such a ca-
pability to analyze and correct the system’s behavior is
beneficial for real-time interactive music applications such
as automatic music accompaniment, since it provides an
interpretable form of performance guarantee for human
musicians.

To demonstrate, we have trained our model and estimated
the AR coefficients at one point for a given music score
Sn and past performance history τn−i, for 1-step tempo
prediction. Figure 8 shows the poles and the frequency
response of the inferred AR process. It can be seen, for
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Figure 8: Pole-zero diagram (left) and the frequency re-
sponse (right) of the autoregressive model inferred using
our method.

example, that the system is unstable because the poles are
outside the unit circle, resonating to oscillations at a nor-
malized frequency of 0.15, or about a dotted eighth note.
If a stable behavior is desired, then it is possible to cor-
rect the AR coefficients such that the maximum magnitude
response is bounded.
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5. CONCLUSION

This paper proposed an online method for predicting a hu-
man performer’s expressive timing, based on the music
score and the performance history. The method is both mu-
sic score-aware and performance-aware, and is capable of
extracting useful features from the score that are relevant
to timing prediction. We have shown on a difficult dataset
of expresssive virtuoso piano playing that (1) incorporating
both contextual information from the performance and the
music score contributes to accurate timing prediction, (2)
a deep architecture, especially convolutional architecture,
is useful for extracting relevant features from the music
score, and (3) the model seems to acquire common idioms
in piano playing, according to the generated tempo curves.

Future work includes (1) integrating the model with in-
teractive music systems, (2) predicting more aspects of hu-
man music performance like the dynamics, (3) incorporat-
ing of more elements of the music score like the dynam-
ics, phrasing and expressive marking, and (4) incorpora-
tion of additional performance cues such as the dynamics
and body gestures for prediction.
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ABSTRACT

In the context of a general research question about the ef-
fectiveness of computer-based technologies applied to early 
music-harmony learning, this paper proposes a web-based 
tool to foster and quantitatively measure harmonic aware-
ness in children. To this end, we have developed a web 
interface where young learners can listen to the leading 
voice of well-known music pieces and associate chords 
to it. During the activity, their actions can be monitored, 
recorded, and analyzed. An early experimentation involved 
45 school teachers, whose performances have been mea-
sured in order to get user-acceptance opinions from domain 
experts and to determine the most suitable metrics to con-
duct automated performance analysis. This paper focuses 
on the latter aspect and proposes a set of candidate metrics 
to be used for future experimentation with children.

1. INTRODUCTION

Tonal harmony can be defined as an idiom, or system of 
rules, which “. . . governs how melodies and chords are or-
ganized throughout the duration of a tonal musical compo-
sition” [1, p.194]. Systematically defined by Rameau [2], 
tonal harmony has been employed in various musical styles, 
spanning from the Baroque period to contemporary popu-
lar songs [1,3]. It has been demonstrated that both children 
and adults who are not musicians have a strong feeling for 
harmony and are able to recognize the tonic chord [4], im-
plicit harmonies [5], and chord progressions [6]. In this 
sense, the development of a harmony awareness extends 
beyond the boundaries of formal music education.

Many treatises and handbooks [7–11] describe the tonal 
system in terms of keys, chords and scales. Even though 
these concepts represent useful tools for analysis and the-
oretical pedagogy, they fail to explain the perceptual qual-
ities of chord relationships that are peculiar to the tonal 
system [1]. Such a formal pedagogical approach has been 
severely criticized by some scholars [12], and it has been

Copyright: c© 2019 Federico Avanzini, Adriano Baratè, et al. 
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held responsible for failure and disaffection towards har-
mony studies. Eberlein, in particular, complains about the
use of rules that are in contrast with practice and percep-
tion and about the absence of explicit stylistic references in
tonal harmony treatises [13]. Therefore, it is not surprising
that pedagogical approaches to tonal harmony have devel-
oped little outside professional music curricula, and that
little attention has been paid to harmony education pro-
grams for children, high school students, and amateurs.

The work presented in this paper is part of an ongoing re-
search on computer-based technologies applied to music-
harmony learning. We have recently proposed a web-based
tool that implements a set of experiences focused on har-
monic skills and awareness form primary and middle school
students [14]. Particularly for primary school children the
use of the web interface should be complemented with a
series of perceptual and physical activities - i.e. musical
games - which focus on some fundamental concepts re-
lated to tonal harmony. The games, thoroughly described
in [15] constitute the basis for understanding the tasks re-
quired in the various groups of experiences presented in
the web interface. However in this context the current goal
is to devise suitable metrics for objectively assessing chil-
dren performance in the experiences, based on the record-
ings and analysis of their actions.

Objectively assessing musical abilities is a much studied
– and controversial – problem. Musical aptitude batteries
proposed in the second half of 20th century are now con-
sidered obsolete in several respects [16]. The concept of
musical ability is multifaceted and includes various types
of musical capacity (e.g., tempo, pitch, rhythm, timbre,
melody perception) that are not easily separated. Build-
ing on previous research such as [17] and [18], more re-
cent music games for education [19] have been developed.
Commercial systems such as Smart Music 1 and Yousi-
cian 2 offer gamified approaches to music instrument learn-
ing, and academic research focuses on the development
of objective descriptors for assessing music performances
[20]. Although these works are mainly concerned with mu-
sical instrument performance rather than theoretical mu-
sic abilities, they share some common traits with the ex-
eperiences proposed in our web tool, namely a performa-
tive dimension and a gamified approach. As far as con-

1 https://www.smartmusic.com/
2 https://www.yousician.com/
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Figure 1. Chart of the relationships of the three tonal
functions, also known as primary chords; picture adapted
from [25, p. 7].

Figure 2. Chart of the relationships of the three parallel
chords; picture adapted from [25, p. 7].

cerns the study of tonal harmony many computer interfaces
and systems have been designed to help the understand-
ing of musical chords and harmonic progressions [21–24],
included Mapping Tonal Harmony, an innovative tool for
visualizing the various shifts through harmonic regions in
real time. 3 However all these systems are rather complex
to use and are not finalized for use in primary or middle
schools.

2. THEORETICAL BACKGROUND

Following Riemann’s theory of tonal harmony [25], we di-
vide the tonal space into primary and parallel chords. The
primary chords are tonic (T), dominant (D) and subdomi-
nant (SD); the parallel chords are parallel tonic (Tp), par-
allel dominant (Dp) and parallel subdominant (SDp). Fig-
ure 1 depicts the three tonal functions T, D, and SD (pri-
mary chords, namely I, V, and IV degree). The Pythagorean
relationships reported below the pitches show the origin of
the major harmonic functions and chords starting from c
(tonic).

Riemann considered the minor chords as the product of
the inversion of the harmonic series. Thus, he derived the
remaining chords (II, III, and VI degree) from the reversed
harmonic series starting from e (marked with an asterisk
in Figure 2). This is an abstract scheme from which much
more complex harmonies can be derived. However, it can
fit a number of popular songs as well as classic music har-
monization patterns which can be a good starting point for
understanding harmonic functions.

Building on this theoretical background, we designed a
simple activity to be conducted with primary school chil-
dren in order to assess and possibly improve their aware-

3 https://mdecks.com/mapharmony.phtml

ness towards tonal harmony. In general terms, we ask stu-
dents to complete a number of tasks consisting in associat-
ing a single chord to each music tune. Chords are selected
from the Riemann’s scheme. Tunes are chosen (and some-
times modified) to best fit a single chord, typically the tonic
one; this implies that all the notes of the leading voice oc-
curring on beats belong to the pitches forming that chord.

But is there one right choice and five wrong options? Ba-
sically, the answer is: no. There is a more plausible chord
in terms of tonal harmony, since the proposed music tunes
are built on the notes forming the tonic chord. Besides,
the themes selected for the experience are well known to
listeners who are used to link them to a given harmonic
accompaniment. Nevertheless, other options are possible.
First, some of the proposed chords share one or more notes
with the expected one (e.g., the minor triad on the VI grade
has two notes in common with the major triad on the I
grade), so a music tune insisting on the I and III grade of
a major scale could be harmonized by a VI-grade triad as
well, with no conflicting notes among the leading voice
and the accompaniment. Moreover, chords forming sev-
enth, ninth and even more complex intervals are common
in many musical genres, so accompanying a tonal music
tune through unconventional chords would be perfectly ac-
ceptable, and arguably also more interesting to some listen-
ers.

To ease the navigation of the harmonic space and to en-
hance the perceptual differences between the primary chord
zone (all major chords) and the parallel chord zone (all mi-
nor chords), we propose to place the chords along a circle
with the tonic, dominant and subdominant in the lower part
of the circle and the parallels in front of their relatives, as
depicted in Figure 3 (white arrows).

3. THE WEB TOOL

Harmonic Touch is a Web platform for the study and prac-
tice of tonal harmony. 4 This application is conceived as a
step-by-step wizard that leads users through three experi-
ences towards the discovery of important features of tonal
harmony by leveraging on chord perception, gestural inter-
action and gamification techniques.

4 http://didacta18.lim.di.unimi.it/eng/

Figure 3. The spatial arrangement of primary and parallel
chords with the route of three common chord progressions
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Harmonic Touch implements a step-by-step process to-
wards harmony awareness based on the administration of
three groups of experiences, focusing on: 1) the recogni-
tion of the implicit harmony, 2) the timed recognition of
harmonic changes, and 3) melody harmonization. These
three types of experiences have been discussed in detail
in [14]. In this context, we will focus on the first group of
experiences. To this end, users are asked to match a short
music tune with a single chord that, in their opinion, best
fits the whole melody. The chord must be selected from
the six primary and parallel chords discussed above.

This type of experience can be proposed to learners in a
physical space, namely moving across different spots on a
floor, as well as through a web-based interface that sim-
ulates the mentioned setting. The former approach im-
plements a real embodiment of a harmonic path, whereas
the latter presents advantages in terms of ease of use and
computer-based performance, for both the leading voice
and underlying chords. A mixed approach is also possible,
thus applying to music education the principles of algo-
motricity learning methodology defined in [26].

In the Web interface, available chords are represented as
shown in Figure 4, with positions randomly rotated and
no explicit indication of tonal functions. These are made
explicit in the visual representation of the harmonic space
of the third group of experiences, where the user has to
explore the harmonic space to find the chords for melody
harmonization (see Figure 5). Understanding the relative
layout of chords is left to the user, who can explore them
freely during an initial training phase. This spatial arrange-
ment carries some important peculiarities:

• The user can get acquainted with the sound of the
various chords by simply clicking or touching a set
of buttons that follow this arrangement: an important
facility for people who cannot play a polyphonic in-
strument or for children [27];

• The user can intuitively couple the chord qualities
with their relative location, which can help the mem-
orization of the sound of the various chords as well
as the routes of the most important harmonic pro-
gressions, as shown by the colored arrows in Fig-
ure 3.

4. RESEARCH QUESTIONS

There is a clear distinction between the research questions
that brought us to develop Harmonic Touch and to test it
in different contexts on one side, and those investigated in
this paper on the other.

Concerning the former questions, the general goal of the
project is to engage learners through playful physical and
computer-supported activities in a topic often considered
too abstract and difficult for young students or amateurs.
As mentioned before, harmony awareness is trained firstly
by making the user recognize the implicit harmony in a
music tune, then focusing on the timed detection of har-
monic changes in a theme, and finally inviting the learner
to perform melody harmonization (i.e., selecting a sequence

Figure 4. The interface for the recognition of the implicit
harmony of a music tune. No indication is provided to the
user about harmonic functions and their spatial disposition,
that can be reconstructed only through exploration.

Figure 5. The interface for melody harmonization with ex-
plicit indications of the harmonic functions employed in
the third group of experiences.

of chords and playing them at the right time while listening
to a tune). The research questions addressed by the Har-
monic Touch project deal with the efficacy of an embod-
ied approach to harmony learning and with the educational
support offered by technologically enhanced tools.

In this paper, conversely, we focus on a specific aspect:
how can we analyze the large amount of data recorded
during the experimentation phase, with respect to the first
group of experiences only?

From a terminological point of view, in the following we
will call test each experience completed by a user, session
the group of experiences performed by a single user, and
activity the collection of sessions completed by all users.
Consequently, the assignment for each test is: “Associate
one chord out of the six available to this music tune”; the
assignment for a user session is: “Complete 4 tests”. Music
tunes have been proposed in the same order to all partici-
pants.

During each test, users could:

• play the leading voice with chord accompaniment
(action P );

• rewind the music tune and play it back as many times
as they wanted (action R);

• make subsequent choices selecting the current chord
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Figure 6. Users experiencing Harmonic Touch at Didacta
2018.

from the mentioned circle, and keep it playing under
the leading voice (actions C1 . . . Cn);

• confirm the final choice and exit (action X).

In order to measure the abilities in the recognition of im-
plicit tonal harmony, actions P , R, Cn, and X have been
recorded user by user for each test, thus generating a con-
siderable set of information to be investigated along differ-
ent axes.

5. GATHERING THE DATA SET

Harmonic Touch was presented to primary and middle school
teachers in occasion of the 2nd edition of Didacta Italy,
Florence, October 18-20, 2018. 5 This initiative is the
most important Italian fair focusing on education, voca-
tional training and relation among school and work.

Specifically, Harmonic Touch was presented during a work-
shop on music education and digital languages, with the
aim to involve music teachers in the use of the interface
(see Figure 6). But, as a side effect, we were interested
also in analyzing teachers’ performances, consequently we
tracked their results on a set of increasingly difficult har-
mony experiences and profiled them through anonymous
questionnaires administered before and after the experi-
mentation in order to obtain more accurate indications from
tests. Finally, we also gathered user observations and sug-
gestions about content and technology-related issues, through
a set of questions about the whole experience.

The workshop was attended by an audience of 45 edu-
cators, mainly teaching in middle (57%) and in primary
school (25%). Sixteen percent of the audience were males;
mean age = 49.8 (median = 51); mean working age = 22.7
years (median = 20 years). The employed melodies are all
well-known tunes, as confirmed by 44 participants out of
45. The complete data set of answers to pre-activity and
post-activity surveys is publicly available. 6

Concerning user performances for the first activity, i.e.
the battery of 4 tests for the recognition of implicit har-

5 http://fieradidacta.indire.it/
6 http://www.lim.di.unimi.it/data/didacta_

survey/

mony, results are publicly available, too. 7 For each test, 2
diagrams are available (see Figure 7):

1. The path that was followed in the chord circle. In
this diagram, positions are reported in the same form
(e.g., T is always the bottom chord) in order to ease
the comparison of paths, but remember that users ex-
perienced random rotations for each test;

2. The time of chord changes, including clicks on the
same chord. Time scale is the same for all users,
with the exception of User 25 who was discarded
from time scale calculation due to the very long time
employed in the answer. This diagram carries also
information about actions R and X . The former ac-
tion was often invoked by users since, at the end
of the piece, music stopped with no looping. This
diagram presents a dark background when music is
playing; chord changes occurring on a white back-
ground are chords played after the end of the melody.

Blank spaces indicate tests with no saved results, as the
complete session of User 6 or single tests of Users 8, 16,
31, etc.

6. ANALYZING THE DATA SET

The experimentation at Didacta 2018 was not conducted
on the intended final users for such an experience, who
should be primary school students. In this sense, gathered
data cannot be analyzed to assess the pedagogical effec-
tiveness of the proposed approach. Rather, the goal of the
analysis is to discover and fine-tune the most suitable met-
rics to extract significant information about user awareness
of tonal harmony.

6.1 Analysis Dimensions

Going back to the definitions of test, session and activity
provided in Section 4, we can identify the following di-
mensions to analyze:

• Horizontal axis – The goal is to track, user by user,
the behavior and improvements from one test to an-
other. This effort can bring to the identification of
well-defined user profiles, e.g. the “frantic explorer”
or the “self-confident listener” (see below);

• Vertical axis – The purpose is to recognize similar
behaviors across users when approaching the same
test. An aspect evaluated vertically is the average
time to complete the n-th test, or the distribution of
answers about the final chord for a given test;

• Global dimension – The data collected during the
whole activity, namely in each test of each session,
are evaluated globally in order to assess general as-
pects. Prototypical behaviors may emerge from a
joint analysis of the horizontal and the vertical axes.

7 http://didacta18.lim.di.unimi.it/results/
index_results.html
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Figure 7. Diagrams tracking the performances of a randomly selected user (35). The left part of the image represents the
chord circle with the path followed by the user. In the right part information about the times of chord changes is provided,
including clicks on the same chord
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Concerning the horizontal axis, first it is possible to com-
pare the duration of each test in a session. The expected
effect is a decreasing amount of time to determine the final
chord. In the analysis of the total time spent on each test,
it is important to underline that music themes have differ-
ent lengths (19, 25, 17, and 9 seconds respectively), and
present increasingly difficult harmonic situations. In any
case, results do not confirm the initial prediction, and the
time spent on each test does not follow a common trend.
For the horizontal axis, one of the most interesting aspects
to highlight is the evolution of the path followed by single
users from test to test. Since the relative chord positions
were kept unaltered across the activity, we could expect a
learning effect. The first choice of each test can be consid-
ered random, since circles are rotated; but, after a training
phase, previous experience should bring users to quickly
jump to the desired chord. Conversely, from test to test
we often noticed the replication of an exploratory behav-
ior. The learning effect, if any, pushed some users to stop
at the first occurrence of the tonic chord, or to minimize
the number of attempts after that, but not to jump towards
the final destination with confidence. In this sense, one of
the rare counterexamples is the performance of User 1 in
Test 4, which was the last one of the session: after ran-
domly performing action C1 and selecting SD, in about 5
seconds he/she moved to T through action C2 and stopped.

The vertical axis investigates the common characteristics
of each test. For example, it is possible to compute: the
mean and the variance of the total amount of time spent by
users on a given test; the distribution of the chords selected
as the final choice; the number of chords listened before
fixing the last one; and so on. Considering common be-
haviors of users test by test, the first experience, presented
as a trial to get acquainted with the interface, has been con-
sidered exploratory by most of them. In this case, a num-
ber of wrong behaviors emerged, for example the choice of
new chords with no music playing; conversely, later tests
showed a general improvement in performances. Another
behavior common to many users when passing from early
tests to the last ones is the tendency to restart the piece
more. In this way, users can compare the fitness of each
chord against the first notes of the leading voice, limiting
the experience to the initial part of the tune, whereas, at
the beginning, most of them played the entire piece and
changed chords while music was advancing. Since these
actions can be found in many users, such a consideration
brings us to the global dimension.

Concerning the whole activity, we evaluated the average
time spent on each chord selection, test by test and user by
user. The expected learning effect should bring to a grad-
ual decrease of listening times, and, actually, this is noticed
in many user sessions. Moreover, the analysis makes an-
other aspect emerge: users tended to rest on the chord they
considered correct, even in the middle of the experience,
namely before confirming it as the final choice.

The analysis of dark-colored areas in time diagrams often
justifies the repeated selection of the same chord: this hap-
pens when music stops and clicking on a new chord does
not restart the performance, thus users manually invoke ac-

tion R and immediately re-select the chord. For instance,
this effect occurs in Test 1 (actions C4, C5), Test 2 (actions
C3, C4; actions C8, C9), and Test 4 (actions C4, C5) in
Figure 7.

Finally, a comprehensive analysis of the whole activity
lets us determine mainly two well-defined user profiles:

1. the “frantic explorer”, who wanders around the cir-
cle, usually following a clockwise or counterclock-
wise path and going on until the whole circle has
been covered, even multiple times. Although this
behavior could be associated to a casual way to ex-
plore, actually we did not retrieve many examples of
random patterns;

2. the “self-confident user”, who stops almost immedi-
ately after choosing the expected chord.

In this specific case, it would be interesting to study the
correlation between self-declared music skills and all the
aspects we have mentioned before, e.g.: the final choice,
the total time spent on each test, the number of trials before
selecting the final chord, the average listening time for each
chord, and so on. Nevertheless, please remember that such
an experience has been conceived for young learners, who
probably have no prior music education.

6.2 Metrics

Concerning the metrics to automatically assess the educa-
tional efficacy, a first point regards the learning curve. This
aspect can be investigated through different numeric val-
ues: the amount of time and/or the number of trials to find
the final chord after its first listening, the number of way-
points to reach the expected chord after listening to the first
one. For each of the mentioned values, we can consider the
minimum, maximum, mean and variance.

Another indicator regarding the learning curve is the evo-
lution of aggregated times spent on each chord, both the
selected one and those considered wrong by the user. The
distribution of final choices could also redefine the con-
cept of right vs. wrong chords, even if in a tonal context
it is possible to rank chords on the base of the pitches in
common with the leading voice.

For each of the mentioned aspects, we can investigate the
horizontal as well as the vertical axis, thus focusing on
user-specific or test-specific analysis respectively. Global
considerations emerge from a comprehensive insight in-
volving both dimensions. Figure 8 shows the distribution
of chords selected by users at the end of each test. The
convergence of answers towards the tonic chord T seems
to demonstrate the existence of a harmonic awareness, at
least in the context of tonal harmony. The distributions of
results in the first three tests (all pieces in major key and
taken from music literature) are very similar, with T cho-
sen by about 80% of the participants; the fourth test (in
minor key) differs from the previous ones, with T chosen
by only 57% of users.

Table 1 illustrates some additional metrics computed on
the Didacta 2018 sample. Let c be the chord selected by
the user at the end of the test, and t0(c) the time when
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Table 1. Minimum m, maximum M , mean µ, and standard deviation σ of elapsed time and number of explored chords.
Time Chords

m M µ σ m M µ σ
Test 1 0.55 211.65 65.01 49.38 0 22 5.78 5.49
Test 2 1.25 577.71 75.18 90.82 0 27 7.66 5.82
Test 3 1.03 185.91 38.43 38.32 0 18 4.73 4.53
Test 4 2.06 174.36 43.38 38.00 0 32 7.18 7.56

Figure 8. Distribution of the chords selected at the end of
each test.

c is first clicked, t1(c) the time when the user confirms
its final choice; the table shows the minimum, maximum,
mean, and standard deviation of t = t1(c) − t0(c) and of
the number of selections occurred between time t0(c) and
t1(c). An analysis of such values on one side demonstrates
a tendency towards an exploratory behavior by users, who
go on navigating through chords also after listening to the
one they consider correct; on the other side, the evolution
of times across tests shows a trend of decreasing, which
could imply an improvement in self-confidence and har-
monic awareness. We can expect that a more noticeable
learning effect may emerge only after a number of admin-
istrations and may be observed across a long timespan.

A global indicator of the harmonic awareness is neces-
sarily based on multiple metrics, sometimes coming from
already available data, sometimes involving additional fea-
tures that we will implement in the future. For exam-
ple, in the current version of Harmonic Touch there is no
way to assess consistency, namely to test coherence of user
choices when a music tune is administered multiple times.

Even if the computation of values for the mentioned in-
dicators could be easily extracted from the data reported
above, it would make little sense to provide this kind of

information on the sample involved at Didacta 2018, since
domain experts could behave very differently from young
learners.

7. CONCLUSIONS

The main goal of this work was paving the way for the
analysis of big amounts of data coming from an extensive
experimentation of Harmonic Touch, to be conducted on
primary school children instead of domain experts. In this
sense, the Didacta 2018 experience was the occasion to
present the educational approach and test the functionality
of the software framework.

A critical analysis of gathered data, little significant with
respect to the educational valence, allowed us to identify
different dimensions to be investigated when the experi-
mentation campaign will involve the expected final users,
i.e. children. To each dimension we associated a number
of indicators useful to assess the educational activity.

As a side effect of the experimentation occurred at Di-
dacta 2018, some change requests emerged, both in the
general pedagogic approach and in the implementation. Con-
cerning the former, teachers asked the possibility to cus-
tomize contents and to adapt them to their educational goals.
In addition, the corpus of experiences should provide a
more gradual evolution from very clear tonal situations to
more complex pieces. The familiarity of children with mu-
sic themes may also have an impact on user performances,
so this aspect could be better assessed in the future.

As for implementation issues, some recurrent wrong be-
haviors will push us to improve the usability of the inter-
face. An example is to restart music when a new chord is
selected and the leading voice is no more playing, instead
of explicitly request the user to push the Play button.
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ABSTRACT

As deep learning advances, algorithms of music compo-
sition increase in performance. However, most of the suc-
cessful models are designed for specific musical structures. 
Here, we present BachProp, an algorithmic composer that 
can generate music scores in many styles given sufficient 
training data. To adapt BachProp to a broad range of musi-
cal styles, we propose a novel representation of music and 
train a deep network to predict the note transition proba-
bilities of a given music corpus. In this paper, new music 
scores generated by BachProp are compared with the orig-
inal corpora as well as with different network architectures 
and other related models. A set of comparative measures 
is used to demonstrate that BachProp captures important 
features of the original datasets better than other models 
and invite the reader to a qualitative comparison on a large 
collection of generated songs.

1. INTRODUCTION

In search of the computational creativity frontier [1], ma-
chine learning algorithms are more and more present in 
creative domains such as painting [2, 3] and music [4–6]. 
Already in 1847, Ada Lovelace predicted the potential of 
analytical engines for algorithmic music composition [7]. 
Current models of music generation include rule based ap-
proaches, genetic algorithms, Markov models or more re-
cently artificial neural networks [8].

One of the first artificial neural networks applied to mu-
sic composition was a recurrent neural network trained to 
generate monophonic melodies [9]. In 2002, networks of 
long short-term memory (LSTM) [10] were applied for the 
first time to music composition, so as to generate Blues 
monophonic melodies constrained on chord progressions 
[11]. Since then, music composition algorithms employing 
LSTM units, have been used to generate monophonic [4,5] 
and polyphonic music [6, 12–14] or to harmonize chorales 
in the style of Bach [6, 14]. However, most of these algo-
rithms make strong assumptions about the structure of the 
music they model.

Copyright: c© 2019 Florian Colombo et al. This is 

an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited.

Here, we present a neural composer algorithm named Bach-
Prop designed to generate new music scores in an arbitrary
style implicitly defined by the corpus of training data. To
this end, we do not assume any specific musical structure
of the data except that it is composed of sequences of notes
that are characterized by pitch, duration and time-shift rel-
ative to the previous note.

In the following, we start by contrasting our representa-
tion of music to previous propositions [6, 12, 14, 15] with
a focus towards training style-agnostic generative models
of music. We then introduce our algorithm and compare
BachProp with other models on a standard datasets of chor-
ales written by Johann Sebastian Bach [16] and establish
new benchmarks on the musically complex datasets of MI-
DI recordings by John Sankey [17] and string quartets by
Haydn and Mozart [18]. Finally, as the evaluation and
comparison of generative models is not trivial [19], we in-
vite the reader, first, to a subjective comparison on a large
collection of samples generated from the different mod-
els on the accompanying media webpage [20] and, second,
we propose a new set of metrics to quantify differences be-
tween the models. Preliminary versions of our work have
been made available on arXiv [21, 22].

2. RELATED WORK

Unlike approaches to image generation, where the stan-
dard data consists of rows and columns of pixel values for
multiple color channels, approaches to music generation
lack a standard representation of music data. This is re-
flected by the zoo of music notation file formats (ABC,
LilyPond, MusicXML, NIFF, MIDI) and the fact that loss-
less conversion from one to the other is usually not possi-
ble. The MIDI file format captures most features of music,
like polyphony, dynamics, micro tuning, expressive timing
and tempo changes. But its representational richness and
the possibility to represent the exact same song in multi-
ple ways, make it challenging to work directly with MIDI.
Therefore, all approaches discussed in the following use a
first preprocessing step to transform all songs into a sim-
pler representation. The subsequent design choices of the
generative model are heavily influenced by this first pre-
processing step.

DeepBach [6] is designed exclusively for songs with a
constant number of voices (e.g. four voices for a typical
Bach chorale) and a discretization of the rhythm into mul-
tiples of a base unit, e.g. 16th notes. The model achieves
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good results not only in generating novel songs but al-
lows also in reharmonizing given melodies while respect-
ing user-provided meta-information like the temporal posi-
tion of fermatas. The model works with a Gibbs-sampling-
like procedure, where, for each voice and time step, one
note is sampled from conditional distributions parameter-
ized by deep neural networks. The conditioning is on the
other voices in a time window surrounding the current time-
step. Additionally a “temporal backbone” signals the po-
sition of the current 16th note relative to quarter notes and
other meta-information. A special hold symbol can also be
sampled instead of a note, to represent notes with a dura-
tion longer than one time-step.

BachBot [14] and its Magenta implementation Polyphony-
RNN [15] contain no assumption about the number of voices;
they can be fit to any corpus of polyphonic music, if the
rhythm can be discretized into multiples of a base unit,
e.g. 16th notes. Songs are represented as sequences of
NEW NOTE(PITCH), CONT NOTE(PITCH) and STEP END
events, where the STEP END event indicates the end of the
current time-step. Between two STEP END events, typi-
cally several NEW NOTE(PITCH) and CONT NOTE(PITCH)
events can be found sorted by PITCH. A generative model
parametrized by a recurrent neural network model is fit to
these sequences of events, in the same way as recurrent
neural network models are used for language modeling on
a character- or word-level [23–25].

Common to the models discussed above is a discretiza-
tion of time into multiples of a base unit like the 16th note.
This limits the representable rhythms considerably; e.g.
triplets, grace notes or expressive variations in timing can-
not be represented in this way. To overcome this limitation,
[26] replace the repertoire of symbols employed by the
Polyphony-RNN by NOTE ON, NOTE OFF, TIME SHIFT
and SET VELOCITY events, where the TIME SHIFT events
allows the model to move forward in time by multiples of 8
ms up to 1 second and the SET VELOCITY events allow to
model the loudness of a note (which depends on the piano
on the velocity with which a key is pressed).

3. METHOD

In written music, the nth note note[n] of a piece of mu-
sic song = (note[1], . . . ,note[N ]) can be characterized
by its pitch P [n], duration T [n] and the time-shift dT [n]
of its onset relative to the previous note, i.e. note[n] =
(dT [n], T [n], P [n]). The time-shift dT [n] is zero for notes
played at the same time as the previous note. In contrast to
most other approaches that discretize the time into multi-
ples of a base unit (except e.g. [26]), we round all durations
into a set of defined musical durations which allows a more
faithful representation of timing that is limited only by the
number of possible values considered for T [n] and dT [n].
For example, our representation allows to easily and with-
out any distortion represent 32nd notes, triplets and double
dotted notes in the same dataset. As well as any other more
complex note durations that can be needed for specific cor-
pora. To achieve that, each duration in the original corpus
is mapped to the closest duration in a set of integer multi-
ples of atomic durations. For this work, we considered 64th

and 32nd triplets as atomic durations.
Our approach is to approximate probability distributions

over note sequences in music scores song1, . . . , songS
with distributions parameterized by recurrent neural net-
works and move its weights θ towards the maximum like-
lihood estimate

θ∗ = argmax
θ
Pr(song1, . . . , songS |θ) , (1)

Since each note in each song consists of the triplet (dT, T, P )
we can parametrize the distributions in a similar way as
the pixel-RNN [27] that was developed for the (red, green,
blue) triplets of pixels in images. Importantly, our model
takes into account that pitch and duration of a note are gen-
erally not independent. For example in classical music, the
fundamental, e.g. the note C in a piece written in C major,
tends to be longer than other notes.

In the following we describe in more details our repre-
sentation of music, the structure of the model and our ap-
proach to comparing different models that use different
representations of music.

3.1 Conversion of MIDI files into our representation
of music

0

F5

B<latexit sha1_base64="VswTg8NX8E/M7xUiW7Q/o7e5Zfc=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2hFttMPEEyJcyN6yBxv29i67c0Zy4V/YWKix9efY+W9c4AoFXzLJy3szmZkXJFIYdN1vp7Cyura+UdwsbW3v7O6V9w/uTZxqxj0Wy1i3A2q4FIp7KFDydqI5jQLJW8Hoauq3Hrk2IlZ3OE64H9GBEqFgFK300EX+hEGYXU565YpbdWcgy6SWkwrkaPbKX91+zNKIK2SSGtOpuQn6GdUomOSTUjc1PKFsRAe8Y6miETd+Nrt4Qk6s0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhuZ8JlaTIFZsvClNJMCbT90lfaM5Qji2hTAt7K2FDqilDG1LJhlBbfHmZePXqRdW9rVcaN3kaRTiCYziFGpxBA66hCR4wUPAMr/DmGOfFeXc+5q0FJ585hD9wPn8AQJqQ2Q==</latexit><latexit sha1_base64="VswTg8NX8E/M7xUiW7Q/o7e5Zfc=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2hFttMPEEyJcyN6yBxv29i67c0Zy4V/YWKix9efY+W9c4AoFXzLJy3szmZkXJFIYdN1vp7Cyura+UdwsbW3v7O6V9w/uTZxqxj0Wy1i3A2q4FIp7KFDydqI5jQLJW8Hoauq3Hrk2IlZ3OE64H9GBEqFgFK300EX+hEGYXU565YpbdWcgy6SWkwrkaPbKX91+zNKIK2SSGtOpuQn6GdUomOSTUjc1PKFsRAe8Y6miETd+Nrt4Qk6s0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhuZ8JlaTIFZsvClNJMCbT90lfaM5Qji2hTAt7K2FDqilDG1LJhlBbfHmZePXqRdW9rVcaN3kaRTiCYziFGpxBA66hCR4wUPAMr/DmGOfFeXc+5q0FJ585hD9wPn8AQJqQ2Q==</latexit><latexit sha1_base64="VswTg8NX8E/M7xUiW7Q/o7e5Zfc=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmIzGxIgeN2hFttMPEEyJcyN6yBxv29i67c0Zy4V/YWKix9efY+W9c4AoFXzLJy3szmZkXJFIYdN1vp7Cyura+UdwsbW3v7O6V9w/uTZxqxj0Wy1i3A2q4FIp7KFDydqI5jQLJW8Hoauq3Hrk2IlZ3OE64H9GBEqFgFK300EX+hEGYXU565YpbdWcgy6SWkwrkaPbKX91+zNKIK2SSGtOpuQn6GdUomOSTUjc1PKFsRAe8Y6miETd+Nrt4Qk6s0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhuZ8JlaTIFZsvClNJMCbT90lfaM5Qji2hTAt7K2FDqilDG1LJhlBbfHmZePXqRdW9rVcaN3kaRTiCYziFGpxBA66hCR4wUPAMr/DmGOfFeXc+5q0FJ585hD9wPn8AQJqQ2Q==</latexit>

A4=69
...

...
⌘ 3/2

⌘ 1/2

...

...

Duration set

Pitch set

C
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<latexit sha1_base64="qzsrebdgnpe2XHMKskevCdkJ+Zs=">AAAB+HicbVBNSwMxFMz6WevXqkcvwSJ4KrtFUG8FL56kgmsL7VKy6ds2NJssSbZQlv4TLx5UvPpTvPlvzLZ70NaBwDDzHm8yUcqZNp737aytb2xubVd2qrt7+weH7tHxk5aZohBQyaXqREQDZwICwwyHTqqAJBGHdjS+Lfz2BJRmUjyaaQphQoaCxYwSY6W+6/YSYkZRnAtpYNa9D/tuzat7c+BV4pekhkq0+u5XbyBploAwlBOtu76XmjAnyjDKYVbtZRpSQsdkCF1LBUlAh/k8+QyfW2WAY6nsEwbP1d8bOUm0niaRnSxy6mWvEP/zupmJr8OciTQzIOjiUJxxbCQuasADpoAaPrWEUMVsVkxHRBFqbFlVW4K//OVVEjTqN3Xv4bLWbJRtVNApOkMXyEdXqInuUAsFiKIJekav6M3JnRfn3flYjK455c4J+gPn8wdEg5OQ</latexit><latexit sha1_base64="qzsrebdgnpe2XHMKskevCdkJ+Zs=">AAAB+HicbVBNSwMxFMz6WevXqkcvwSJ4KrtFUG8FL56kgmsL7VKy6ds2NJssSbZQlv4TLx5UvPpTvPlvzLZ70NaBwDDzHm8yUcqZNp737aytb2xubVd2qrt7+weH7tHxk5aZohBQyaXqREQDZwICwwyHTqqAJBGHdjS+Lfz2BJRmUjyaaQphQoaCxYwSY6W+6/YSYkZRnAtpYNa9D/tuzat7c+BV4pekhkq0+u5XbyBploAwlBOtu76XmjAnyjDKYVbtZRpSQsdkCF1LBUlAh/k8+QyfW2WAY6nsEwbP1d8bOUm0niaRnSxy6mWvEP/zupmJr8OciTQzIOjiUJxxbCQuasADpoAaPrWEUMVsVkxHRBFqbFlVW4K//OVVEjTqN3Xv4bLWbJRtVNApOkMXyEdXqInuUAsFiKIJekav6M3JnRfn3flYjK455c4J+gPn8wdEg5OQ</latexit><latexit sha1_base64="qzsrebdgnpe2XHMKskevCdkJ+Zs=">AAAB+HicbVBNSwMxFMz6WevXqkcvwSJ4KrtFUG8FL56kgmsL7VKy6ds2NJssSbZQlv4TLx5UvPpTvPlvzLZ70NaBwDDzHm8yUcqZNp737aytb2xubVd2qrt7+weH7tHxk5aZohBQyaXqREQDZwICwwyHTqqAJBGHdjS+Lfz2BJRmUjyaaQphQoaCxYwSY6W+6/YSYkZRnAtpYNa9D/tuzat7c+BV4pekhkq0+u5XbyBploAwlBOtu76XmjAnyjDKYVbtZRpSQsdkCF1LBUlAh/k8+QyfW2WAY6nsEwbP1d8bOUm0niaRnSxy6mWvEP/zupmJr8OciTQzIOjiUJxxbCQuasADpoAaPrWEUMVsVkxHRBFqbFlVW4K//OVVEjTqN3Xv4bLWbJRtVNApOkMXyEdXqInuUAsFiKIJekav6M3JnRfn3flYjK455c4J+gPn8wdEg5OQ</latexit>
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e[1]
...

e[n]
e[n + 1]

...
e[N ]

1
CCCCCCCCA

0
BBBBBBBB@

e[1]
...

e[n]
e[n + 1]

...
e[N ]

1
CCCCCCCCA

0
BBBBBBBB@

e[1]
...

e[n]
e[n + 1]

...
e[N ]

1
CCCCCCCCA

0
BBBBBBBB@

e[1]
...

e[n]
e[n + 1]

...
e[N ]

1
CCCCCCCCA

Figure 1. From MIDI to our representation of music. An
illustration of the steps involved in the proposed conversion of
MIDI sequences. See text for details.

A MIDI file contains a header (meta parameters) and pos-
sibly multiple tracks that contain a sequence of MIDI mes-
sages. For BachProp, we merge all tracks and consider
only the MIDI messages defining when a note starts (ON
events) or ends (OFF events). For each ON event we look
forward at the next OFF event with the same pitch P to
convert sequences of MIDI messages into a sequences of
notes (Figure 1A). We then translate timings from the inter-
nal MIDI TICK representation to quarter note lengths (Fig-
ure 1B).

Next, we round all durations T [n] such that they are in
the set of possible note lengths (duration set in Figure 1C)
expressed in units of a quarter note, similar to durations in
standard music notation software. Similarly, we round the
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(128)
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ReLU ReLUReLU

Pr(dT [n + 1])
<latexit sha1_base64="a7HJ0+3DL60uRoKtxvrpHa7UrGc=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJUhJKIoN6KXjxWaGwhDWWz2bRLN7thdyOU0p/hxYOKV/+NN/+N2zYHbX0w8Hhvhpl5UcaZNq777aysrq1vbJa2yts7u3v7lYPDRy1zRahPJJeqE2FNORPUN8xw2skUxWnEaTsa3k399hNVmknRMqOMhinuC5Ywgo2Vgqaqxa1AnHvhWa9SdevuDGiZeAWpQoFmr/LVjSXJUyoM4VjrwHMzE46xMoxwOil3c00zTIa4TwNLBU6pDsezkyfo1CoxSqSyJQyaqb8nxjjVepRGtjPFZqAXvan4nxfkJrkOx0xkuaGCzBclOUdGoun/KGaKEsNHlmCimL0VkQFWmBibUtmG4C2+vEz8i/pN3X24rDZuizRKcAwnUAMPrqAB99AEHwhIeIZXeHOM8+K8Ox/z1hWnmDmCP3A+fwAfs5AI</latexit><latexit sha1_base64="a7HJ0+3DL60uRoKtxvrpHa7UrGc=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJUhJKIoN6KXjxWaGwhDWWz2bRLN7thdyOU0p/hxYOKV/+NN/+N2zYHbX0w8Hhvhpl5UcaZNq777aysrq1vbJa2yts7u3v7lYPDRy1zRahPJJeqE2FNORPUN8xw2skUxWnEaTsa3k399hNVmknRMqOMhinuC5Ywgo2Vgqaqxa1AnHvhWa9SdevuDGiZeAWpQoFmr/LVjSXJUyoM4VjrwHMzE46xMoxwOil3c00zTIa4TwNLBU6pDsezkyfo1CoxSqSyJQyaqb8nxjjVepRGtjPFZqAXvan4nxfkJrkOx0xkuaGCzBclOUdGoun/KGaKEsNHlmCimL0VkQFWmBibUtmG4C2+vEz8i/pN3X24rDZuizRKcAwnUAMPrqAB99AEHwhIeIZXeHOM8+K8Ox/z1hWnmDmCP3A+fwAfs5AI</latexit><latexit sha1_base64="a7HJ0+3DL60uRoKtxvrpHa7UrGc=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJUhJKIoN6KXjxWaGwhDWWz2bRLN7thdyOU0p/hxYOKV/+NN/+N2zYHbX0w8Hhvhpl5UcaZNq777aysrq1vbJa2yts7u3v7lYPDRy1zRahPJJeqE2FNORPUN8xw2skUxWnEaTsa3k399hNVmknRMqOMhinuC5Ywgo2Vgqaqxa1AnHvhWa9SdevuDGiZeAWpQoFmr/LVjSXJUyoM4VjrwHMzE46xMoxwOil3c00zTIa4TwNLBU6pDsezkyfo1CoxSqSyJQyaqb8nxjjVepRGtjPFZqAXvan4nxfkJrkOx0xkuaGCzBclOUdGoun/KGaKEsNHlmCimL0VkQFWmBibUtmG4C2+vEz8i/pN3X24rDZuizRKcAwnUAMPrqAB99AEHwhIeIZXeHOM8+K8Ox/z1hWnmDmCP3A+fwAfs5AI</latexit>

Pr(T [n + 1])
<latexit sha1_base64="i6IX2y1qUMY21zHazretCIncVKw=">AAAB8HicbVBNS8NAEJ3Ur1q/oh69LBahIpREBPVW9OKxQmOLaSib7aZdutmE3Y1QQv+FFw8qXv053vw3btsctPXBwOO9GWbmhSlnSjvOt1VaWV1b3yhvVra2d3b37P2DB5VkklCPJDyRnRArypmgnmaa004qKY5DTtvh6Hbqt5+oVCwRLT1OaRDjgWARI1gb6bEpay1fnLnBac+uOnVnBrRM3IJUoUCzZ391+wnJYio04Vgp33VSHeRYakY4nVS6maIpJiM8oL6hAsdUBfns4gk6MUofRYk0JTSaqb8nchwrNY5D0xljPVSL3lT8z/MzHV0FORNppqkg80VRxpFO0PR91GeSEs3HhmAimbkVkSGWmGgTUsWE4C6+vEy88/p13bm/qDZuijTKcATHUAMXLqEBd9AEDwgIeIZXeLOU9WK9Wx/z1pJVzBzCH1ifP1/dj5o=</latexit><latexit sha1_base64="i6IX2y1qUMY21zHazretCIncVKw=">AAAB8HicbVBNS8NAEJ3Ur1q/oh69LBahIpREBPVW9OKxQmOLaSib7aZdutmE3Y1QQv+FFw8qXv053vw3btsctPXBwOO9GWbmhSlnSjvOt1VaWV1b3yhvVra2d3b37P2DB5VkklCPJDyRnRArypmgnmaa004qKY5DTtvh6Hbqt5+oVCwRLT1OaRDjgWARI1gb6bEpay1fnLnBac+uOnVnBrRM3IJUoUCzZ391+wnJYio04Vgp33VSHeRYakY4nVS6maIpJiM8oL6hAsdUBfns4gk6MUofRYk0JTSaqb8nchwrNY5D0xljPVSL3lT8z/MzHV0FORNppqkg80VRxpFO0PR91GeSEs3HhmAimbkVkSGWmGgTUsWE4C6+vEy88/p13bm/qDZuijTKcATHUAMXLqEBd9AEDwgIeIZXeLOU9WK9Wx/z1pJVzBzCH1ifP1/dj5o=</latexit><latexit sha1_base64="i6IX2y1qUMY21zHazretCIncVKw=">AAAB8HicbVBNS8NAEJ3Ur1q/oh69LBahIpREBPVW9OKxQmOLaSib7aZdutmE3Y1QQv+FFw8qXv053vw3btsctPXBwOO9GWbmhSlnSjvOt1VaWV1b3yhvVra2d3b37P2DB5VkklCPJDyRnRArypmgnmaa004qKY5DTtvh6Hbqt5+oVCwRLT1OaRDjgWARI1gb6bEpay1fnLnBac+uOnVnBrRM3IJUoUCzZ391+wnJYio04Vgp33VSHeRYakY4nVS6maIpJiM8oL6hAsdUBfns4gk6MUofRYk0JTSaqb8nchwrNY5D0xljPVSL3lT8z/MzHV0FORNppqkg80VRxpFO0PR91GeSEs3HhmAimbkVkSGWmGgTUsWE4C6+vEy88/p13bm/qDZuijTKcATHUAMXLqEBd9AEDwgIeIZXeLOU9WK9Wx/z1pJVzBzCH1ifP1/dj5o=</latexit>

Pr(P [n + 1])
<latexit sha1_base64="BWieucDb7tEaK2U4YhYGV9eFt5c=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahIpSkCOqt6MVjBGOLaSib7aZdutmE3Y1QQv+FFw8qXv053vw3btsctPXBwOO9GWbmhSlnStv2t1VaWV1b3yhvVra2d3b3qvsHDyrJJKEeSXgiOyFWlDNBPc00p51UUhyHnLbD0c3Ubz9RqVgi7vU4pUGMB4JFjGBtpEdX1l1fnDnBaa9asxv2DGiZOAWpQQG3V/3q9hOSxVRowrFSvmOnOsix1IxwOql0M0VTTEZ4QH1DBY6pCvLZxRN0YpQ+ihJpSmg0U39P5DhWahyHpjPGeqgWvan4n+dnOroMcibSTFNB5ouijCOdoOn7qM8kJZqPDcFEMnMrIkMsMdEmpIoJwVl8eZl4zcZVw747r7WuizTKcATHUAcHLqAFt+CCBwQEPMMrvFnKerHerY95a8kqZg7hD6zPH1m5j5Y=</latexit><latexit sha1_base64="BWieucDb7tEaK2U4YhYGV9eFt5c=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahIpSkCOqt6MVjBGOLaSib7aZdutmE3Y1QQv+FFw8qXv053vw3btsctPXBwOO9GWbmhSlnStv2t1VaWV1b3yhvVra2d3b3qvsHDyrJJKEeSXgiOyFWlDNBPc00p51UUhyHnLbD0c3Ubz9RqVgi7vU4pUGMB4JFjGBtpEdX1l1fnDnBaa9asxv2DGiZOAWpQQG3V/3q9hOSxVRowrFSvmOnOsix1IxwOql0M0VTTEZ4QH1DBY6pCvLZxRN0YpQ+ihJpSmg0U39P5DhWahyHpjPGeqgWvan4n+dnOroMcibSTFNB5ouijCOdoOn7qM8kJZqPDcFEMnMrIkMsMdEmpIoJwVl8eZl4zcZVw747r7WuizTKcATHUAcHLqAFt+CCBwQEPMMrvFnKerHerY95a8kqZg7hD6zPH1m5j5Y=</latexit><latexit sha1_base64="BWieucDb7tEaK2U4YhYGV9eFt5c=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBahIpSkCOqt6MVjBGOLaSib7aZdutmE3Y1QQv+FFw8qXv053vw3btsctPXBwOO9GWbmhSlnStv2t1VaWV1b3yhvVra2d3b3qvsHDyrJJKEeSXgiOyFWlDNBPc00p51UUhyHnLbD0c3Ubz9RqVgi7vU4pUGMB4JFjGBtpEdX1l1fnDnBaa9asxv2DGiZOAWpQQG3V/3q9hOSxVRowrFSvmOnOsix1IxwOql0M0VTTEZ4QH1DBY6pCvLZxRN0YpQ+ihJpSmg0U39P5DhWahyHpjPGeqgWvan4n+dnOroMcibSTFNB5ouijCOdoOn7qM8kJZqPDcFEMnMrIkMsMdEmpIoJwVl8eZl4zcZVw747r7WuizTKcATHUAcHLqAFt+CCBwQEPMMrvFnKerHerY95a8kqZg7hD6zPH1m5j5Y=</latexit>

Interlayer Readout Recurrent	

0
@

dT [n]
T [n]
P [n]

1
A

<latexit sha1_base64="wVvkYwsa75CNtmHsEyiEz6QSYUY=">AAACFnicbVBNS8NAEN3Ur1q/qh69LBbBU0hEUG9FLx4rNLbQhLLZTNulm03Y3Ygl9F948a948aDiVbz5b9y0RbT1wQ6P92bYmRemnCntOF9WaWl5ZXWtvF7Z2Nza3qnu7t2qJJMUPJrwRLZDooAzAZ5mmkM7lUDikEMrHF4VfusOpGKJaOpRCkFM+oL1GCXaSN2q7YfQZyJPY6Ilux9HzY4IfH9aG0UFEf24lW615tjOBHiRuDNSQzM0utVPP0poFoPQlBOlOq6T6iAnUjPKYVzxMwUpoUPSh46hgsSggnxy1xgfGSXCvUSaJzSeqL8nchIrNYpD02kWHKh5rxD/8zqZ7p0HORNppkHQ6Ue9jGOd4CIkHDEJVPORIYRKZnbFdEAkodpEWYTgzp+8SLwT+8J2bk5r9ctZGmV0gA7RMXLRGaqja9RAHqLoAT2hF/RqPVrP1pv1Pm0tWbOZffQH1sc3xwSggA==</latexit><latexit sha1_base64="wVvkYwsa75CNtmHsEyiEz6QSYUY=">AAACFnicbVBNS8NAEN3Ur1q/qh69LBbBU0hEUG9FLx4rNLbQhLLZTNulm03Y3Ygl9F948a948aDiVbz5b9y0RbT1wQ6P92bYmRemnCntOF9WaWl5ZXWtvF7Z2Nza3qnu7t2qJJMUPJrwRLZDooAzAZ5mmkM7lUDikEMrHF4VfusOpGKJaOpRCkFM+oL1GCXaSN2q7YfQZyJPY6Ilux9HzY4IfH9aG0UFEf24lW615tjOBHiRuDNSQzM0utVPP0poFoPQlBOlOq6T6iAnUjPKYVzxMwUpoUPSh46hgsSggnxy1xgfGSXCvUSaJzSeqL8nchIrNYpD02kWHKh5rxD/8zqZ7p0HORNppkHQ6Ue9jGOd4CIkHDEJVPORIYRKZnbFdEAkodpEWYTgzp+8SLwT+8J2bk5r9ctZGmV0gA7RMXLRGaqja9RAHqLoAT2hF/RqPVrP1pv1Pm0tWbOZffQH1sc3xwSggA==</latexit><latexit sha1_base64="wVvkYwsa75CNtmHsEyiEz6QSYUY=">AAACFnicbVBNS8NAEN3Ur1q/qh69LBbBU0hEUG9FLx4rNLbQhLLZTNulm03Y3Ygl9F948a948aDiVbz5b9y0RbT1wQ6P92bYmRemnCntOF9WaWl5ZXWtvF7Z2Nza3qnu7t2qJJMUPJrwRLZDooAzAZ5mmkM7lUDikEMrHF4VfusOpGKJaOpRCkFM+oL1GCXaSN2q7YfQZyJPY6Ilux9HzY4IfH9aG0UFEf24lW615tjOBHiRuDNSQzM0utVPP0poFoPQlBOlOq6T6iAnUjPKYVzxMwUpoUPSh46hgsSggnxy1xgfGSXCvUSaJzSeqL8nchIrNYpD02kWHKh5rxD/8zqZ7p0HORNppkHQ6Ue9jGOd4CIkHDEJVPORIYRKZnbFdEAkodpEWYTgzp+8SLwT+8J2bk5r9ctZGmV0gA7RMXLRGaqja9RAHqLoAT2hF/RqPVrP1pv1Pm0tWbOZffQH1sc3xwSggA==</latexit>

dT [n + 1]
<latexit sha1_base64="1Ktd/qzKsanpGSZxO+Zsy5piVSo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoignorevFYobGFNJTNZtMu3Wzi7kYooX/CiwcVr/4eb/4bN20O2vpg4PHeDDPzgpQzpW3726qsrK6tb1Q3a1vbO7t79f2DB5VkklCXJDyRvQArypmgrmaa014qKY4DTrvB+Lbwu09UKpaIjp6k1I/xULCIEayN1As7njhz/Nqg3rCb9gxomTglaUCJ9qD+1Q8TksVUaMKxUp5jp9rPsdSMcDqt9TNFU0zGeEg9QwWOqfLz2b1TdGKUEEWJNCU0mqm/J3IcKzWJA9MZYz1Si14h/ud5mY6u/JyJNNNUkPmiKONIJ6h4HoVMUqL5xBBMJDO3IjLCEhNtIipCcBZfXibuefO6ad9fNFo3ZRpVOIJjOAUHLqEFd9AGFwhweIZXeLMerRfr3fqYt1ascuYQ/sD6/AEXv47h</latexit><latexit sha1_base64="1Ktd/qzKsanpGSZxO+Zsy5piVSo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoignorevFYobGFNJTNZtMu3Wzi7kYooX/CiwcVr/4eb/4bN20O2vpg4PHeDDPzgpQzpW3726qsrK6tb1Q3a1vbO7t79f2DB5VkklCXJDyRvQArypmgrmaa014qKY4DTrvB+Lbwu09UKpaIjp6k1I/xULCIEayN1As7njhz/Nqg3rCb9gxomTglaUCJ9qD+1Q8TksVUaMKxUp5jp9rPsdSMcDqt9TNFU0zGeEg9QwWOqfLz2b1TdGKUEEWJNCU0mqm/J3IcKzWJA9MZYz1Si14h/ud5mY6u/JyJNNNUkPmiKONIJ6h4HoVMUqL5xBBMJDO3IjLCEhNtIipCcBZfXibuefO6ad9fNFo3ZRpVOIJjOAUHLqEFd9AGFwhweIZXeLMerRfr3fqYt1ascuYQ/sD6/AEXv47h</latexit><latexit sha1_base64="1Ktd/qzKsanpGSZxO+Zsy5piVSo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoignorevFYobGFNJTNZtMu3Wzi7kYooX/CiwcVr/4eb/4bN20O2vpg4PHeDDPzgpQzpW3726qsrK6tb1Q3a1vbO7t79f2DB5VkklCXJDyRvQArypmgrmaa014qKY4DTrvB+Lbwu09UKpaIjp6k1I/xULCIEayN1As7njhz/Nqg3rCb9gxomTglaUCJ9qD+1Q8TksVUaMKxUp5jp9rPsdSMcDqt9TNFU0zGeEg9QwWOqfLz2b1TdGKUEEWJNCU0mqm/J3IcKzWJA9MZYz1Si14h/ud5mY6u/JyJNNNUkPmiKONIJ6h4HoVMUqL5xBBMJDO3IjLCEhNtIipCcBZfXibuefO6ad9fNFo3ZRpVOIJjOAUHLqEFd9AGFwhweIZXeLMerRfr3fqYt1ascuYQ/sD6/AEXv47h</latexit>

T [n + 1]
<latexit sha1_base64="7qsityv991ZxbGVC/ktWqp+08Yo=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQklEUG9FLx4rNLaQhrLZbtqlm82yuxFK6I/w4kHFq//Hm//GTZuDtj4YeLw3w8y8SHKmjet+Oyura+sbm5Wt6vbO7t5+7eDwUaeZItQnKU9VN8Kaciaob5jhtCsVxUnEaSca3xV+54kqzVLRNhNJwwQPBYsZwcZKnXYgzr2w2q/V3YY7A1omXknqUKLVr331BinJEioM4VjrwHOlCXOsDCOcTqu9TFOJyRgPaWCpwAnVYT47d4pOrTJAcapsCYNm6u+JHCdaT5LIdibYjPSiV4j/eUFm4uswZ0JmhgoyXxRnHJkUFb+jAVOUGD6xBBPF7K2IjLDCxNiEihC8xZeXiX/RuGm4D5f15m2ZRgWO4QTOwIMraMI9tMAHAmN4hld4c6Tz4rw7H/PWFaecOYI/cD5/AFjZjnM=</latexit><latexit sha1_base64="7qsityv991ZxbGVC/ktWqp+08Yo=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQklEUG9FLx4rNLaQhrLZbtqlm82yuxFK6I/w4kHFq//Hm//GTZuDtj4YeLw3w8y8SHKmjet+Oyura+sbm5Wt6vbO7t5+7eDwUaeZItQnKU9VN8Kaciaob5jhtCsVxUnEaSca3xV+54kqzVLRNhNJwwQPBYsZwcZKnXYgzr2w2q/V3YY7A1omXknqUKLVr331BinJEioM4VjrwHOlCXOsDCOcTqu9TFOJyRgPaWCpwAnVYT47d4pOrTJAcapsCYNm6u+JHCdaT5LIdibYjPSiV4j/eUFm4uswZ0JmhgoyXxRnHJkUFb+jAVOUGD6xBBPF7K2IjLDCxNiEihC8xZeXiX/RuGm4D5f15m2ZRgWO4QTOwIMraMI9tMAHAmN4hld4c6Tz4rw7H/PWFaecOYI/cD5/AFjZjnM=</latexit><latexit sha1_base64="7qsityv991ZxbGVC/ktWqp+08Yo=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSIIQklEUG9FLx4rNLaQhrLZbtqlm82yuxFK6I/w4kHFq//Hm//GTZuDtj4YeLw3w8y8SHKmjet+Oyura+sbm5Wt6vbO7t5+7eDwUaeZItQnKU9VN8Kaciaob5jhtCsVxUnEaSca3xV+54kqzVLRNhNJwwQPBYsZwcZKnXYgzr2w2q/V3YY7A1omXknqUKLVr331BinJEioM4VjrwHOlCXOsDCOcTqu9TFOJyRgPaWCpwAnVYT47d4pOrTJAcapsCYNm6u+JHCdaT5LIdibYjPSiV4j/eUFm4uswZ0JmhgoyXxRnHJkUFb+jAVOUGD6xBBPF7K2IjLDCxNiEihC8xZeXiX/RuGm4D5f15m2ZRgWO4QTOwIMraMI9tMAHAmN4hld4c6Tz4rw7H/PWFaecOYI/cD5/AFjZjnM=</latexit>

H1[n]
<latexit sha1_base64="ztp1CQAuI8bB/Ri2uHzhJB76oDQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLz1WMLaQhrLZbtqlm82yuxFK6I/w4kHFq//Hm//GTZuDtj4YeLw3w8y8SHKmjet+O5W19Y3Nrep2bWd3b/+gfnj0qNNMEeqTlKeqF2FNORPUN8xw2pOK4iTitBtN7gq/+0SVZql4MFNJwwSPBIsZwcZK3fbAC0RYG9QbbtOdA60SryQNKNEZ1L/6w5RkCRWGcKx14LnShDlWhhFOZ7V+pqnEZIJHNLBU4ITqMJ+fO0NnVhmiOFW2hEFz9fdEjhOtp0lkOxNsxnrZK8T/vCAz8XWYMyEzQwVZLIozjkyKit/RkClKDJ9agoli9lZExlhhYmxCRQje8surxL9o3jTd+8tG67ZMowoncArn4MEVtKANHfCBwASe4RXeHOm8OO/Ox6K14pQzx/AHzucPlTOOmw==</latexit><latexit sha1_base64="ztp1CQAuI8bB/Ri2uHzhJB76oDQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLz1WMLaQhrLZbtqlm82yuxFK6I/w4kHFq//Hm//GTZuDtj4YeLw3w8y8SHKmjet+O5W19Y3Nrep2bWd3b/+gfnj0qNNMEeqTlKeqF2FNORPUN8xw2pOK4iTitBtN7gq/+0SVZql4MFNJwwSPBIsZwcZK3fbAC0RYG9QbbtOdA60SryQNKNEZ1L/6w5RkCRWGcKx14LnShDlWhhFOZ7V+pqnEZIJHNLBU4ITqMJ+fO0NnVhmiOFW2hEFz9fdEjhOtp0lkOxNsxnrZK8T/vCAz8XWYMyEzQwVZLIozjkyKit/RkClKDJ9agoli9lZExlhhYmxCRQje8surxL9o3jTd+8tG67ZMowoncArn4MEVtKANHfCBwASe4RXeHOm8OO/Ox6K14pQzx/AHzucPlTOOmw==</latexit><latexit sha1_base64="ztp1CQAuI8bB/Ri2uHzhJB76oDQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLz1WMLaQhrLZbtqlm82yuxFK6I/w4kHFq//Hm//GTZuDtj4YeLw3w8y8SHKmjet+O5W19Y3Nrep2bWd3b/+gfnj0qNNMEeqTlKeqF2FNORPUN8xw2pOK4iTitBtN7gq/+0SVZql4MFNJwwSPBIsZwcZK3fbAC0RYG9QbbtOdA60SryQNKNEZ1L/6w5RkCRWGcKx14LnShDlWhhFOZ7V+pqnEZIJHNLBU4ITqMJ+fO0NnVhmiOFW2hEFz9fdEjhOtp0lkOxNsxnrZK8T/vCAz8XWYMyEzQwVZLIozjkyKit/RkClKDJ9agoli9lZExlhhYmxCRQje8surxL9o3jTd+8tG67ZMowoncArn4MEVtKANHfCBwASe4RXeHOm8OO/Ox6K14pQzx/AHzucPlTOOmw==</latexit>

H2[n]
<latexit sha1_base64="Mu+O3mVp8+pJLuuuVb/xQzG0dbw=">AAAB7XicbVBNS8NAEJ31s9avqkcvi0XwVJIiqLeilx4rGFtIQ9lsN+3SzSbsboQS+iO8eFDx6v/x5r9x0+agrQ8GHu/NMDMvTAXXxnG+0dr6xubWdmWnuru3f3BYOzp+1EmmKPNoIhLVC4lmgkvmGW4E66WKkTgUrBtO7gq/+8SU5ol8MNOUBTEZSR5xSoyVuu1B05dBdVCrOw1nDrxK3JLUoURnUPvqDxOaxUwaKojWvuukJsiJMpwKNqv2M81SQidkxHxLJYmZDvL5uTN8bpUhjhJlSxo8V39P5CTWehqHtjMmZqyXvUL8z/MzE10HOZdpZpiki0VRJrBJcPE7HnLFqBFTSwhV3N6K6ZgoQo1NqAjBXX55lXjNxk3Dub+st27LNCpwCmdwAS5cQQva0AEPKEzgGV7hDaXoBb2jj0XrGipnTuAP0OcPlrqOnA==</latexit><latexit sha1_base64="Mu+O3mVp8+pJLuuuVb/xQzG0dbw=">AAAB7XicbVBNS8NAEJ31s9avqkcvi0XwVJIiqLeilx4rGFtIQ9lsN+3SzSbsboQS+iO8eFDx6v/x5r9x0+agrQ8GHu/NMDMvTAXXxnG+0dr6xubWdmWnuru3f3BYOzp+1EmmKPNoIhLVC4lmgkvmGW4E66WKkTgUrBtO7gq/+8SU5ol8MNOUBTEZSR5xSoyVuu1B05dBdVCrOw1nDrxK3JLUoURnUPvqDxOaxUwaKojWvuukJsiJMpwKNqv2M81SQidkxHxLJYmZDvL5uTN8bpUhjhJlSxo8V39P5CTWehqHtjMmZqyXvUL8z/MzE10HOZdpZpiki0VRJrBJcPE7HnLFqBFTSwhV3N6K6ZgoQo1NqAjBXX55lXjNxk3Dub+st27LNCpwCmdwAS5cQQva0AEPKEzgGV7hDaXoBb2jj0XrGipnTuAP0OcPlrqOnA==</latexit><latexit sha1_base64="Mu+O3mVp8+pJLuuuVb/xQzG0dbw=">AAAB7XicbVBNS8NAEJ31s9avqkcvi0XwVJIiqLeilx4rGFtIQ9lsN+3SzSbsboQS+iO8eFDx6v/x5r9x0+agrQ8GHu/NMDMvTAXXxnG+0dr6xubWdmWnuru3f3BYOzp+1EmmKPNoIhLVC4lmgkvmGW4E66WKkTgUrBtO7gq/+8SU5ol8MNOUBTEZSR5xSoyVuu1B05dBdVCrOw1nDrxK3JLUoURnUPvqDxOaxUwaKojWvuukJsiJMpwKNqv2M81SQidkxHxLJYmZDvL5uTN8bpUhjhJlSxo8V39P5CTWehqHtjMmZqyXvUL8z/MzE10HOZdpZpiki0VRJrBJcPE7HnLFqBFTSwhV3N6K6ZgoQo1NqAjBXX55lXjNxk3Dub+st27LNCpwCmdwAS5cQQva0AEPKEzgGV7hDaXoBb2jj0XrGipnTuAP0OcPlrqOnA==</latexit>

H3[n]
<latexit sha1_base64="ZPVosBgRxDbf3vaOm8oyFPkWSx0=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokK6q3opccKxhbSUDbbTbt0dxN2N0IJ/RFePKh49f9489+4aXPQ1gcDj/dmmJkXpZxp47rfzsrq2vrGZmWrur2zu7dfOzh81EmmCPVJwhPVjbCmnEnqG2Y47aaKYhFx2onGd4XfeaJKs0Q+mElKQ4GHksWMYGOlTqt/Eciw2q/V3YY7A1omXknqUKLdr331BgnJBJWGcKx14LmpCXOsDCOcTqu9TNMUkzEe0sBSiQXVYT47d4pOrTJAcaJsSYNm6u+JHAutJyKynQKbkV70CvE/L8hMfB3mTKaZoZLMF8UZRyZBxe9owBQlhk8swUQxeysiI6wwMTahIgRv8eVl4p83bhru/WW9eVumUYFjOIEz8OAKmtCCNvhAYAzP8ApvTuq8OO/Ox7x1xSlnjuAPnM8fmEGOnQ==</latexit><latexit sha1_base64="ZPVosBgRxDbf3vaOm8oyFPkWSx0=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokK6q3opccKxhbSUDbbTbt0dxN2N0IJ/RFePKh49f9489+4aXPQ1gcDj/dmmJkXpZxp47rfzsrq2vrGZmWrur2zu7dfOzh81EmmCPVJwhPVjbCmnEnqG2Y47aaKYhFx2onGd4XfeaJKs0Q+mElKQ4GHksWMYGOlTqt/Eciw2q/V3YY7A1omXknqUKLdr331BgnJBJWGcKx14LmpCXOsDCOcTqu9TNMUkzEe0sBSiQXVYT47d4pOrTJAcaJsSYNm6u+JHAutJyKynQKbkV70CvE/L8hMfB3mTKaZoZLMF8UZRyZBxe9owBQlhk8swUQxeysiI6wwMTahIgRv8eVl4p83bhru/WW9eVumUYFjOIEz8OAKmtCCNvhAYAzP8ApvTuq8OO/Ox7x1xSlnjuAPnM8fmEGOnQ==</latexit><latexit sha1_base64="ZPVosBgRxDbf3vaOm8oyFPkWSx0=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokK6q3opccKxhbSUDbbTbt0dxN2N0IJ/RFePKh49f9489+4aXPQ1gcDj/dmmJkXpZxp47rfzsrq2vrGZmWrur2zu7dfOzh81EmmCPVJwhPVjbCmnEnqG2Y47aaKYhFx2onGd4XfeaJKs0Q+mElKQ4GHksWMYGOlTqt/Eciw2q/V3YY7A1omXknqUKLdr331BgnJBJWGcKx14LmpCXOsDCOcTqu9TNMUkzEe0sBSiQXVYT47d4pOrTJAcaJsSYNm6u+JHAutJyKynQKbkV70CvE/L8hMfB3mTKaZoZLMF8UZRyZBxe9owBQlhk8swUQxeysiI6wwMTahIgRv8eVl4p83bhru/WW9eVumUYFjOIEz8OAKmtCCNvhAYAzP8ApvTuq8OO/Ox7x1xSlnjuAPnM8fmEGOnQ==</latexit>

note[n]
<latexit sha1_base64="pz7eq6swOaBfMbEKPim9jLrGZiA=">AAAB+XicbVBNS8NAEN34WetXqkcvwSJ4KokI6q3oxWMFYwtpKJvtpF262YTdiVpif4oXDype/Sfe/DcmbQ7a+mDg8d4MM/OCRHCNtv1tLC2vrK6tVzaqm1vbO7tmbe9Ox6li4LJYxKoTUA2CS3CRo4BOooBGgYB2MLoq/PY9KM1jeYvjBPyIDiQPOaOYSz2z1kV4xCDMZIww8aRf7Zl1u2FPYS0SpyR1UqLVM7+6/ZilEUhkgmrtOXaCfkYVciZgUu2mGhLKRnQAXk4ljUD72fT0iXWUK30rjFVeEq2p+nsio5HW4yjIOyOKQz3vFeJ/npdieO5nXCYpgmSzRWEqLIytIgerzxUwFOOcUKZ4fqvFhlRRhnlaRQjO/MuLxD1pXDTsm9N687JMo0IOyCE5Jg45I01yTVrEJYw8kGfySt6MJ+PFeDc+Zq1LRjmzT/7A+PwB3umT7w==</latexit><latexit sha1_base64="pz7eq6swOaBfMbEKPim9jLrGZiA=">AAAB+XicbVBNS8NAEN34WetXqkcvwSJ4KokI6q3oxWMFYwtpKJvtpF262YTdiVpif4oXDype/Sfe/DcmbQ7a+mDg8d4MM/OCRHCNtv1tLC2vrK6tVzaqm1vbO7tmbe9Ox6li4LJYxKoTUA2CS3CRo4BOooBGgYB2MLoq/PY9KM1jeYvjBPyIDiQPOaOYSz2z1kV4xCDMZIww8aRf7Zl1u2FPYS0SpyR1UqLVM7+6/ZilEUhkgmrtOXaCfkYVciZgUu2mGhLKRnQAXk4ljUD72fT0iXWUK30rjFVeEq2p+nsio5HW4yjIOyOKQz3vFeJ/npdieO5nXCYpgmSzRWEqLIytIgerzxUwFOOcUKZ4fqvFhlRRhnlaRQjO/MuLxD1pXDTsm9N687JMo0IOyCE5Jg45I01yTVrEJYw8kGfySt6MJ+PFeDc+Zq1LRjmzT/7A+PwB3umT7w==</latexit><latexit sha1_base64="pz7eq6swOaBfMbEKPim9jLrGZiA=">AAAB+XicbVBNS8NAEN34WetXqkcvwSJ4KokI6q3oxWMFYwtpKJvtpF262YTdiVpif4oXDype/Sfe/DcmbQ7a+mDg8d4MM/OCRHCNtv1tLC2vrK6tVzaqm1vbO7tmbe9Ox6li4LJYxKoTUA2CS3CRo4BOooBGgYB2MLoq/PY9KM1jeYvjBPyIDiQPOaOYSz2z1kV4xCDMZIww8aRf7Zl1u2FPYS0SpyR1UqLVM7+6/ZilEUhkgmrtOXaCfkYVciZgUu2mGhLKRnQAXk4ljUD72fT0iXWUK30rjFVeEq2p+nsio5HW4yjIOyOKQz3vFeJ/npdieO5nXCYpgmSzRWEqLIytIgerzxUwFOOcUKZ4fqvFhlRRhnlaRQjO/MuLxD1pXDTsm9N687JMo0IOyCE5Jg45I01yTVrEJYw8kGfySt6MJ+PFeDc+Zq1LRjmzT/7A+PwB3umT7w==</latexit>

Figure 2. BachProp neural architecture. See text for details.

time-shifts dT [n] to 0 or one of the possible note lengths.
Mapping to the closest value in the set removes tempo-
ral jitter around the standard note duration that may have
been introduced accidentally at the moment of recording
the MIDI file (Figure 1C). While this standardization may
be desired when expressive timing is not taken into ac-
count, it is straightforward to extend the duration dictio-
nary to include also values that allow to model expressive
timing. However, we believe that a good generative model
of music should be trained to model the music structure
only. If the music representation is introducing additional
temporal dependencies, the model will need to learn these
interfering structures as well. In that sense, the processing
we designed for BachProp and presented in this section al-
lows it to focus on the essential structure of music.

In order for BachProp to learn tonality, during training
and before each new epoch, we randomly transpose every
song within the available bounds of the pitch set. For each
song we compute one of the possible shift of semitones
and apply it as an offset to all pitches within the song. Be-
cause a single MIDI sequence will be transposed with up
to 20 offsets, this augmentation method allows BachProp
to learn the temporal structure of music on more examples.

Finally, we add an artificial note at the beginning and end
of each score. After training, the inaudible ‘boundary note’
is used by the model to seed and end the generation of
songs.

3.2 The BachProp neural network

We employ a deep GRU [28] network with three consecu-
tive layers as schematized in Figure 2. The network’s task
is to infer the probability distribution over the next possi-
ble notes from the representation of the current note and
the network’s internal state (the network representation of
the history of notes).

The probability of a sequence of N notes note[1 : N ] =
(note[1], . . . ,note[N ]) is given by

Pr(note[1 : N ]) =

Pr(note[1])
N−1∏

n=1

Pr(note[n+ 1]|note[1 : n]) . (2)

Each term on the right hand side can be further split into

Pr(note[n+ 1]|note[1 : n]) =

Pr(dT [n+ 1]|note[1 : n])×
Pr(T [n+ 1]|note[1 : n], dT [n+ 1])×

Pr(P [n+ 1]|note[1 : n], dT [n+ 1], T [n+ 1]) . (3)

The goal of training the Bachprop network with parame-
ters θ is to approximate the conditional probability distri-
butions on the right hand side of Equation (3).

In the BachProp network (Figure 2), the conditioning on
the history note[1 : n] is implemented by the values of
the shared hidden states. The hidden state is composed of
3 recurrent layers with 128 gated-recurrent units (GRU).
The state H1[n] of the first hidden layer is updated with
input note[n] and previous state H1[n − 1]. The state of
the upper layers Hi[n] for i = 2, 3 are updated with inputs
Hi−1[n] and Hi[n− 1].
note[n] is represented by three one-hot vectors encod-

ing separately dT [n], T [n] and P [n], i.e. every entry in
these vectors is 0 but the one mapped to the value x[n]
for x = dT, T, P . The length of each of these vectors is
defined by the size of the respective dictionary Lx. There-
fore, each song is encoded as a set of three 2-dimensional
binary matrices of sizeNs×Lx, whereNs stands for num-
ber of notes in song s and Lx for the size of the set of
unique time-shifts (x = dT ), note durations (x = T ) or
keys (x = P ) present in the original corpus. These matri-
ces are zero-padded to account for variable input lengths
Ns.

During training, songs are presented to the network in se-
quences of batches containing binary tensors with dimen-
sion B × N × L. B = 32 is the number of songs pre-
sented together over which the gradient of the error sig-
nal is averaged. N = 128 is the number of consecu-
tive notes over which the gradients are computed, i.e. we
used truncated backpropagation through time. L = LdT +
LT +LP is the size of the entire input vector encoding for
note[n]. Though the gradient is truncated, the recurrent
units are stateful: they maintain their states across consec-
utive batches while the same sets ofB songs are being pre-
sented. When a new batch of B songs is being presented
to the network, hidden states are reset.

To generate note[n+1], one third (H1[n] in Figure 2) of
the full hidden state is fed into a feedforward network with
one layer of Rectified linear (ReLU) units and one out-
put softmax layer that represents Pr(dT [n+ 1]|H1[n]) ≈
Pr(dT [n+1]|note[1 : n]). The chosen dT [n+1] together
withH1[n] andH2[n] is fed into a second feedforward net-
work with one layer of ReLU units and an output softmax
layer that represents Pr(T [n + 1]|H1[n], H2[n], dT [n +
1]) ≈ Pr(T [n + 1]|note[1 : n], dT [n + 1]). In a simi-
larly way, the pitch is sampled from Pr(P [n + 1]|H1[n],
H2[n], H3[n], dT [n+1], T [n+1]) ≈ Pr(T [n+1]|note[1 :
n], dT [n + 1], T [n + 1]). The ReLU and softmax readout
layers have the same sizeLx as the dictionary of the feature
they model. These three small steps of sampling dT [n+1],
T [n+1] and P [n+1] form together one big step from note
n to note n+ 1.

The resulting sequence of notes is a newly generated score
sampled from BachProp. Note that, the temperature of
sampling can be adapted to the confidence we give to the
model predictions [5, 29]. In particular, any model trained
with a corpus that exhibits many repetition of patterns, will
generate scores with more examples of these repetitions for
lower sampling temperatures. Indeed, a lower temperature

382

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



will reduce the probability to select an undesired note that
is not part of the pattern to be repeated. Finally, the gen-
erated sequence of notes in our representation can easily
be translated back to a MIDI sequence by reversing the
method schematized in Figure 1.

BachProp has been implemented in Python using the Keras
API [30]. Code is available on GitHub 1 .

3.3 Comparison against plagiarism and other models

Even in well-established domains such as computer vision
and image generation, it is not clear how to compare gen-
erative models [19]. But in order to turn generative models
of music eventually into useful tools for composers, they
should be able to generate (1) plagiarism-free music of (2)
a predefined style or mood that is (3) pleasant to listen to.

A way of measuring plagiarism is to control overfitting by
comparing the loss on training and validation data. While
this is a simple method it is rather coarse since it works on
songs as a whole. Instead we propose novelty profiles that
compare the co-occurrence of short note sequences across
different data sets. A crucial parameter of novelty profiles
is the length of a note sequence on which the comparison
takes place. We adapted the novelty profile, a measure of
similarity between any given score and a reference corpus,
from [5]. For a pattern size of 6 notes, a novelty score of
1 indicates that all patterns of 6 consecutive notes are not
present in the reference corpus. On the other hand, a note
sequence that contains only patterns found in the reference
corpus would exhibit a novelty score of 0. We define the
binary novelty of a single pattern by checking if all three
features (dT [n−m : n], T [n−m : n], P [n−m : n]) of the
notes included in the pattern are found in the same order
anywhere in the reference corpus. The novelty score of an
entire song is the average binary novelty over all possible
patterns.

Models that are trained on the same representation of mu-
sic can be compared by their likelihood to assess how well
they generate pieces of a predefined type. But if the mod-
els represent probability distributions over different spaces,
which is quickly the case when different representations
are used, they are unfortunately not comparable in terms
of likelihood. For example, the event based representation
from [26] can in principle produce all possible note se-
quences. But it could also generate nonsensical sequences
of multiple consecutive NOTE OFF events, without corre-
sponding previous NOTE ON events. To nevertheless com-
pare models that build on different representations of mu-
sic we propose simple statistics like interval distributions
that can be applied to the samples of each generative model
of music.

Finally, to compare the pleasantness of the generated mu-
sic, one can ask people to rate different pieces; an approach
that is followed in previous works (e.g. [6]). We also invite
the reader to listen to the large collections of non-cherry-
picked generated examples [20].

1 https://github.com/FlorianColombo/BachProp

4. RESULTS AND DISCUSSION

4.1 Datasets

We consider four MIDI corpora with different musical struc-
tures and styles (see Table 2). The Nottingham database
[31] contains British and American folk tunes. The musi-
cal structure of all songs is very similar with a melody on
top of simple chords. The Chorales corpus [16] includes
hundreds of four-part chorales harmonized by Bach. All
chorales share some common structures, such as the num-
ber of voices and rhythmical patterns. For comparison we
used the same filtering of songs as DeepBach [32] to ex-
clude chorales with number of voices unequal four. We
consider both Nottingham and Chorales corpora as homo-
geneous data sets. The John Sankey data set [17] is a col-
lection of MIDI sequences recorded by John Sankey on a
digital keyboard. Even though all songs were composed by
Bach, the pieces are rather different. In addition, this data
set was recorded live from the digital keyboard and thus we
applied the temporal normalization described above. At
last, the string quartets data set [18] includes string quar-
tets from Haydn and Mozart. Here again, there is a large
heterogeneity of pieces across the corpus.

Renderings of original and generated scores are available
for listening on the webpage containing media for this pa-
per 2 [20]. To train BachProp on the different corpora, we
used the same network architecture, number of neurons,
initialization and learning parameters, but each of the net-
work was trained on a different corpus.

4.2 Alternative models

In addition to BachProp, we trained six other models; three
BachProp variants to assess the impact of our design choices,
one baseline model and two previously published and avail-
able artificial composers. PolyDAC and IndepBP are di-
rect BachProp variants. MidiBP is a version of BachProp
that utilizes a different representation of MIDI note se-
quences inspired by [26]. The two state-of-the-art artifi-
cial composers, DeepBach [6] and PolyRNN [15] allow us
to compare scores generated by models of our design with
other algorithms. The 6th model is a multi-layer percep-
tron model (MLP) and serves as a baseline control.

PolyDAC is a polyphonic version of [5]. It models the
same conditional distribution as BachProp but instead of
reading out the probabilities from shared hidden layer states,
it models each note feature with three independent neural
networks. The time-shift, duration, and pitch networks are
composed of three recurrent layers with 16, 128, and 256
GRUs respectively. IndepBP assumes that all note fea-
tures are independent from each others. As such, Pr(dT [n+
1]), Pr(T [n + 1]), and Pr(P [n + 1]) are read out by
three softmax output layers directly from the hidden state
of three hidden layers composed of 128 GRUs that takes
as input the one-hot encoding of the nth note. MidiBP
neural architecture consists of three recurrent layers com-
posed of 128 GRUs. Here, the MIDI note sequences are
represented differently. While the normalization and pre-
processing is done as described above (Figure 1), we then

2 Media webpage: https://goo.gl/Z4AfPg
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convert the normalized music score back to the MIDI-like
format proposed in [26] where in each time step a single
on-hot vector defines either a NOTE ON event and its cor-
responding pitch, a NOTE OFF event and its correspond-
ing pitch, or a time-shift and its corresponding duration
(defined by our duration representation). Therefore, a sin-
gle softmax read out layer is used to sample the upcoming
MIDI event. MLP has no recurrent layers but 3 feedfor-
ward hidden layers of 124 ReLUs each that gets as input
the 5 most recent notes note[n − 4 : n] together with the
current time-shift dT [n+1] and duration T [n+1] to sam-
ple the pitch P [n + 1]. To sample the duration T [n + 1]
and the time-shift dT [n+1], appropriate parts of the input
are masked with zeros.

Models BachProp, PolyDAC, MidiBP, IndepBP were trained
with truncated back propagation through time and the Adam
optimizer [33]. The MLP model was trained with standard
back propagation and the Adam optimizer. The mini-batch
size is 32 scores, the validation set a 0.1 fraction of the
original corpus, and one training epoch consists of updat-
ing the network parameters with all training examples and
evaluating the performances on the entire validation set.
Training is stopped when the performances on the vali-
dation set saturates and the model leading to the highest
accuracy is used for generating new music scores. Deep-
Bach was trained for 15 epochs with the standard settings
of the current master branch [32]. PolyRNN was trained
for 26000 steps with the standard settings of the current
master branch [15].

MODEL NLL dT T P

BACHPROP 0.419 0.97 0.91 0.77
POLYDAC 0.647 0.97 0.94 0.69
INDEPBP 0.647 0.97 0.75 0.63
MLP 0.796 0.95 0.76 0.49

Table 1. Comparison of architectures on our representation
of music. NLL stands for negative log-likelihood on the valida-
tion set. Columns dT , T and P indicate the accuracy (fraction of
correct predictions) for time-shifts, durations and pitches, respec-
tively.

4.3 BachProp performs better than alternative models
with same representation

On the Bach Chorales we find that the BachProp architec-
ture performs considerably better than the alternative ar-
chitectures using the same representation of music (see Ta-
ble 1). As expected, the standard feedforward MLP with
ReLUs yields the worst performance. It lacks the ability
to model long range dependencies, which the other mod-
els can do through their recurrent connections. When we
remove the conditioning on each of probability terms on
the right side of Equation (3), as done for the IndepBP
model, we get poorer performances. We further observe
that sharing a common hidden state allowed BachProp to
outperform PolyDAC on the pitch predictions.

A

B

C

8ve 2m 2M 3m 3M 4 4aug 5 6m 6M 7m 7M 

Figure 3. Local statistics. A Distribution of dT . B Distribution
of T . C Distribution of intervals in chords (top) and between each
note (bottom). For all figures, we show the mean and standard de-
viation (in black) obtained with bootstrapping (50% of the entire
corpus resampled 10 times). All models were trained on the Bach
Chorales corpus.

4.4 BachProp performs at least as good as alternatives
with different representation

To compare models that use a different representation of
music, we look at a set of metrics that includes local statis-
tics, song-length statistics and novelty profiles. To evalu-
ate these metrics for each model, we generated from each
model a set containing as many scores as the original Bach
Chorales corpus. We include the baseline models from the
last section for comparison reasons.

4.4.1 Local statistics

A model that has captured the underlying structure of the
sequences of notes present in a corpus, should be able to
generate new scores matching the local statistics of what
they modeled. As such, we suggest to compute the distri-
butions of generated dT and T and compare them to the
original corpus distributions as a first metric to evaluate
generative models of music. Note that for such direct local
statistics, a simple n-gram model would match the original
distributions perfectly. Figure 3A and B shows that Bach-
Prop and PolyDAC match the original distributions best,
followed by MidiBP, DeepBach and PolyRNN, while In-
depBP and MLP match the least.

Next, we look at interval distributions. An interval is the
number of half-tone separating two notes. Here, Bach-
Prop, PolyDAC, MidiBP and PolyRNN match the distribu-
tion quite well. DeepBach seems to generate minor thirds
considerably more often than present in the training data
(Figure 3C).
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A

B

Figure 4. Song lengths and novelty profiles. A Distribution of
the duration of scores in quarter note length. B Novelty profile of
all corpora with respect to the auto-novelty of the original corpus
(top). The auto-novelty profiles of all corpora (bottom). See text
for details.

4.4.2 Distribution of song lengths

The distribution of song lengths can indicate whether a
model captured really long-range dependencies in the train-
ing set. On this measure MidiBP matches the distribu-
tion slightly better than BachProp, PolyDAC, IndepBP and
MLP (see Figure 4A). Since DeepBach and PolyRNN do
not model score endings, we manually set their duration.

4.4.3 Novelty profiles

In Figure 4B (top), we compare the novelty profiles for all
models with respect to the original Chorales corpus with
which each model was trained. We compare the different
profiles with the auto-novelty of the reference corpus. The
auto-novelty is the novelty profile for each song in the ref-
erence corpus with respect to the same corpus without the
song for which the novelty score is computed. It reflects,
how similar is the music within the original corpus and is
consequently the distribution to match for an ideal gener-
ative model of music. Here, the only model that is clearly
outside the target distribution is the MLP model. While
the IndepBP and MidiBP models match the target distri-
butions, their novelty distributions for bigger pattern sizes
is lower than the original corpus auto-novelty. This is an
indicator that these models are generating music examples
that are too similar to the original data. In other words,
these models adopted a strategy closer to reproducing or
recombining observed patterns rather than inferring the ac-
tual temporal dependencies between music notes. Deep-
Bach, BachProp and PolyDAC have their medians close
and above the original distributions. However, DeepBach
and PolyRNN have a surprisingly low variance for each of
the pattern sizes.

In Figure 4B (bottom) we compare the auto-novelty of
all generated corpora with the original corpus. An auto-
novelty profile exhibiting distributions with lower novelty
scores than the original data set, is suspected to generate
new music scores of little diversity. The auto-novelty pro-
file of BachProp and PolyDAC match the one of the origi-

DATASET NLL dT T P SIZE [SCORE — NOTE]

CHORALES 0.419 0.97 0.91 0.77 357 — 95’337
NOTTINGHAM 0.587 0.98 0.89 0.70 1037 — 313’975
JOHN SANKEY 1.002 0.89 0.77 0.45 135 — 358’211
STRING QUARTETS 0.936 0.88 0.83 0.49 215 — 738’739

Table 2. BachProp on other datasets. See Table 1 for descrip-
tion of labels.

nal corpus best.

4.5 BachProp generates pleasant examples on more
complex datasets

As a reference for future comparisons, we report here the
results of BachProp trained on more complex datasets. In
Table 2, we observe that for homogeneous corpora with
many examples of similar structures (Chorales, Notting-
ham), BachProp can predict notes with higher accuracies
than for more heterogeneous data sets (John Sankey, String
Quartets).

We encourage readers to listen to the examples provided
on the accompanying webpage [20] to convince themselves
of the ability of BachProp and its variants to generate unique
and heterogeneous new music scores.

5. CONCLUSION

In this paper, we presented BachProp, an algorithm for
general automated music composition. Our main contribu-
tions are (1) a note-sequence based representation of music
with minimal distortion of the rhythm for training neural
network models, (2) a network architecture that learns to
generate pleasant music in this representation and (3) a set
of metrics to compare generative models that operate on
different representations of music.

BachProp can be used both for automated and interac-
tive music composition. Indeed, adding a human composer
in the composition process is straightforward and Bach-
Prop can then be used as a computer aided music compo-
sition algorithm. For example, the human composer could
use BachProp to suggest possible continuations and select
among them. With such algorithms, the authors foresee
that music composition can be brought to a wider audience,
therefore allowing untrained humans to compose their own
pieces of music.
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ABSTRACT

In a common music practice scenario a player works with 
a musical score, but may jump arbitrarily from one passage 
to another in order to drill on difficult technical challenges 
or pursue some other agenda requiring non-linear move-
ment through the score. In this work we treat the associ-
ated score alignment problem in which we seek to align a 
known symbolic score to audio of the musician’s practice 
session, identifying all “do-overs” and jumps. The result 
of this effort facilitates a quantitative view of a practice 
session, allowing feedback on coverage, tempo, tuning, 
rhythm, and other aspects of practice. If computationally 
feasible we would prefer a globally optimal dynamic pro-
gramming search strategy; however, we find such schemes 
only barely computationally feasible in the cases we inves-
tigate. Therefore, we develop a computationally efficient 
off-line algorithm suitable for practical application. We 
present examples analyzing unsupervised and unscripted 
practice sessions on clarinet, piano and viola, providing 
numerical evaluation of our score-alignment results on hand-
labeled ground-truth audio data, as well as more subjective 
and easy-to-interpret visualizations of the results.

1. INTRODUCTION

1.1 Problem Description

Score alignment finds a correspondence between a sym-
bolic representation of a musical score and an associated 
audio performance, identifying the positions of all note on-
sets. The subject was introduced through the early musical 
accompaniment systems of Dannenberg and Vercoe [1, 2], 
while notable contributions include [3–13]. Cuvillier [3] 
provides a thorough review on score alignment. This pa-
per deals with a variation of the traditional score alignment 
problem: instead of aligning a performance, we align the 
audio of a music practice session of a given score, where 
the player is allowed to skip from one score location to 
another in an arbitrary fashion. Such a score-alignment 
problem is also called score-alignment-with-skips, drop-
ping the constraint of linear movement in the score while 
playing.

Traditional score alignment is typically partitioned into 
two varieties: on-line and off-line. On-line recognition

Copyright: c© 2019 Yucong Jiang et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

is appropriate for applications in which the audio source
must be understood in real-time, such as musical accom-
paniment systems, automatic page-turners, or approaches
that coordinate the display of supertitles for opera. Off-line
recognition is appropriate for score alignment applications
without a real-time component, such as note-level editing
of an audio performance, quantitative analysis of musical
performance from a stylistic viewpoint, or the automatic
generation of large sample libraries from recordings.

In this effort, we treat the off -line recognition of a music
practice session. In particular, we target typical instrumen-
tal practice, which usually involves a large degree of repe-
tition with particular attention directed toward challenging
passages, as well as frequently inaccurate playing. The
score-alignment-with-skips problem can enable a number
of meaningful applications, as follows.

1.2 Applications

Off-line score-alignment-with-skips allows the development
of useful tools that provide a high-level view of a practice
session. Our experiments present a fledgling version of
such a tool, facilitating efficient navigation through a prac-
tice session while coordinating the audio and visual display
of the score. We believe the understanding provided by
such a tool is far superior to that gained by simply listening
to a practice recording, and is particularly important to mu-
sicians working to develop effective practice techniques.
Interacting with such a tool implicitly answers a variety
of useful questions, such as how much time was spent on
a particular passage, or what was the typical length of a
repeated fragment. The underlying analysis also enables
additional feedback about tuning, tempo and rhythm, pro-
viding a deeper level of pedagogical feedback. For exam-
ple, most wind players will have particular notes that are
consistently flat or sharp, while such global tuning char-
acteristics could easily be computed from the results of
our proposed score alignment. Another example would
be identifying a common problem of the student learner
— unconsciously reducing the tempo when technical dif-
ficulties are encountered. Perhaps one could even develop
measures of improvement over the course of a sequence of
practice sessions.

Tools that facilitate navigating a practice session efficiently,
perhaps including useful summaries of the session, offer
particularly engaging possibilities for the music teacher
as well. Many teachers experience the interval between
lessons as something of a “black box,” where divining the
difference between a student’s self-perceptions and real-
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ity can be a challenge. Currently, the closest we can get
to practice intervention is to directly observe practice, or
to have students submit recordings of their practice, both
of which are linear, and in real time. If a teacher were
able to view a high-level representation of practice over the
course of a week, he or she could intervene and correct the
students at a new and productive level of granularity, with
reference to a concrete analysis of practice over time.

The score-alignment-with-skips variant has an on-line ver-
sion as well, untreated here, though discussed in Naka-
mura et al. [6]. Such technology would be appropriate
for a system that interacts with a musician during prac-
tice. For instance, after having identified the section that
is currently being rehearsed, a system may provide an ac-
companiment that follows and supports the player. Fertile
possibilities also exist for musical tutoring systems. For
instance, at any time during a practice session we may add
a metronome whose rate and phase initially synchronize
with the live player, proceeding either deterministically or
in an adaptive manner. We may also periodically suggest
interventions over the course of the session, such as slow
practice, or directing the subject’s attention toward unmet
challenges.

1.3 Related Work

One version of the score-alignment-with-skips problem is
treated by Müller and Appelt [13], where the authors seek
to compare different versions of a piece of music, perhaps
with different choices of repeats, though with a preference
for matching long sections of the two audio recordings, un-
like what would be encountered with instrumental practice.

More recently, Nakamura [6] treats a version more ori-
ented to our vision of practice analysis. This method per-
forms online analysis by computing the filtered distribu-
tion without approximation through the usual “forward”
iteration. With this approach, as with globally optimal dy-
namic programming computation of the most likely path,
the computation is O(NS), where N is the length of the
data and S is the number of notes in the score. Nakamura
observes that their algorithm is feasible in real time; how-
ever, from the computational complexity one can see that
this depends on the particular score chosen. We imagine
practice scenarios where the “score” might be a concatena-
tion of all the scores in a player’s library, thus nearly ruling
out globally optimal approaches with no approximation.
Furthermore, we expect that a more fine-grained approach
will increase the number of states that must be devoted to
each score note. For these reasons we pursue approaches
that relax the guarantee of global optimality in exchange
for both computational efficiency and extensibility to more
complex graph topologies.

In our experiments we don’t see a way to make direct
comparisons with these approaches as Nakamura’s work
is on the filtering problem, thus not appropriate the off-line
score alignment problem, while Müller considers a version
of the problem that is far more constrained, thus not work-
able for kind of unconstrained practice considered in our
experiments.

In what follows we explicitly describe our score align-

ment methodology. In addition, we present results on about
two hours’ worth of audio data on clarinet, viola and piano
(polyphonic), collected from various members of the Ja-
cobs School of Music at Indiana University, both in numer-
ical fashion and through our audio-visual “practice browser.”

2. MODELING

In this section, we first describe a hidden Markov model
for the score alignment problem, which serves as the foun-
dation of our approach to the score-alignment-with-skips
problem. Then, we explain the motivations behind our ap-
proach. Lastly, we explain using a pitch tree and beam
search to accommodate the computation burden.

2.1 HMM for Score Alignment

Score alignment has been cast as a hidden Markov model
(HMM) problem by several authors [3, 5, 6, 9, 12]. Here,
we use the framework in [9].

As the HMM views time as discrete, we model time as a
sequence of “frames” of about 30 ms. in length. We denote
the hidden Markov chain as X = X1, . . . , XN where N is
the number of frames in the audio excerpt, and Xn is the
hidden state associated with the nth frame, taking values
in a state graph. A simple construction of the state graph
models the kth note as a chain of states, sk,1, . . . , sk,M ,
whereM is the maximum length of the kth note, in frames.
Figure 1 shows a topology where each state, sk,m, either
connects to sk,m+1, the next state of the same note, or to
sk+1,1, the first state of the next note.

Figure 1. A possible left-to-right graph topology for score
alignment.

2.1.1 Transition Probability

Suppose we let Q(x, x′) be the transition probability ma-
trix for X , Q(x, x′) = P (Xn+1 = x′|Xn = x), where we
assume time homogeneity — these probabilities don’t de-
pend on n. SupposeLk is the random length of the kth note
and that we have some desired distribution for this length,
P (Lk = l), which is indicated from the music score. Since
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visiting state sk,m means that the realization of the kth note
is at least m frames long, we have

Q(sk,m, sk,m+1) = P (Lk ≥ m+ 1|Lk ≥ m)

=

∑M
l=m+1 P (Lk = l)
∑M
l=m P (Lk = l)

,

and Q(sk,m, sk+1,1) = 1 − Q(sk,m, sk,m+1). As Figure
1 shows, we append a start state and an end state, both
with self-loops, to the beginning and end of the graph as
the simple state-space model for the Markov chain, X . For
longer notes, we also allow their states to have self-loops.
This model can also be regarded as a hidden semi-Markov
model [15] if we view all the “micro states” of a note as
one super state.

2.1.2 Data Model

We only briefly describe the data model here because it is
not the most important part of our proposed idea — one
can easily replace our data model with a new one while
using our framework. For each frame, n, we observe a
short burst of audio data, yn. We model the data likelihood
in terms of the normalized magnitude spectrum of yn,

en(ω) =
|zn(ω)|∑
ω′ |zn(ω′)| (1)

for ω = 1, . . . ,Ω where zn is the windowed finite Fourier
transform of yn, and Ω is the number of bins in the fre-
quency domain. We then model the data likelihood as

P (yn|Xn = x) =
Ω∏

ω=1

qx(ω)en(ω) (2)

where qx is the probability distribution over frequency we
associate with state x (the template of state x). Refer to
Raphael [16] for detailed description of this data model.

2.1.3 Inference

With our HMM in place, it is possible to compute a number
of quantities relevant to inference about the audio perfor-
mance [17]. For instance, one can compute the forward
model, giving the evolving state of knowledge on score
position, P (Xn = xn|y1:n) where y1:n = y1, . . . , yn;
P (Xn = xn|y1:N ), the state distributions given the en-
tire data y1:N ; or the most likely sequence of states, x̂ =
arg maxx1:N

P (X = x1:N |y1:N ). All of these computa-
tions use dynamic programming or dynamic-programming-
like algorithms.

2.2 Score-alignment-with-skips and Motivations

Models like the one depicted in Figure 1 assume the player
will play the score as written, from the beginning of the
excerpt to the end — the usual assumption of score align-
ment, which is appropriate for many applications, but not
reasonable for the “free practice” case at hand. In score-
alignment-with-skips, we expect that the player will play
sections of the score, perhaps repeating them numerous
times, before moving on to other sections. When a par-
ticular section is practiced, we assume the player will play

the score notes in order (just as in traditional score align-
ment), according to the notated rhythm. Therefore, we do
not wish to completely abandon the basic model of Figure
1.

In our approach, we want to allow occasional skips in
which our Markov model, X , jumps from one score po-
sition to another. In practice, the overwhelming majority
of these skips are “do overs” — cases where the player re-
peats a group of notes that are most recently played because
he or she is unsatisfied with the sound, perhaps repeating
numerous times. Therefore, small backward skips are the
most likely possibilities. However, we cannot constrain
the model to only allow such local skips, because occa-
sionally the player will shift to a completely new section
of the score, or restart from the beginning. If our model
is to be genuinely useful, it must allow for such non-local
skips as well. We extend the model of Figure 1 to allow for
score skips by adding a “hub” state that communicates in
both directions with each of the note models, as proposed
in Nakamura et al. [6]; any note can “jump” to or from this
hub state.

As discussed earlier, we believe globally optimal “full-
fledged” dynamic programming approaches, either for on-
line or offline versions of this problem don’t leave suffi-
cient headroom for exploring the space of possible graph
topologies or expanding the search space to model collec-
tions of scores the musician is studying. Thus we focus on
beam search methods — algorithms that retain a fixed-size
list of the currently-best hypotheses at each frame. Typ-
ically the beam is several hundred hypotheses in our ex-
periments. Considerations for beam search models are dif-
ferent from those for full-fledged dynamic programming,
since a hypothesis must look attractive at every stage of
the computation in order to avoid being pruned. In addi-
tion, we use a “pitch tree” to further help with computation,
as will be discussed in what follows.

2.3 Pitch Tree and Beam Search

Figure 2 introduces our global skips model which allows
the player to jump from any score location to any other
score location at any time. In the bottom of this figure,
the linear sequence of states is a compact description of
the original model of Figure 1. In this linear graph each
note has been compressed into a single state for simplic-
ity’s sake. Each of these states can either remain in the
current state, move forward in the score, or “escape” to the
“wait” state at the root of the tree in the top of the figure.
The escape probability is chosen to be small enough so that
our model is disinclined to recognize one- or two-note (su-
per short) excerpts, but still capable of identifying them. In
essence, we use the tree structure to “sort out” the player’s
score position in a computationally efficient manner when
a jump is made.

The root of the tree is a state with a self loop, modeling
the typical pause that occurs as one stops playing and re-
sumes again at a new location. Therefore, the data model
for this state is the silence model. The rest of the tree is il-
lustrated in the case of the short “toy” score represented by
the pitch sequence a, b, c, a, b, a, b given in Figure 2. The
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Figure 2. The global skips model in which a “pitch tree”
allows the efficient sorting out of the score location after a
jump.

possible pitches in the score are a, b and c, so these define
the first level of the tree. c appears only once in the score
so unambiguously defines the position as score note 3. On
the other hand, b has two possible successors in the score
(bc and ba), thus two children in the tree. Because each of
the children unambiguously identifies a score position (6
or 3), they terminate their branches. The construction con-
tinues in this manner until the score position is uniquely
identified.

In general, we define a tree construction as follows. Sup-
pose for now we treat a monophonic instrument, although
we generalize to polyphonic cases too in our experiments.
Let M be the distinct possible pitches that occur in the
score, expressed as the letter names {a, b, c} in Figure 2.
We denote the finite-length sequences of such pitches by
M∗. We let M̃ ⊂M∗ be the collection of all subsequences
of pitches, without regard for rhythm, that appear multiple
times in the score. M̃ indexes the non-terminal nodes of
our tree: {tc : c ∈ M̃}. We let M̃0 denote the pitch sub-
sequences that appear only once in the score whose pre-
fixes are in M̃ — these are the shortest sequences that
uniquely determine the score position. M̃0 indexes the ter-
minal nodes of our tree: {tc : c ∈ M̃0}. If c ∈ M̃ and
c′ ∈ M̃ ∪ M̃0, with c′ = c ◦m for m ∈M (sequence c′ is
c concatenated by pitch m), then tc → tc′ in the tree graph
(non-terminal node tc has a successor node, tc′ ). The ter-
minal nodes in the tree are really proxies for the score notes
in the linear graph. That is, if tc → tc′ with c′ ∈ M̃0, then
tc really connects to the score note uniquely identified by
the string c′. This association is made explicit by the dot-
ted lines in Figure 2. For example, in the left branch (out
of the three branches), the second level b really connects to
score positions 6 and 3.

The purpose of the tree is efficient computation while
maintaining accuracy. After a jump is made, our data model
usually argues strongly for a small number of world of pos-
sible pitches. Especially in the context of beam search
where only the best several hundred hypotheses are kept

Composer Piece Meas. Min.
Mozart Clarinet Concerto, Mvmt 1 1-154 9
Mozart Clarinet Concerto, Mvmt 2 1-59 6
Mozart Clarinet Concerto, Mvmt 3 1-112 13
Brahms Sonata for Viola in Eb, Mvmt 1 1-97 14
Hoffmeister Concerto for Viola, Mvmt 1 1-150 11
Bartok Concerto for Viola 1-200 15
Mozart Piano Sonata K. 330, Mvmt 1 1-88 14
Beethoven Piano Sonata op. 110, Mvmt 1 1-70 15
Debussy La Fille aux Cheveux de Lin 1-39 17

Table 1. List of repertoire used in the experiments.

at each frame, it seems wasteful to maintain an individ-
ual hypothesis for each separate place a pitch occurs in the
score, so our tree efficiently maintains only a single hy-
pothesis for all such score positions. When the next note is
played, we drop down a level in the tree, reaching a state
associated with all of the score positions where the pair
of pitches occur in order. We continue this process until
the score position is unambiguously determined, at which
point it “joins” our original score model (as in Figure 1).

In reality, we would not move down the tree determin-
istically, but, rather, would consider a range of possible
tree positions supported by the data model, as is always
the case when finding the most likely state sequence of an
HMM using dynamic programming and a beam search.

Although beam search does not guarantee a global opti-
mal result, in practice the correct hypotheses usually sur-
vives pruning because the data model is strong. The pitch
tree also helps with avoiding unwanted prunings, since when
a jump is performed we represent the possible score posi-
tions compactly, refining our representation as more infor-
mation becomes available. Even if all correct hypotheses
are pruned out at some unfortunate frame, the search can
“recover” at any time by jumping to the wait state and then
to the correct score position. This behavior is verified in
the following experiments.

3. EXPERIMENTS

3.1 Data

We collected practice audio from a number of students and
faculty mostly in the Jacobs School of Music at Indiana
University. These consisted of three undergraduate clar-
inet majors, three undergraduate viola majors, one faculty
pianist, and one student pianist who was not a music major.
The data together account for a little less than two hours of
practice audio. Part of our goal in collecting these data was
to understand the range of variation encountered in real-
life practice sessions. In particular, we want to know if the
score-alignment-with-skips model of a practice session is
tenable — can musicians naturally confine their practice to
the score as our model assumes? We also want to know
the accuracy of our approach in tracking the players’ score
trajectories.

We instructed our subjects to practice an agreed-upon
piece of music and only this piece for the duration of their
recorded practice session, generally 10 to 20 minutes in a
single “take.” Table 1 lists the pieces we tested, along with
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the associated measure ranges and practice session lengths.
Aside from requesting that the pianists practice with both
hands together throughout, we tried to give subjects a min-
imum of direction and did not supervise their practice or
try to otherwise constrain their practice beyond the initial
instructions. We observed a number of departures from the
basic playing-with-skips assumption, including, for exam-
ple, deliberately distorted rhythms, testing of reeds, play-
ing significantly slower than the generally-accepted tempo,
one-hand piano practice, and brief forays into interval tun-
ing practice only loosely related to the score.

Pieces with verbatim repetition of passages pose prob-
lems for both recognition and evaluation: if a player jumps
to a passage that appears multiple times in a piece, how can
we say for sure which version is being played? However,
this distinction doesn’t seem especially important from the
standpoint of evaluation. For instance, consider the 3rd
movement (Rondo) of the Mozart Clarinet Concerto, where
the refrain repeats six times with almost no variation. It
doesn’t seem reasonable to penalize our algorithm for fail-
ing to ascertain which repetition is being practiced, nor
does it seem feasible to make this determination while cre-
ating ground truth. For simplicity sake, we chose excerpts
from the pieces where there was no direct phrase-level rep-
etition of musical material (as in Table 1).

To create ground truth for an audio example, we first split
it by hand into contiguous sections, each section contain-
ing music played without skips. We then performed score
alignment on each of these sections individually. The re-
sults include the section information (the starting note and
the starting frame of a section), and onsets of all played
notes. The results were then meticulously corrected by
hand to be as precise as we could get them.

3.2 Evaluation Method and Results

We propose a simple way to evaluate the score-alignment-
with-skips problem that is easy to implement and useful
for comparing with other approaches. In both ground turth
and recognized results, all frames between two consecutive
notes are associated with the former note. In other words,
any given frame is associated with the note whose onset is
the most recent. For every frame, we calculate the “musi-
cal distance” between the recognized note of this frame and
the ground truth note of this frame. For example, assum-
ing the time signature is 4/4 and the score has a quarter
note at every beat, the musical distance between the sec-
ond quarter note of measure one and the first quarter note
of measure two is 3/4. Such distances tell us the quality
of our recognition — how far away the recognized note is
from the actual played note. We evaluate our algorithm
by counting the number (proportion) of frames that have
different levels of musical distances (errors). Our goal is
to have more frames in the “0” category (accurate), and
fewer frames in the “> 1” category (larger error). Figure
3-5 show this kind of evaluation result for nine pieces in
our experiments.

Figure 3 gives these frame-by-frame position errors for
the three sessions from the Mozart Clarinet Concerto. This
histogram, as well as those of the other two instruments

Figure 3. Histograms of frame-by-frame errors for the
three practice sessions taken from the three movements of
the Mozart Clarinet Concerto, as described in Table 1.

Figure 4. Histograms of frame-by-frame errors for the vi-
ola data as described in Table 1.

presented later, bins the errors into several categories gen-
erated with split points given as 0, one eighth note, one
quarter note, one half note, and one whole note. We use the
same binning procedure regardless of the tempo of a piece
or its time signature, so, for instance, a whole note error
in 6/8 time corresponds to 1+1/3 measures. The most im-
portant categories are the two extreme ones: “0”, where the
score position has been identified as accurately as possible,
and “>1 (whole note)”, where the recognizer is essentially
lost. The clarinet is perhaps the easiest instrument to rec-
ognize due to its comparative pitch stability. Their results
were the best that we measured, with the recognizer lost
(error> 1) no more than 3% of the time in all cases. It was
interesting to note that the deliberately distorted rhythms
observed occasionally in the first movement did not create
any problems for recognition.

Figure 4 shows analogous results for the viola data, in
which we observed the recognizer being lost from 6% to

391

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Figure 5. Histograms of frame-by-frame errors for the pi-
ano data as described in Table 1.

14% of the time. These results are not quite as good as
with the clarinet data, for which we conjecture several rea-
sons. First of all, the viola is simply harder to recognize,
since (viola jokes aside) the instrument does not commit it-
self as clearly to pitch as the clarinet does. In addition, the
viola plays double stops (quite a few in some sections of
the Bartok and Hoffmeister), while our pitch (data) mod-
els tend not to discriminate as well between such chords.
Finally, the practice session for the Brahms included many
one- or two-note excerpts, and in a couple of cases seemed
to be only inspired by the score, rather than directly from
the score. However, as can be seen from the numerical re-
sults, the problems caused by all of these factors were only
local.

Figure 5 describes the results for the three piano exam-
ples in Table 1. The piano constitutes a significantly harder
challenge than the two mostly monophonic instruments.
We take a homophonic view of the piano, regarding the
score as a sequence of chords without regard for voice.
That is, whenever the score indicates that a note enters
or exits, we create a new chord at the appropriate musi-
cal position. This allows the piano to be recognized in the
same fashion as used for the other instruments. It should be
noted that the “pitch tree” approach of Figure 2 may be less
effective as there is far less repetition of chord sequences
than of individual pitch sequences.

Generally speaking, the piano is much more challenging
than monophonic instruments, since, as mentioned before,
the data model discriminates less well between chords than
single notes. In addition, the nature of the instrument pro-
duces much more overlap between notes, either through
pedaling, which is not reflected in our scores, or through
the fact that the addition of new notes has no damping ef-
fect on preceding notes. In contrast, the essential physics
of string, wind, and brass instruments cause the new note
to damp the previous note (except in the case of differ-
ent strings). However, these challenges seem to manifest
mostly themselves in terms of small onset inaccuracies,
rather than causing the recognition to become lost any more

than with the viola. Again, the “lost” percentages were in
the 2% to 14% range. The highest error rate was from the
slow Debussy piece, where far less is known about the tim-
ing of a performance than with fast music.

A less numerical, but perhaps more illuminating example
can be seen at http://music.informatics.indiana.edu/papers/
smc19-skips/, where the video highlights the player’s cur-
rent position in a musical score as the practice audio plays.
Similar videos for all of the practice sessions can be found
at the same web site. In addition to providing an easily
digestible demonstration of the heart of this research, the
videos also foreshadow the kinds of tools we envision de-
veloping for musicians to help review practice effectively.

The results presented here are “exploratory” (on a small
dataset), so we obviously cannot claim broad coverage of
the world of possible practice habits — such a data col-
lection would be a large undertaking in and of itself. Still,
we encountered a good deal of variation within the sam-
pled population. We believe the results show that our es-
sential practice assumptions are reasonable, in the sense
that our subjects were, for the most part, able to follow
our model of score-constrained practice without much dif-
ficulty, while cases that departed from our model created
only local problems or no problems at all. We believe
the accuracy of our score alignment is also promising. In
short, the algorithm occasionally gets lost but always finds
its way back to the correct score position. Furthermore, we
believe the accuracy of note onset estimates on the individ-
ual identified sections is certainly good enough for many
kinds of pedagogical feedback.

4. FUTURE WORK

The basic recognition ideas developed here can be em-
bedded into thought-provoking and illuminating tools to
help instrumentalists review their practice, along the lines
of the demonstrated video. To achieve this goal we must
both improve the basic recognition on which these “prac-
tice browsers” will rely, as well as identify forms of feed-
back of interest to students, and ways of expressing that
feedback visually.

The current approach assumes one cannot tell the dif-
ference between identical passages in a piece of music,
though this is only partly true. Typically we can make
rather strong assumptions about the way in which the mu-
sician will visit the piece of music. In particular, nearly
all jumps are local ones, and the overwhelming majority
of jumps move backwards. Nakamura et al. [18] also an-
alyzed the skipping property on three piano pieces. These
assumptions do not fit naturally with our sorting trees of
Figure 2 since the non-terminal nodes of the tree are asso-
ciated with multiple score positions. Therefore, we can’t
assess their distance from the jump origin. In contrast, a
simple model that allows only local backward jumps per-
forms surprisingly well for the overwhelming majority of
cases. However, when the local backward assumption is
violated this model becomes completely lost, thus is too
fragile. We anticipate that it is possible to find a model-
ing framework that can express the likelihood of various
jumps, while also retaining the computational efficiency of
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our sorting tree. This is a project for future study.
Tuning is certainly an obvious candidate for visualiza-

tion, perhaps by coloring score notes according to the tun-
ing error. Coverage of a practice session could be similarly
represented, using color to denote the number of times a
particular passage has been repeated. Giving feedback on
rhythm is more challenging, partly because there will al-
ways be some degree of error in the identification of note
onsets, but also because good rhythm depends both on tim-
ing and stress (or lack of stress). We anticipate consider-
ably challenge here, though clearly there is much fertile
ground to explore.
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tion, Université Pierre et Marie Curie-Paris VI, 2016.

[4] A. Cont, D. Schwarz, and N. Schnell, “Training ir-
cam’s score follower [audio to musical score align-
ment system],” in Acoustics, Speech, and Signal Pro-
cessing, 2005. Proceedings.(ICASSP’05). IEEE Inter-
national Conference on, vol. 3. IEEE, 2005, pp. iii–
253.

[5] D. Schwarz, A. Cont, and N. Schnell, “From boulez to
ballads: Training ircam’s score follower,” in Interna-
tional Computer Music Conference (ICMC), 2005, pp.
1–1.

[6] T. Nakamura, E. Nakamura, and S. Sagayama, “Real-
time audio-to-score alignment of music performances
containing errors and arbitrary repeats and skips,”
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 24, no. 2, pp. 329–339, 2016.

[7] M. Puckette, “Score following using the sung voice.”
in ICMC, 1995.

[8] L. Grubb and R. B. Dannenberg, “A stochastic method
of tracking a vocal performer.” in ICMC, 1997.

[9] C. Raphael, “Automatic segmentation of acoustic mu-
sical signals using hidden markov models,” IEEE
Transactions on Pattern Analysis & Machine Intelli-
gence, no. 4, pp. 360–370, 1999.

[10] R. J. Turetsky and D. P. Ellis, “Ground-truth transcrip-
tions of real music from force-aligned midi syntheses,”
2003.
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ABSTRACT

Score following matches musical performance audio with 
its symbolic score in an on-line fashion. Its applications 
are meaningful in music practice, performance, education, 
and composition. This paper focuses on following piano 
music — one of the most challenging cases. Motivated by 
the time-changing features of a piano note during its life-
time, we propose a new method that models the evolution 
of a note in spectral space, aiming to provide an adaptive, 
hence better, data model. This new method is based on a 
switching Kalman filter in which a hidden layer of contin-
uous variables tracks the energy of the various note har-
monics. The result of this method could potentially bene-
fit applications in de-soloing, sound synthesis and virtual 
scores. This paper also proposes a straightforward evalu-
ation method. We conducted a preliminary experiment on 
a small dataset of 13 minutes of music, consisting of 15 
excerpts of real piano recordings from eight pieces. The 
results show the promise of this new method.

1. INTRODUCTION

Score following matches musical performance audio with 
its symbolic score, as illustrated in Figure 1. This paper fo-
cuses on following piano music, which is one of the most 
challenging score following cases, due to the high degree 
of polyphony in the piano. We restrict our attention to 
the on-line version of the problem which allows no “look 
ahead” in the audio, as is appropriate for real-time applica-
tions.

Score following is the foundation of many useful appli-
cations. It forms the heart of any musical score page turner 
[1], as well as a crucial layer of automatic accompani-
ment systems [2]. For composers, it enables virtual scores, 
scores that consist of electronic programs that react to a 
live performance [3]. Using the recognized score informa-
tion during a performance, a score follower can give feed-
back concerning the performance at the signal level, which 
can be further developed into a music-education tool, e.g., 
a computer tutor [4]. It can also serve real-time audio en-
hancement applications, processing the input audio while 
outputing the enhanced audio in real-time, e.g., auto-tune 
in a live performance.

Copyright: c© 2019 Yucong Jiang et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

Figure 1: An ideal score-following result of an example
excerpt. The dotted red lines are note/chord onsets.

Most methods of score following share the same general
idea: possible (hypothesized) performances are viewed as
paths through a state graph which is derived from the mu-
sical score. For any moment in the audio, we infer the
current state of the performance given the available audio
data (up to this moment) — following the score according
to the played music. However, existing methods differ in
how their models score these paths.

Many methods are based on the hidden Markov model
(HMM) or its variations [5–10], including one of the state-
of-the-art systems, Music Plus One [11], which is the base-
line system in this paper. Another leading system, An-
tescofo [12], uses a hidden semi-Markov model. Some
efforts also model the tempo in music [13–17]. Refer to
Cuvillier [18] for a thorough literature review on this topic.
The off-line version of this problem also shares some com-
mon techniques with score following [13] [19].

The two state-of-the-art systems mentioned above have
been successfully used to follow soloists in live concerts
(mostly on monophonic instruments), but are much less
robust on piano music. Piano music is usually highly poly-
phonic, with many notes sounding at the same time, mak-
ing it significantly more difficult to develop a discrimi-
nating data model. In addition, pedaling often prolongs
notes beyond their nominal offsets in the score, causing
mismatches between the audio and the score. For those
reasons (among others), piano score following remains an
open and unsolved challenge.

The purpose of this paper is to introduce a new approach
to data modeling in score-following problems, especially
for piano music. Existing methods generally assume that a
note has a fixed data model that is applied to all (or most)
frames associated with that note, with the possible excep-
tion of the opening frame(s) where the “attack” happens.
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However, this assumption is flawed, especially for piano
audio. Each piano note decays over time, with significantly
different decay rates for different frequencies. This results
in a changing frequency spectrum over the life of the note.
Our current effort models this note-level harmonic evolu-
tion. Based on Music Plus One’s HMM framework, we
use a switching Kalman filter [20] to track the individual
amplitudes of the harmonics of each note. This model can
adapt to the time-changing features of a note, providing,
we hope, a more discriminating data model.

There are applications that could potentially benefit from
the tracked amplitudes as part of our score following re-
sults. One example would be de-soloing, where the precise
model of the data could be used to “subtract” or remove
it from a recording with other instruments. In modeling
the piano sound for synthesis, such amplitude information
could also be useful. In addition, the tracked amplitudes
can provide valuable information for virtual score related
applications — for example, triggering a program when a
harmonic decreases below a certain threshold.

2. REPRESENTING SCORE

We simplify a musical score as a sequence of chords (Fig-
ure 2), essentially adopting a homophonic view of the mu-
sic. This way, polyphonic music can be represented lin-
early as a sequence of event pairs: {musical time, note(s)}.
We simply refer to these events as “chords” in this paper.

Figure 2: “Homophonic” view of polyphonic music (mod-
ified from [21]). The left bar is the original score with two
voices. The right bar represents this score as a sequence of
chords.

3. METHOD

In this section, we first introduce the HMM framework that
represents the baseline method. This HMM framework is
also the foundation of the proposed new method. We then
explain the motivations of our new method and its assump-
tions, before describing how a Kalman filter tracks a single
partial of a chord. Lastly, we explain how the Kalman fil-
ter fits into the HMM framework, resulting in a switching
Kalman filter model that tracks the changing features dur-
ing the evolution of a note.

3.1 HMM Framework

A score-following HMM models the performance as a path
through a state graph. The state graph is constructed di-
rectly from the score by specifying one or several states
for each note (or chord), while forcing left-to-right move-
ment through these states. We model time as a sequence
of audio “frames”, each frame about 64 ms. long. We
denote the state process, modeled as a Markov chain, by
X1, X2, . . . , XT where T is the total number of frames,
as in Figure 3. If Xt = xt, for some graph state xt, we

Figure 3: HMM in the baseline model. Squares are discrete
variables; circles are continuous variables.

denote its corresponding chord index by C(xt). The state
graph, along with the transition probabilities in it, model
the timing information given by the score. They are also
called the prior model because they represent our knowl-
edge about the states before observing any data. Since the
prior (or timing) model is not the focus of this paper, we
refer to Raphael [11] for further details about how the state
graph and transition probabilities are designed.

The other part of the HMM framework is the data model
(our focus) — how we score each hypothesis state accord-
ing to the observed data. The observed data vector for
each frame is the magnitude Fourier spectrum of the corre-
sponding frame of data, normalized to sum to 1. Let vector
yt be this observed feature at frame t, yt = y1t , . . . , y

K
t ,

and let qi = q1i , . . . , q
K
i be the template of chord i with

the same dimension, K. The template is also normalized
to sum to 1, thus representing it as a probability distribu-
tion. If we view the feature vector yt as the histogram of
a random sample from qi, the likelihood of observing this
feature given the state is a multinomial distribution (the
eliminated constant coefficient is irrelevant for comparing
different hypotheses because the data is fixed):

P (Yt = yt|Xt = xt) =
K∏

k=1

qki
ykt ,

where i = C(xt).

The template is a mixture of all notes involved in a chord,
and each note is composed of a Gaussian mixture, one
component for each harmonic of the note. For example,
Figure 4 shows the template of a single note A4 or E5,
along with two possible templates of the chord “A4 and
E5”. In the baseline model, the template for each chord,
qi, is carefully calibrated, but fixed — it cannot adapt to
the given data once it is (pre)defined. In other words, the
baseline model assumes that the (normalized) spectrum of
a chord can be expected before observing the data, and that
it does not change over the lifetime of the chord (from the
onset frame until the onset of the next chord). However,
in fact, we do not know the relative ratio of the notes in
a chord beforehand, thus cannot accurately anticipate the
template of this chord (e.g., c and d in Figure 4), and the
chord’s spectrum does evolve over time. We propose a new
method that uses flexible templates, allowing them to adapt
to the changing energy distribution among harmonics dur-
ing a chord’s lifetime.

395

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



(a) Note A4’s frequency profile. (b) Note E5’s frequency profile.

(c) The frequency profile of A4
mixed with E5 by the ratio of 1:1.

(d) The frequency profile of A4
mixed with E5 by the ratio of 1:2.

Figure 4: a and b are the frequency profiles of two different
notes. c and d are the frequency profiles of a two-note
chord, played with two different relative loudness ratios.

3.2 Motivations and Assumptions

The piano is a percussion instrument; the sound of each
note decays over time, in sharp contrast to instruments
like the violin where the entire evolution of each note re-
mains under the player’s control. The rate of decay dif-
fers among different partials, with higher frequency par-
tials usually decaying faster than the lower ones, thus lead-
ing to a changing spectrum in the same chord. The base-
line method, however, cannot capture this phenomenon,
because all frames within a chord share the same fixed
spectrum template. This causes a mismatch between the
data templates and the real observed data. In contrast, our
proposed method updates the spectrum template at every
frame after observing the newly received data.

Given a specific chord, we know where its partials lie
in the frequency domain, though we are not sure about
their relative intensities. We model every partial in the
frequency domain with the shape of a truncated (and dis-
cretized) Gaussian density function, as in the left column
of Figure 5. We divide the template into multiple fre-
quency regions according to the location of the partials,
each region completely separate from the others (by the
dotted line in Figure 5). To make the computation plau-
sible, the data model assumes that the amplitudes govern-
ing the different harmonics are conditionally independent,
given the state. That is to say, for a single chord hypothesis,
there might be a collection of neighboring frames associ-
ated with this hypothesis, and the harmonics are assumed
to evolve independently from each other in these frames.
We have also considered the inharmonicity of a piano when
constructing partials.

Some of these partials might overlap in frequency; it is
common for harmonics from different notes to “collide”

Figure 5: Demonstration of partials. Left: the original
structure of six partials; Middle: the partial structure of
four independent partials after merging; Right: a data tem-
plate which is a superposition of four partials with different
amplitudes. Each region divided by the dotted lines corre-
sponds to one independent Kalman filter.

at the same frequency, creating an identifiability problem
in distinguishing their amplitudes. In practice, we address
this by merging them, and treat them collectively as a sin-
gle partial that also has the shape of a truncated Gaussian,
and with the same frequency boundary as the group (mid-
dle column of Figure 5).

3.3 An Independent Kalman Filter

We use a Kalman filter, independently for every region, to
track the amplitude of the partial. The independence of the
Kalman filters is justified by the assumption that the par-
tials have non-overlapping support. This section describes
how a single Kalman filter tracks the amplitude of one par-
tial (including merged partials) over the lifetime of a chord.
Let’s look at the pth partial of a chord. The shape of this
partial is denoted by bp, which is truncated within a limited
range of frequencies, as in the left column of Figure 6. bp

is a constant vector and sums up to 1. Denote this partial’s
amplitude at frame t as apt , and assume apt ∼ N (mp

t , v
p
t )

— a normal distribution with mean mp
t and variance vpt .

The amplitude decays with time, decaying exponentially
at rate λ (< 1), perhaps depending on the frequency. The
Kalman filter models this decay as

apt = λ apt−1 + εpt ,

where εpt ∼ N (0, σ2). Figure 6 shows the decay of a
partial over three frames. Note that we are not tracking
the amplitude of every frequency, but the amplitude of the
truncated Gaussian, bp. For example, at given time t, the
most likely spectrum of this partial ismp

t ·bp, which is still
a truncated Gaussian.

At this frame, the predicted observation is modeled as

yt
p = apt · bp + δt

p,

where the components of δtp are independent 0-mean Gaus-
sian noise: δt

p ∼ N (0, ρ2I), and yt
p is the observed

data within the frequency range of partial p. Under these
assumptions, the Kalman filter provides a straightforward
update equation computing the conditional distribution on
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Figure 6: The shape of a partial (left), and its amplitude’s
decay between neighboring frames.

p(apt |y1
p, . . . ,yt

p). Note that the observed data at frame
t, yt, is a superposition of all members in {yt

p}.

3.4 Switching Kalman Filter

This section describes how the Kalman filters for tracking
individual partials extend the filtering framework of our
HMM. In Figure 7, the newly added middle layer of vari-
ables (cf. Figure 3), notated as A, represents the ampli-
tude information of all partials in state X’s corresponding
chord. A chord has multiple partials, {apt }, p = 1, . . . , P ,
each of which is tracked by an independent Kalman filter
as described above. For example, in Figure 5, each of the
four partials is tracked by an independent Kalman filter. At
each frame, we update a chord hypothesis’ template by the
tracked amplitudes of its partials, resulting in models that
are better adapted to the audio data.

Figure 7: Directed acyclic graph showing the conditional
independence structure of the model variables. X and A
are hidden variables; Y is observable variables. Squares
are discrete variables; circles are continuous variables.

At every frame, there will be multiple hypotheses con-
cerning its position in the score, Xt. Each hypothesis has
an associated Gaussian distribution for each of the chord’s
partials. Therefore, writing y1:t for y1, . . . ,yt, our rep-
resentation of the filtered distribution (the distribution on
the hidden variables at time t after observing the data up to
time t) is

p(xt,at|y1:t) = p(xt|y1:t)
P∏

p=1

p(apt |xt,y1:t). (1)

In contrast with the HMM filtered distribution, our switch-
ing Kalman filtered distribution is given by a discrete state
probability, p(xt|y1:t), and a product of Gaussian densi-
ties on the {apt }, for each hypothesis on the current discrete
state, xt.

From frame t to t + 1, the amplitudes evolve in two dif-
ferent styles depending on the values of the new state —
the new state either remains in the same chord, C(xt+1) =
C(xt), or must move to the subsequent chord, C(xt+1) =
C(xt) + 1. In the former case, the structure of the partials

doesn’t change, and all partials simply follow the evolution
process described in Section 3.3. In the latter case, a new
chord is starting, with a different harmonic structure from
the previous chord. We assume that any new partials are
initialized from a default distribution, apt+1 ∼ N (m0, v0),
where m0 and v0 are the initial mean and variance of a
partial’s amplitude, while any continuing partials from the
previous chord simply evolve according to the Kalman fil-
ter model in Section 3.3.

3.4.1 Inference

This section explains how the filtered distribution of the
two hidden variables, xt and at (as in Equation (1)), evolves
as it goes from t to t+1. It includes two steps: after condi-
tioning on the new data observation, yt+1, it marginalizes
out the partial amplitudes, at; then, it marginalizes out the
state, xt. These two steps will be represented in Equation
(2) and Equation (3) respectively.

Let’s look at the amplitudes first. As mentioned in Sec-
tion 3.4, the amplitudes evolve in two different styles. In
the case of a continuing chord, we can compute the proba-
bility

p(xt+1, xt,at+1|y1:t+1) =
∏

p

p(xt+1, xt, a
p
t+1|y1:t+1)

(2)
according to the usual update formula of the Kalman fil-
ter, applied independently to each partial, apt+1. In doing
so, the distribution for each partial apt+1 is conditioned on
the relevant (and non-overlapping) portion of yt+1. In the
other case, if it is a new chord, the amplitudes of new par-
tials adopt the default distributionN (m0, v0), and the con-
tinuing partials follow the same process as in the case of a
continuing chord. Therefore, in the latter case, too, we
can compute the value of Equation (2) in a straightforward
manner.

The above discussion shows how to marginalize out the
continuous variables {apt } through the standard Kalman
filter formulation. The difficulties of implementing a switch-
ing Kalman filter arise when we further marginalize out the
discrete variable, xt, by

p(xt+1,at+1|y1:t+1) =
∑

xt

p(xt+1, xt,at+1|y1:t+1).

(3)
The difficulty is that different predecessors, xt, are asso-
ciated with different estimates of at+1. When summing
out all possible predecessors, the estimate of each partial’s
amplitude becomes a Gaussian mixture model. The num-
ber of components grows exponentially with t, making the
problem intractable without approximation. We use an ap-
proach familiar in the switching Kalman filter literature,
approximating the mixture of multiple Gaussians by a sin-
gle Gaussian with the same mean and variance as in the
mixture [20]. Say the ith element in the mixture is a Gaus-
sian N (mi, vi), and has probability pi (mixture weight).
The approximated Gaussian, then, has mean and variance:

m =
1∑
i pi
·
∑

i
pi ·mi
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v =
1∑
i pi
·
∑

i

{
pi · vi + pi · (mi −m)2

}

Figure 8 demonstrates this process.

Figure 8: Approximation of a mixture of three Gaussians
by a single Gaussian (with thicker blue line).

4. PRELIMINARY EXPERIMENT

We conducted a preliminary experiment on a small dataset.
The purpose of this experiment was to benchmark the ini-
tial development of this new method (with a state-of-the-
art system), and to inspire further discussions about this
direction. We also propose a new evaluation method.

4.1 Data and Settings

The dataset consists of 15 excerpts of real piano perfor-
mance recordings of eight pieces, detailed in Table 1. Each
excerpt lasts about 45 seconds on average, making the dataset
13 minutes in total. The audio is sampled at rate 8 kHz.
The frame length is 512 samples (64 milliseconds), and the
hop size is 256 samples. There are five important param-
eters in our proposed method (cf. Sections 3.3 and 3.4.1):
the decay factor, the variance of the process noise, the vari-
ance of the observation noise, and the initial mean and vari-
ance of partials’ amplitudes when a new partial comes into
existence. They were manually set in this experiment. The
audio data are available at http://music.informatics.indiana.
edu/papers/smc19-evolution/.

Index Composer Piece Measures
1 Mozart Piano Concerto No.17 in G major, mvmt1 74 - 94
2 Mozart Piano Concerto No.17 in G major, mvmt1 139 - 171
3 Mozart Piano Concerto No.17 in G major, mvmt1 184 - 207
4 Schumann Piano Concerto in A minor, mvmt1 1 - 4
5 Schumann Piano Concerto in A minor, mvmt1 11 - 19
6 Schumann Piano Concerto in A minor, mvmt1 58 - 67
7 Chopin Barcarolle, Op.60 1 - 9 (1)
8 Chopin Barcarolle, Op.60 1 - 9 (2)
9 Chopin Prelude, Op. 28 No. 4 1 - 12
10 Chopin Prelude, Op. 28 No. 4 13 - 26
11 Schubert Six Moments, D. 780 No. 2 1 - 17
12 Schubert Six Moments, D. 780 No. 2 18 - 36
13 Debussy Prelude, No. 2 (Voiles) 1 - 21
14 Beethoven Piano Sonata, No. 8 (Sonata Pathétique) 1 - 10
15 J.S. Bach Wachet auf, BWV 140 1 - 12

Table 1: Piano excerpts in the experiment. Excerpts No. 7
and No. 8 are different performances of the same music.

4.2 Evaluation Method and Results

Evaluating (on-line) score-following systems is different
from evaluating off-line alignment systems, where one could
judge the result by simply comparing the detected notes
with the ground truth, e.g., counting the mislabeled frames.
Here, however, we cannot count mislabeled frames be-
cause there is no onset detection that follows directly from
the filtered distribution (unlike in Cont et al. [22]).

We propose a new evaluation method that assesses the fil-
tered distributions at each frame in a straightforward man-
ner. The frame-wise accuracy is defined as follows. For
each frame t, the filtered approximation contains the dis-
tribution p(xt|y1:t). Using ground truth, we can compute
the probability of the filtered distribution covering the cor-
rect chord as

Acct =
∑

xt:C(xt)=it

p(xt|y1:t),

where it is the ground-truth chord index for frame t. The
total measure of the accuracy aggregates this over all frames:

Acc =
∑

t

Acct,

which summarizes how well the algorithms perform.
We use one of the state-of-the-art systems, Music Plus

One [11], as the baseline, and compare it with our pro-
posed method. Table 2 shows the frame-wise accuracies
of the 15 excerpts. The proposed method has 5.7% higher
accuracy than the baseline on average. It also beats the
baseline more often.

Index Baseline Tracking Note Evolution
1 0.78 0.82
2 0.82 0.81
3 0.69 0.72
4 0.71 0.80
5 0.79 0.88
6 0.76 0.80
7 0.71 0.71
8 lost 0.67
9 0.63 0.56

10 0.49 0.50
11 0.86 0.83
12 0.72 0.72
13 0.64 0.71
14 0.72 0.68
15 0.81 0.77

average accuracy 0.675 0.732
win 5 excerpts 8 excerpts

> 5% win 1 excerpt 4 excerpts

Table 2: Comparing frame-wise accuracy between the
baseline and the proposed method. The higher accu-
racy of an excerpt is bolded (italic bolded if higher than
5%). “Lost” means the program failed and the accuracy is
smaller than 0.1.
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5. DISCUSSION

As shown in Table 2, our proposed algorithm achieved
5.7% higher accuracy than the baseline — a state-of-the-art
system. This algorithm also successfully followed excerpt
No. 8 where the baseline completely failed. We found that
this excerpt involves heavier pedaling than others — usu-
ally a sign of the more challenging cases. We speculate that
the new method can provide a more discriminating data
model for one key reason. Both correct and incorrect hy-
potheses can score better by adapting their templates to the
data. However, the correct hypotheses have greater poten-
tial to adapt well, because their templates have the right
adapting freedom that incorrect hypotheses don’t neces-
sarily have. For example, an incorrect hypothesis has to
ignore an observed peak because its template lacks the cor-
responding harmonic of this peak.

Two limitations prevent us from drawing general conclu-
sions about our new method. First, the testing dataset is
small. Second, if we drop the excerpt where the baseline
failed, the new method beats the baseline by only 1.3%.
Therefore, the results are inconclusive. It is possible that
the new approach gained only modest improvement on a
small sample. However, we think this new model is sci-
entifically interesting and is valuable for inspiring further
discovery in this direction.

We should point out that the current version of the model
is fairly basic, and still has much potential to be improved.
The five important parameters mentioned in Section 4.1
were manually set, but training them could potentially lead
to better results. For example, perhaps different frequen-
cies should not share the same decay rate, because higher
frequencies usually decay faster than lower ones.

During the experiment, we discovered that pedaling tends
to cause delayed detection of a chord, because the algo-
rithms can mistake a chord for the previous chord(s) when
observing prolonged note(s) mixed with the current chord.
To address this issue, we will consider modeling pedaling
in future, or including a new feature for detecting a new
starting chord — for example, if the spectrum difference
between neighboring frames is always positive at some fre-
quencies, it indicates that a new chord is starting.

The proposed idea can be generalized to other features
besides the spectrum feature. The spirit is to track the
time-changing nature of a note during its lifetime, aiming
to provide a more accurate and discriminating data model,
especially for challenging cases, like the piano. This flexi-
ble framework also allows incorporating multiple features,
together forming a better data model from different per-
spectives. Based on the generally positive result and the
above discussion, we believe that this direction leads to an
unexplored world, a promising path toward tackling some
of the most challenging cases in the score-following arena.
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ABSTRACT

In actual piano practice, people of different skill levels ex-
hibit different behaviors, for instance leaping forward or to 
an upper staff, mis-keying, repeating, and so on. How-
ever, many of the conventional score following systems 
hardly adapt such accidental behaviors depending on in-
dividual skill level, because conventional systems usually 
learn the frequent or general behaviors. We develop a sc 
ore-following system that can adapt a user’s individuality 
by combining keying information with gaze, because it is 
well-known that the gaze is a highly reliable means of ex-
pressing a performer’s thinking. Since it is difficult to col-
lect a large amount of piano performance data reflecting 
individuality, we employ the framework of the Bayesian 
inference to adapt individuality. That is, to estimate the 
user’s current position in piano performance, keying and 
gaze information are integrated into a single Bayesian in-
ference by Gaussian mixture model (GMM). Here, we as-
sume both the keying and gaze information conform to 
normal distributions. Experimental results show that, tak-
ing into account the gaze information, our score-following 
system can properly cope with repetition and leaping to an 
upper row of a staff, in particular.

1. INTRODUCTION

The goal of our study is to build a score-following sys-
tem that adapts a user’s individuality. Score-following is 
one of the important topics in MIR and is a fundamental 
technique used in many applications including automatic 
accompaniment, estimation of current position from au-
dio [4, 5, 19], and estimation from symbols [2, 3, 16, 17]. 
In reality, a score-following system may often face prob-
lematic situations, in which current position leaps forward 
or backward freely. Such leaps occur because of repeti-
tion and wrong keying, and during practice. Therefore, 
researchers of score-following attempt to propose systems 
and/or algorithms for reacting to or tracking a current po-
sition which includes occasional leaping forward or back-
ward [10–12, 18]. For a score without repeated and/or it-
erated phrases, conventional systems and algorithms can 
estimate current position almost correctly.

Copyright: ©c 2019 Kaede Noto et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

Gaze can give us significant information for score-foll
owing, when, for instance, starting performance from an
arbitrary position [13]. Our system can use gaze informa-
tion to estimate current position correctly to some extent,
even when keying information is unavailable. There is,
however, a crucial issue to be considered which is called
eye-hand-span (EHS). EHS means the distance between
the point on the score at which a player looks to obtain, in
advance, information of notes to be played, and the actual
current keying position [14]. Usually, during performance,
a pianist looks at a point on the score approximately a
phrase or a few notes ahead of current keying position.
Since the length of EHS depends on, for instance, individu-
ality, the structure of the melody, the degree of proficiency,
and tempo, our previous system takes into account the av-
erage length of EHS obtained from experimental data and
estimates the current position from both gaze and keying
information multiplied by fixed weights. Thus, the system
unfortunately neither conducts individual EHS estimation
nor assigns the optimum weights to both gaze and keying
information for each pianist.

This paper proposes a score-following system, which a
dapts a user’s individuality in piano practice. Due to the
difficulty of collecting a large amount of individual’s per-
formance data to learn, we adopt the Bayesian inference,
which has the advantage that it can be used even if only
a small amount of learning data is available. Thus, we
propose a method for treating gaze (EHS) probabilistically
and integrating gaze and keying information within the B
ayesian inference framework. First, we assume the length
of EHS follows the normal distribution and that the dis-
tribution is updated dynamically by observed data. We
define the distribution of keying information in the same
way. Next, we integrate gaze and keying information, us-
ing Gaussian Mixture Model, to be used as the likelihood
function in the Bayesian inference. Advantages of the m
ethod include improvement of the accuracy of estimating
current keying position and the ease of adding other new
features which reflect the user’s individuality and/or think-
ing.

2. RELATED WORK

2.1 Gaze Information and Individuality

A performer perceives music while forming ’chunks’, wh
ich are units to recognize a sequence of pitch events as a
pattern. The size of EHS is related to the size of a chunk.
Weaver revealed that professional performers perceive the
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notes on a score as horizontal and vertical groupings [20].
Furneaux et al. conducted experiments to identify the dif-
ferences in EHS between professional and amateur pianists
[7]. In this research, EHS was defined as the number of
notes between the note(s) being played and the note(s) upon
which the player’s gaze was fixed (performance point and
gaze point). The professional’s EHS (approx. four notes)
was larger than the amateur’s (approx. two notes). From
the point of view of melody, Kobori and Takahashi com-
pared the eye movements when professionals and amateurs
play a melody on piano and guitar [9]. This research sug-
gested that the individuality of performers, the difficulty
of music pieces and the performer’s knowledge on music
pieces were the crucial factors which influenced eye move-
ment.

2.2 Automatic Score Following

A central issue in score following is correctly estimating
performance position in response to a variety of uncertain
events such as leaping forward, mis-keying and repeating.
Nakamura et al. developed a score-following system, Eu-
rydice, that estimated the user’s current position using im-
proved HMM and Viterbi algorithm [17]. Since the weight
was calculated based on distance, Eurydice tended to es-
timate a position near the previous current position. To
some extent, Eurydice achieved accurate estimation in per-
formance containing unexpected movements such as mis-
takes, repeats, and skips. However, since Eurydice used
only keying information, it was difficult to identify the
phrase being played in the case of a melody containing
many repeated phrases.

Terasaki et al. proposed a score-following system that
was hardly affected by unexpected movements [13]. The
system introduced gaze likelihood to the cost of DP match-
ing. Gaze likelihood was obtained by HMM, which was
employed for predicting gaze and removing noise from the
raw data of eye movement. The system could correctly
estimate current position, even when a player started at
a point different from the previous point at which he/she
had stopped playing, or a beginning point of a repeated
phrase. Terasaki et al. evaluated the estimation error rate
for musical scores including repeated phrases and found
that the correct answer rate was improved by 1.2 times
(from 72.7% to 85.2%). However, the system unfortu-
nately could not cope with the individuality of EHS.

Grubb et al. introduced the Bayesian inference into an
automatic accompaniment system [6]. They defined the
probability distribution with respect to note number i as a
random variable, which was updated every time data was
observed. Parameter d stands for the estimated distance
from a pre-estimated position, v the observation value, and
j the performer’s position at the previous timing. The es-
timated position was updated by the most recent observa-
tion. First, based on the previous position and estimated
distance, the current position is estimated, as follows.

fI|D(i|d) =

∫ ‖Score‖

j=0

fI−J|D(i − j|d) · f Source (j)∂j

Next, this estimated value is further updated to take into

!"#$%&'
($)*+$,-*$.%/!0123

456"'
($)*+$,-*$.%'/!0103

DP matting Estimate EHS

GMM

Bayesian Inference

!"#$%&'
$%7.+85*$.%

9":";*$%&'
;-++"%*'<.)$*$.%'

/!01=3

456"'
$%7.+85*$.%

>$?*-+"'
($)*+$,-*$.%'/!01@3

Figure 1. System Configuration

account the observation using the Bayesian inference, as
follows.

fI|D,V (i|d, v) ∝ fV |I(v|i) · fI|D(i|d)

fV |I(v|i) is made from observation, and is considered as
a likelihood. In an experiment on recorded data and real-
time data, a latency of 159 ms occurred on average. This
value falls belown the limit of latency that humans can per-
ceive, which is 10∼ 100 ms [5]. Thus, Grubb’s system
did not interrupt piano performance, but users reported that
they felt some discomfort.

3. A SCORE-FOLLOWING SYSTEM USING
KEYING AND GAZE INFORMATION

This section describes the score-following model which
deals with gaze, and shows how the input data are con-
verted to distributions and how they are combined.

3.1 Combining Gaze information with Keying
Information

Fig.1 shows the processing flow of the proposed system.
The model takes two input data at the same time: key-
ing information and gaze information. The keying infor-
mation as MIDI numbers and the gaze information mea-
sured by an eye-tracking device are entered into the sys-
tem. The system fits the input data to normal distributions,
and integrates the distributions using GMM. After inte-
grating the distributions, by Bayesian inference, the sys-
tem estimates a note number on a score as current position
(i ∈ {1, 2, 3, · · · I}).

3.2 Distribution of Keying

To formalize the keying information as a normal distri-
bution, we need to define the average and the variance.
Firstly, to obtain the average, we use DP matching. DP
matching finds the degree of similarity between notes on
a score and notes being played, called the best match, and
chooses the score position having the best match as a per-
formance position [12]. However, it is difficult for DP
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Figure 2. Create the distribution of gaze, with note esti-
mated from EHS as µ

matching to follow a performance which includes back-
ward leaps and repeats. As a simple solution, we employ
an exhaustive search of all the played notes over an entire
score, as in our previous research [13]. Then, we can iden-
tify the note number eDP ∈ {1, 2, 3, · · · I} that is most
probably the average value. Next, we define a value cor-
responding to the variance. For all notes, we calculate the
average distance

∑ |xi − xi+1|/I between every adjacent
note in the horizontal direction. Let us regard the value ob-
tained as the standard deviation of the distribution of key-
ing. Then, we define the keying distribution as follows:

pDP (i) ∼ N(µDP , σDP )

where µDP is equal to eDP and σDP is (
∑ |xi−xi+1|/I)2.

3.3 Distribution of Gaze

To introduce the gaze information, we define the distribu-
tion of gaze considering eye-hand-span (EHS) in Fig.2.

EHS consists of the horizontal and vertical spans xi − gx

and yi − gy , where (xi, yi) means the note number of the
key being played and (gx, gy) the gaze point on a display
(where, on the display, the user is looking). Here, con-
cerning the size of EHS, we assume it follows the normal
distribution:

px(xi − gx) ∼ N (xi − gx|µgx, σgx) (1)

py(iy − gy) ∼ N (iy − gy|µgy, σgy) (2)

Terms xi − gx and xi − gy are the lengths of EHS in
the horizontal and vertical directions, respectively. Vari-
ables µg and σg represent the average length of EHS and
the variance, respectively. Since the Gauss-gamma distri-
bution, as prior distribution, is used in the Bayesian infer-
ence, µg and σg can be analytically calculated.

According to the length of EHS learned, we estimate the
user’s current position from gaze point (gx, gy) and assign
gx and gy to Equations(1) and (2). Since, at this moment,
more than one candidate note is obtained, to determine the
user’s current position, we choose a note by calculating the
likelihood of each note, considering EHS, as follows:

eg = arg max
i∈I

[px(i)py(i)]

Figure 3. Integration of distributions by GMM

Then, using the above variables, we define the gaze distri-
bution, pg(i), with eg as the average and σgx as the vari-
ance (Fig.2).

pg(i) ∼ N(i|egx, σgx)

3.4 Integration of Multiple Information

We use GMM to integrate the keying and gaze distributions
(Fig.3). To use GMM, we convert the random variable of
keying distribution into a coordinate value on the x axis
on a score (in units of pixels). The integrated probability
distribution by GMM is given by Equation(3) with mixture
ratio πk :

PGMM (i) =

2∑

k=1

πkN(i|µk, σk) (3)

K∑

k=1

πk = 1

where µk = [eDP , eg] and σk = [σDP , σgx].
Since we need to decide the significance of each type of

information, we use the EM algorithm to update mixture
ratio πk.

r(Znk) =
πkN(x|µk, σk)∑2
i=1 πiN(x|µi, σi)

πk =

∑N
n=1 r(Znk)

N

Here, x represents an observation, which is assumed to
have been sampled from the normal distribution of aver-
age µi and variance of σi. To estimate πk, we calculate
the r(Znk) which represents the ratio of the distribution of
each k (k = 1, 2) at the values of the density function of
the mixed distribution at pixel x. Since we cannot know
what a player is thinking, in principle, we cannot know the
true point at which he/she is playing.

To obtain as accurate a value of πk as possible, we in-
structed subjects to play notes in the order indicated by
a score, that is, linearly from the beginning to the end.
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Figure 4. Estimating Note by Multiplication of Likelihood
and Mixture Distribution

Mixture ratio πk represents the maximum likelihood of the
mixing ratio. In E step, we calculate the expected value
of PGMM when the mixture ratio is πk. In M step, πk is
optimized by the data obtained by sampling for each note
from a normal distribution that assumes µ = ix, σg =
(
∑ |xi − xi+1|/I)2 by the maximum likelihood estima-

tion. From the obtained mixture ratio, we define the mixed
distribution that is the weighted summation of the keying
and gaze information (Fig.3).

3.5 Estimating Keying Position based on Bayesian
Inference

The current position is estimated from the mixture distri-
bution and likelihood. The relationship between a note and
the variables can be represented by the occurrence proba-
bility of the i-th note, P (i), and the value distribution of
variables, P (θ). To estimate P (i|θ) using Bayesian esti-
mation, it is necessary to know P (i) and P (θ|i) in advance.

However, it is difficult to uniquely determine P (i) be-
cause a performance includes errors and leaps forward and
backward. Thus, we substitute mixed distribution for P (i).
Accordingly, we estimate P (θ|px), where px means the
discrete frequency distribution of θ when note i occurs.
The parameter θ represents a random variable about the
combination of gaze and keying information.

Thus, the random variables depend on the combination
of note numbers and gaze points. To prevent θ from be-
ing sparse, the number of random variables was limited
by using a gaze range, whereby the musical score was di-
vided into 10 parts in the horizontal direction, instead of
gaze points. The bottom part of Fig.4 shows the result
of multiplying the mixture distribution by the likelihood.
The current performance point em is determined so that
the multiplication of P (θ|i) and PGMM (i) is maximized.

em = arg max
i

P (θ|i)PGMM (i)

4. EXPERIMENT

4.1 Experimental Description

By properly assigning the parameters, which are gaze dis-
tribution, keying distribution and mixture rate, our system
can estimate a user’s current position correctly. The param-
eters are drawn from ground truth data which consists of
true current position, MIDI key numbers, and gaze points.
First, by MIDI data we know current notes that subjects
are playing including wrong key strokes. Even if a subject
played a wrong key, a subjects are instructed to continue
playing without trying to recover wrong key strokes dur-
ing piano performance as if a subject plays correct notes.
Then we align the note that a subject plays with the cor-
responding gaze data. Thereby, the system acquires gaze
distribution, keying distribution, and mixture ratio for each
individual subject. After the parameters are identified, we
start the experiment.

4.2 Implementation of Proposed Method

If we take a set piece that the subjects already know, it is
possible that EHS will be biased due to prior knowledge of
the phrases or decreased score reading time. Therefore, we
should adopt a piece that none of the subjects knows. We
select a piece from Yamaha Music Ability Test (Grade 5
Grade) Sight playing / Improvisation and extract the right-
hand part of 27 measures (103 notes) [1]. The set piece
contains three identical phrases and there are nine dupli-
cated notes (Fig. 5). On a screen, we show the score im-
age, which is made with MuseScore to remove any musical
symbols such as staccato and slur. Thus, the bar lengths of
a score on a screen are variable depending on the number
of notes and symbols in each bar.

The GUI of the system is implemented in Processing and
the model part in Python. The system obtains keying in-
formation from the MIDI keyboard and gaze information
from a gaze measuring device, Eye-Tribe ET1000, which
does not disturb performance because it is small and sta-
tionary [15]. The effective range of the distance between
the device and user’s eyes is 45 to 75cm, and the spatial
resolution is the angle of 0.1 degree, which means the reso-
lution of 0.17cm, 50cm ahead. To calibrate the system, six-
teen points are showed on a screen one by one. The frame
rate of the Eye-Tribe generates sampling data of gaze in-
formation at a frame rate of 30 Hz.

The gaze data is transmitted to the model part in Open
Sound Control (OSC), which is the protocol for commu-
nication among computers, sound synthesizers, and other
multimedia devices. After estimating a user’s current posi-
tion by the algorithm described previously, the model part
transmits it to GUI. To superimpose the position of the esti-
mated playing note, the melody of the set piece is displayed
in the x-axis of note number i and the y-axis of MIDI note
number.

4.3 Evaluation Procedure

To obtain experimental data, we asked seven subjects (Sub-
jects A to G) to play a set piece. Five of the subjects (A to
E) had experience of learning the piano, and the other two
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Figure 5. The set piece that contains three identical phrases and there are nine duplicated notes

(F and G) did not but could read a musical score. If a sub-
ject plays a melody linearly following a score, of course,
the system can estimate almost every note correctly. Next,
subjects were instructed to play parts of the piece in re-
verse order. For instance, subjects played from the 20th
to the 23rd measure immediately before they played from
the 6th to the 9th measure (Fig. 5). Here, the accuracy rate
was defined as the rate at which performance position is
correctly estimated with respect to all keystrokes.

4.4 Results and Discussion

Table 1 shows the number of passed-over keys, that of mis-
takenly pressed keys, the temporal interval between the
restart of the system and the timing of capturing correct
position (latency in the table), and the accuracy rate. In re-
gard to the accuracy rate, we see a large gap between two
groups: a group that has a rate of more than 90% (Sub-
jects A to D and F) and the other group (E and G). It does
not seem that the accuracy rates are related to the numbers
of passed-over and mistakenly pressed keys. Concerning
these numbers, Subjects F and G reach the largest num-
bers.

Table 2 shows the weights of the mixture rate. For Sub-
jects A to E who have experience of learning the piano,
the weights of DP matching are larger than those of the
gaze distribution. In contrast, for Subjects F and G (non-
experienced), the weights of gaze are larger than those of
DP matching. We think a reason for this is that GMM de-
termines the weights by the maximum likelihood. Hence,
during score following, keying information plays an im-

Table 1. Accuracy rate and uncertain factors

Subject passed- missed latency acc.
over (%)

experienced A 1 0 1 93.3
B 0 0 2 93.3
C 0 0 2 93.3
D 0 0 0 90.0
E 0 0 1 70.0

non F 1 2 0 96.6
experienced G 0 2 - 0.0

Table 2. The Weight of Mixture Rate
Subject weight of weight of

Gaze DP
experienced A 0.13 0.87

B 0.13 0.87
C 0.15 0.85
D 0.26 0.74
E 0.24 0.76

non F 0.48 0.52
experimented G 0.76 0.24

Table 3. The Differences Between Gaze Points Before and
After the Experiment

Subject Gap for Gap for
x-axis(px) y-axis(px)

experienced A 1.9 -0.7
B 29.8 -1.6
C -56.0 -70.9
D -27.0 -104.7
E -12.9 19.0

non- F 23.2 -143.7
experienced G -85.8 -146.4

portant role for the experienced subjects, while gaze infor-
mation is important for the non- experienced ones.

To examine the performance of the eye-tracking device,
we instructed the subjects to look at the same points on
the score before and after the experiment. Table 3 shows
the average differences of gaze points before and after the
experiment, called Gap in the table. The table shows that
the absolute values of the experienced subject’s gaps are
smaller. The absolute value of G’s gap is the largest, being
shifted left by 85.8 px and upward by 146.4 px. These
values correspond to a shift of a half measure to the left
and almost 1 staff up in Fig. 5.

While the experimental results show that the proposed
method determines the weights of information, to which
the user’s individuality is adapted, with little data, there are
some cases in which position cannot be identified. To ex-
amine such cases, let us consider the relationship between
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Figure 6. Relationship Between the Gap and the Mixture
Rate

misalignment and the mixture rate. Fig. 6 shows the re-
lationships between the gaps and the mixture rates in the
scatter plot of the gap data in Table 3. The bars under
dots represent the mixture rates for gaze and keying dis-
tributions. In the figure, we can see a trend in which the
accuracy depends on the mixture ratio. In particular, the
gaze mixture rate of Subject F is 0.48, on the other hand,
that of Subject G is 0.76. Although the gaze information
of subject G is weighted more heavily, G’s gaps are also
large. We think it is for this reason that the accuracy rate
decreases.

5. CONCLUDION

In this paper, we proposed a score-following system which
adapts a user’s individuality in piano performance. We fit
gaze information and keying information to the normal dis-
tribution and integrate them into the Bayesian inference by
using GMM. The experimental results demonstrate the rel-
evance of each type of information to the user’s individual-
ity. In particular, the keying information is important for an
experienced performer, on the other hand, the gaze infor-
mation is important for a non-experienced one. However,
regarding the accuracy of the system, large differences oc-
cur among subjects. We think one of the reasons is not con-
sidering misalignment of the eye-tracking system. Future
work will include developing a robust method to deal with
errors related to eye-tracking, and adding other kinds of
information which reflect user’s individuality and/or mind,
such as gesture and blinking.
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ABSTRACT 
The objective of this project is to create a digital “workbench” 
for quantitative analysis of popular music.  The workbench is 
a collection of tools and data that allow for efficient and ef-
fective analysis of popular music.  This project integrates 
software from pre-existing analytical tools including music21 
but adds methods for collecting data about popular music. 
The workbench includes tools that allow analysts to compare 
data from multiple sources. Our working prototype of the 
workbench contains several novel analytical tools which have 
the potential to generate new musicological insights through 
the combination of various datasets. This paper demonstrates 
some of the currently available tools as well as several sample 
analyses and features computed from this data that support 
trend analysis. A future release of the workbench will include 
a user-friendly UI for non-programmers.  

1. INTRODUCTION
One of the challenges to the scholarly analysis of popular mu-
sic is the difficulty of collecting symbolic data. There are two 
forms of symbolic musical data: symbolic representations of 
the music itself (i.e., score-based or MIDI data), and symbolic 
metadata. Metadata can refer to relatively large-scale fea-
tures about a song as a whole (e.g., title, artist, track length, 
etc.), or may refer to features computed from the data such as 
chord progressions, key estimates, number of sections, etcet-
era. Since both the raw audio and any published scores for 
virtually all popular music fall under copyright protection, 
musicologists wishing to study popular music are largely re-
stricted to the analysis of symbolic metadata. In order to fol-
low trends in the rapidly evolving field of popular music, 
large volumes of symbolic metadata will have to be curated 
through automated or semi-automated approaches.  Standard-
ized analytical metrics also need to be developed to comple-
ment and enhance qualitative analyses.  This project focused 
on three objectives: collecting symbolic musical metadata 
from multiple sources; integrating newly developed analysis 
tools with existing tools; and developing a hierarchical model 
of metrics that can help guide this type of analysis. 

1.1 Collecting musical data from multiple sources 
Musical analysis is a complex process that involves tasks 
such as transcribing lyrical, harmonic, rhythmic and melodic 
information, and doing research into the provenance of the 
music (i.e. who wrote the lyrics, who wrote the music, who 

produced the track, etc.). Many computational analysis pro-
jects begin with manual collection and analysis of the data, a 
process that is immensely time consuming.  Due to the re-
sources required in curating datasets, many analyses are car-
ried out on relatively small samples (e.g., [19, 25]).  How-
ever, an additional challenge in any analysis is in collecting 
enough data to be able to make statistically valid inferences 
about a larger population. Using data that has already been 
collected can substantially improve the time and resources 
invested for a given study by allowing analysts to focus on 
analyzing data instead of collecting it. To use this data effec-
tively, however, multiple sources must be combined, the va-
lidity of the data must be tested, and the quality or usefulness 
of that data further refined.  In part, this project investigates 
the efficacy of using data from midi collections combined 
with data from commercial sources like Spotify, as well as 
websites like Ultimate Guitar, to carry out musicological 
analyses. 

The Spotify database contains features and metadata for 
approximately forty million songs that is continuously up-
dated with new material based on listener tastes. This makes 
Spotify and similar sites potentially excellent sources for 
structural data such as song length and number of sections. 
This project developed a method of collecting and storing 
data from the Spotify API that makes the data easier to use 
for musical analysis.  

While music listening websites and software (e.g., Spotify, 
LastFM) are good sources of structural data about music, 
some musical analysis tasks involve making or using tran-
scriptions of lyrical and harmonic information which are not 
easily obtained from these sources.  Websites like e-Chords 
[24] and Ultimate Guitar [23], however, contain user-submit-
ted chord transcriptions of popular songs for thousands of
songs online. Although the quality of the transcriptions var-
ies, some scholars have found that using these transcriptions
in conjunction with other symbolic data can be used to im-
prove the accuracy of automated chord transcription and key
detection [15, 17].  This project developed a web scraper for
Chordify.net that gathers chord information for selected
songs. We tested the validity of this extracted chord infor-
mation against two known dataset of “expert” chord tran-
scriptions for the same songs [5, 19].  Our results showed
that, for certain tasks, such as measuring distributions of

Copyright: 2019 Beach Clark et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 Unported License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited.
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chord usage, the differences between the Chordify transcrip-
tions and the experts’ transcriptions were not significant.1  
We are currently using Chordify chord transcriptions in an 
analysis that shows the impact of “harmonic surprise” on lis-
tener perceptions. 

1.2 Integrating newly developed and existing tools 
Once the data curation step is completed, it still has to be 
analyzed.  There are a number of existing tools currently 
available for symbolic musical analysis, namely music21 
and humdrum. Music21 is a Python-based, open source 
toolkit which provides a needed bridge between the de-
mands of music scholars and of computer researchers [4].  It 
has an active support community and provides support for a 
number of analysis tasks such as Roman Numeral Analysis, 
or metrical analysis.  For users who are familiar with mu-
sic21, taking advantage of existing functionality speeds the 
analysis process. This project developed a converter to al-
low symbolic metadata from Spotify to be parsed into mu-
sic21’s native format.  Then, the music21 stream data can be 
visualized, as will be demonstrated below.   

1.3 Post-analysis of extracted features  
All of the data sources investigated by this project have been 
used independently by other researchers (e.g., Dieleman [2], 
Gauvin [29], Thomas [27]).  The present authors recognize 
that there is value in developing automated methods for fea-
ture extraction from this collective data that can be used to 
systematically analyze large samples, and leverage these 
methods in the current project.  

This metadata may not be appropriate for every analysis 
task.  For example, the pitch vectors from Spotify do not have 
octave information and result from the integration of multiple 
voices, making them difficult to use for melodic analysis. For 
other tasks, such as analysis of form, the same metadata may 
offer a significant increase in the amount of music to by ana-
lyzed than could be covered with other methods.  In some 
cases, however, additional processing of the metadata will be 
required, and scholars will have to adjust their methodologies 
to take best advantage of this type of data. 

2. RELATED WORK 

2.1. Data collection and feature extraction 
Similar data collections to those described above have been 
used in previous work. In 2011, Bertin-Mahieux and Ellis 
(Columbia University) along with Lamere and Whitman  
(EchoNest) created the Million Song Dataset (MSD) to ad-
dress the issue of the lack of data that can be used to analyze 
popular music [1].  The dataset consisted of a collection of 
precomputed features extracted from audio along with metat-
data from one million popular songs.  The project also in-
cluded code to retrieve audio samples of some of the songs 
from 7digital.  Dieleman, Brakel and Schrauwen used the da-
taset (in particular Echonest pitch vectors and timbre vectors) 
to create machine learning models for key detection, artist 
recognition and genre detection [2].  The MSD has been used 

                                                
1 This comparison was made by taking the distribution of the counts of all 
simplified RN hand analyses and comparing against those computed by 
Chordify. 

by several other scholars (e.g. Gallay [26], Thomas [27]) 
since its creation, highlighting the value of being able to use 
pre-collected data from a very large dataset.  All features in 
the MSD were extracted by Echonest. Unfortunately, for pop-
ular music scholars, the MSD has not been updated since its 
creation in 2011.  In 2015, Spotify acquired Echonest, creat-
ing a continuously updated source for this type of data. To 
make the metadata more accessible to music scholars, this 
project created an SQL database to make the Spotify data eas-
ier to search and combine with data from other sources. 

In 2016, Raffel collected over 178,000 MIDI transcriptions 
of complete popular songs to support his doctoral research 
[3].    A somewhat smaller but more rigorous dataset – the 
McGill Billboard dataset was developed at McGill University 
[5].  This dataset is a collection of transcriptions of selected 
songs from the Billboard Hot 100 for the period 1955 – 1991.  
In total it contains the annotations and audio features corre-
sponding to 890 of the entries from the random sample 
of Billboard chart slots as presented at ISMIR 2011.  In 2010, 
McVicar and De Bie used chord transcriptions from the e-
chords website to show that using chord transcriptions from 
publicly available web resources can improve the accuracy of 
Hidden Markov models using chroma features from audio 
[15]. 

These four projects used collection methods that have im-
portant differences.  The pitch and timbre vectors were com-
puted from audio using digital signal processing techniques.  
The MIDI transcriptions were obtained using web scraping 
software to crawl numerous public MIDI sites.  The transcrip-
tions in the McGill Billboard dataset were hand-transcribed 
by music scholars.  The e-chord website is a collection of 
chord transcriptions that are contributed by users who have 
varying levels of musical training.  Web scraping software 
was also used to collect the chord transcriptions.   

Each type of data has proven valuable to music scholars.  
Various types of pitch vectors like the ones in Spotify have 
been used for music information retrieval tasks such as key 
detection [2, 7] and chord estimation.  MIDI transcriptions 
have been used for tasks like comparing musical sequences 
and chord detection [6, 3].  Pitch, timbre, beat and section 
vectors along with chord transcriptions from web resources 
have been used to compile historical analyses of trends in 
popular music [16].  

A workbench tool most similar to the present project was 
developed by Abdallah et. al, called the Digital Music Lab 
(DML) system, which is a large collection of metadata con-
taining both low-level features and collection-level analyses 
that is stored in a carefully planned architecture [30]. The 
DML system contains a rich selection of features similar to 
those found in the MSD and has a wider selection of genres.  
The primary differences between the current project and the 
DML system is that our project is compatible with symbolic 
music, and allows the user to curate their own dataset from 
theoretically any existing song or work, whereas with the 
DML the user is limited to songs in the DML system, which 
is comparatively lacking in popular music data.   

Popular music scholars need easy-to-use methods to collect 
relevant data about a specific collection.  They also need to 
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be able to search the data and visualize it quickly across mul-
tiple dimensions without having to develop programming 
skills to do so.  The traditional approach has been to analyze 
scores, which show the data in a concise and easy to use for-
mat.  This project proposes additional formats for the data.  

3. PROJECT OVERVIEW 
This project focuses on three objectives.  The first is to iden-
tify efficient and effective methods of collecting and curat-
ing symbolic data to support musical analysis, including 
MIDI data collected from multiple sources, hand transcrip-
tions of scores, data from music listening sites like Spotify 
and chord transcriptions from websites similar to eChord.   

The second is to investigate approaches for integrating ex-
isting analysis tools with newly developed software.  
The third is to demonstrate the concept of combining data 
from multiple sources by building several datasets to per-
form representative analyses for musicological tasks.  

3.1 Data Collection Methods 
As a demonstration of the collection methods in our work-
bench, we describe the assembly of a subset of musical data 
for analysis. We chose to examine the weekly list of the 
“Billboard Hot 100” for the period of 1980 – 1989.  A web 
scraper for the Billboard website was built to retrieve the list 
and a SQLite3 table was created to enable it to be searched.  
Data from Spotify for each of the songs was collected using 
the Spotify API. 

Based on the Spotify API documentation, the primary fo-
cus of exposing the API is to allow developers to create ap-
plications to enhance Spotify premium listeners’ experience 
by recommending songs and playlists from the Spotify col-
lection. Unfortunately for musical analysis, the API search 
method only supports full text searches.  Specifically, filter-
ing parameters are limited to: artist, title, genre, year, market, 
upc and sirc (https://developer.spotify.com/documentation/ 
web-api/reference/search/search/).  Even though the returned 
data contains large amounts of fine-grained information, it 
needs further data manipulation to be used in analysis tasks 
(e.g., section lengths are identified, but need to be grouped 
and compared according to section type—verse, chorus, etc.)   
To make the data easier to search and filter for the user, we 
created a new SQLite3 database. Using this database, ana-
lysts can now select finer-grained musical features (e.g., sec-
tion length, number of sections, highest ranking) for specific 
songs from either source (Spotify or Billboard) in a single 
location. 

An examination of our database schema reveals a number 
of attributes that can be useful for popular music analysis. 
For example, our “track_feature” table has metadata ele-
ments extracted from Spotify that describe timbral character-
istics of a song, such as liveneness, acousticness, speechiness 
and energy; rhythmic characteristics, such as danceability; 
and mood characteristics, such as valence (see [28] for defi-
nitions of these features). We define additional tables, in-
cluding: “track_section”, “track_bar”, “track_beat,” and 
“track_tatum”, that contain metadata describing structural 
and metrical characteristics. The “track_section” table also 

                                                
1 The workbook used in this analysis is in the github repository at 
https://github.com/bclark288/alternative-measures 

contains the estimated key and mode (major or minor) of a 
section. The “billboard_tracks” table has the artist, label, and 
title of the song, and the weekly ranking (1 – 100) pulled 
from the Billboard API.  Using our new database, it is rela-
tively straightforward to search for specific songs and com-
pute, for example, the average duration, number of sections 
or standard deviation of the duration of the beats in the song.  
This allows analysts to answer questions like “is there a trend 
toward shorter songs in the Billboard Hot 100 during the past 
20 years?” or, “Is there a historical trend towards music be-
ing more “in the pocket?” (i.e. tightly aligned to a specific 
pulse without drifting over the course of the song).  As a pro-
totype, we also developed an Excel workbook containing the 
Billboard 1980’s song data that allows analysts without pro-
gramming skills to analyze and visualize the data.1  

3.2 Integration with Existing Tools 
Popular music analysts will continue to need more special-
ized tools for sophisticated musical tasks such as metrical or 
Roman Numeral analysis.  This project developed a converter 
to allow symbolic data from Spotify to be parsed into mu-
sic21. The converter parses pitch, beat onset, duration, tempo, 
time signature, and bar vectors to create a music21 stream. 
The resulting stream is a hierarchical representation of the 
structural features of a song (i.e., section, bars, beats) linked 
to their timing information derived from the audio. Once the 
stream has been created, music21 tools can be used to analyze 
key, quantize or transpose the symbolic data so that it can be 
compared to other songs. For example, if pitch vectors were 
retrieved into a music 21stream and segmented by musical 
event, as was done in [21], our database could be used with 
music21 to work on various symbolic MIR problems such as 
chord estimation—something we are, in fact, currently test-
ing.  
 
3.3 Analysis Examples 
In order to validate the efficacy of the approaches to building 
datasets and using new and existing tools to analyze data, our 
project developed several comparative analyses.  These are 
described in the following sections. 

3.3.1 Large, surface-level features   
One reason for building a database of musical data is to en-
sure that the inferences made from the analyses are statisti-
cally valid for some larger population. As mentioned above, 
previous studies have mentioned the challenges of defining 
a representative musical population [19]. Here we demon-
strate the utility of collecting large amounts of musical data 
to augment statistical power. We queried the Billboard “Hot 
100” for the list of songs on the chart for the period of 1980 
through 1989. We then collected feature data from Spotify 
using our database. For the 10-year period, Figure 1 shows 
the Billboard Hot 100 had 4,226 total songs of which 3,554 
were available on Spotify (79.4%). 

As an exploratory exercise, we analyzed several descrip-
tive features extracted from this database for the same set of 
songs. The following paragraphs describe these sample fea-
tures. Figure 2 shows a histogram of the distribution of songs 
produced by various labels for the period 1980 – 1989.  The 
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distribution shows that 225 labels produced less than 100 
songs each while two labels (Columbia and Atlantic) pro-
duced between 240 and 400 songs each. This finding raises 
additional questions such as whether the same labels con-
tinue to dominate in later years and whether there are simi-
larities between the rhythm, pitch, timbre and other musical 
information for a label.  In other words, do labels have a 
“style”? 

 

 

Figure 1. Coverage of songs from the weekly Billboard Hot 
100 in the Spotify database for the period 1980 – 1989. 

 
Figure 2. Distribution of Songs Produced by Label. 

Figure 3 shows the detail of the number of songs produced 
by the top 10 labels.  Additional questions to be considered 
are, whether the number of songs on the charts are simply a 
function of the size of the label, or whether some smaller la-
bels are able to produce better rankings.  Answering these 
questions might give insights into how much of an effect the 
marketing resources of a label affect the popularity of a re-
cording. 

Figure 4 shows the number of songs produced by the top 
10 artists for the same period.  This figure shows a more even 
distribution of songs among artists.  Additional questions 
suggested by this analysis are whether artists with popular 
recordings in a given timeframe (i.e. weeks or months) show 
similarities in musical features. 

Figure 5 shows the average length and number of sections 
of songs for the period.  A section is described in the Spotify 
developer guide as a portion of a song that shows a signifi-

cant change in rhythm or timbre [20].  The number of sec-
tions according to the Spotify data is higher than would be 
expected if one equated the word “section” with “verse” or 
“chorus”.   

Both features are relatively stable on average for the entire 
period, but questions to be answered might be whether the 
length and type of sections vary when chart rank is consid-
ered.  Another question might be whether the tempo of a 
group of songs varies from one section to another, and if so, 
how much.  One unexpected result of this analysis was that 

 
Figure 3. Detail of Songs Produced by the Top 10 Labels 
1980 – 1989. 

 

 
Figure 4. Songs Produced by the Top 10 Artists 1980 – 
1989. 
on average, the songs in this time period were nearly 4 
minutes long.  
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Figure 5. Average Number of Sections and Average Song 
Length. 

Figure 6 shows a scatter plot of the number of sections vs. 
section tempo for each of the songs for the period.  The num-
ber of sections seems to cluster at between 7 and 20 and the 
tempo clusters between 50 and 200.  The project compared 
section lengths of selected songs from this data with descrip-
tions made by a human annotator [22].  The section bounda-
ries did not match exactly.  However, they were similar 
enough to warrant further investigation into how song struc-
ture computed from audio features differs with that of human 
annotators.  Another interesting question raised by this data 
is how often the tempo of sections changes within a given 
song. 

 

 
Figure 6. Section Tempo vs Number of Sections for Bill-
board Hot 100 songs from 1980 – 1989. 

Figure 7 shows a portion of an Excel Pivot Table that 
shows the modality, tempo and section boundaries for a se-
lection of songs by Bruce Springsteen.  High level structural 
analytics such as the examples above can be used to identify 
songs that have unusual structural characteristics for a 
deeper analysis. 

Figure 8 shows a portion of a detailed breakdown of the 
metric structure of “Just Got Paid” by ZZ Top.  The graph 
shows the relationship between pitch events, bars, beats (the 

numerator of the time signature) and tatums (defined as the 
lowest regular pulse train that a listener intuitively infers 
from the timing of perceived musical events) [20].  Figure 9 
shows a breakdown of the length of each bar in seconds for 
“Just Got Paid”.  This visualization not only shows the vari-
ability in tempo, but that there is a detectable pattern.  As 
mentioned above, this type of detailed analysis can be help-
ful in troubleshooting large scale analysis systems.  It can 
also be useful to help conceptualize which low-level audio 
features contribute to a given style.  
 

 
Figure 7. Excel Pivot table of Modality and Tempo of Se-
lected Song Sections.  Numbers in the left column under the 
heading “Born in the USA” are start times of each section.  
The two columns on the right are the tempo of the section.  
If the tempo is under the heading “0”, the section is minor.  
“1” is major.  

 

 
 
Figure 8. Detailed Song Analysis of one section of “Just 
Got Paid”. 
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Figure 9. Graph of bar durations from “Just Got Paid”. 

Figure 10 shows a heatmap with pitch class transitions 
from the song “Ghostbusters”.  The pitch data from Spotify 
has proven to be more difficult to use in large scale analysis.  
However, as mentioned above, researchers have used 
chroma vectors similar to the Spotify chroma vectors with 
additional preprocessing to predict harmony.  As an experi-
ment, this project converted the pitch information from 
Spotify for “Little Sister” to midi format using music21 and 
then played the resulting stream in GarageBand.  Based on 
listening to the output, it is unlikely that this data can be used 
for melodic analysis without significant filtering. 

 
Figure 10. Pitch Transitions heatmap from “Ghostbusters”. 

3.3.2 Chord detection 
Learning chord progressions is an important skill in analyz-
ing popular music.  As a result, websites like Ultimate Guitar 
and eChords have become popular resources for informal 
music education. However, given the level of effort and ex-
perience required to transcribe the harmonic content of pop-
ular songs, there has been considerable motivation to develop 
automated chord transcription algorithms [18]. These algo-
rithms typically are applied to raw audio data. However, since 
we are largely trying to evaluate the utility of the symbolic 
data (e.g., pitch vectors) output from Spotify, we investigated 
four approaches to using existing tools and data to perform 
chord estimation.  Code for the models is in a github reposi-
tory at https://github.com/bclark288/alternative-measures. 

                                                
1 Accuracy was determined by dividing the total number of correct chord 
labels produced by the model by the total number of labels in the ground 
truth dataset). 

Music21 has key finding algorithms based on the 
Krumhansl-Schmuckler algorithm.  Research by Delgado 
and Napoles suggests that this key finding algorithm can be 
adapted to the task of chord recognition [6].  As a prototype, 
we developed a tool to parse Spotify song data (as described 
in section 3.2 above), analyze the harmonic content, and com-
pare the results of the analysis to ground truth harmonic anal-
ysis data (McGill Billboard project).  The overall accuracy 
for the prototype was 11.6%.1  Although the overall accuracy 
of this approach was low, the errors showed a tendency to be 
relatively close to the ground truth harmonically.  

Research suggests that using pattern matching in combina-
tion with Hidden Markov models (HMM) can yield good re-
sults in chord estimation. In collaboration with Nestor Na-
poles, this project modified a pattern-matching/HMM model 
to accept pitch vectors from Spotify in place of the chroma 
vectors computed from NNLS. Results for this model were 
also disappointing (significantly less than 50%, using the 
same accuracy measure as identified above).  Possible rea-
sons for the weak results were related to the difficulty of com-
puting segments from the pitch class vectors and aligning 
them with the timing of the ground truth data. 

In an effort to improve the accuracy of chord detection us-
ing pitch and timbre vectors, a convolutional recurrent neural 
network was developed.  We tested this using a dataset of 
chroma and timbre vectors for 890 popular songs from the 
McGill Billboard dataset.  

Accuracy using this model was considerably better (over 
50% training accuracy using the measure described above), 
although still not at standard performance accuracy for this 
type of algorithm.  The poor results suggest at least two fac-
tors are inhibiting the usefulness of precomputed pitch vec-
tors for harmonic analysis: the challenge of aligning seg-
ments with ground truth labels, and a need for additional fil-
tering or preprocessing of the pitch vectors.  

In sum, since we do not have access to the audio, nor to 
the algorithms that produced the pitch vector data, using this 
aggregated data for harmonic analysis remains a complex 
computational problem. However, we are continuing to eval-
uate other possible solutions, as the success of a model such 
as this one would be of high value. 

4. CONCLUSIONS 

4.1 Spotify database and data collection 
This project demonstrated the utility of using symbolic data 
computed from audio and extracted from the Spotify database 
for certain musical analysis tasks such as comparing songs on 
the basis of length, number of sections and modality of sec-
tions.  Our goal is to implement a method that relies on data 
extracted from a large, continuously updated data source (i.e., 
Spotify) in combination with other sources so that researchers 
may be able to examine musical questions via a larger and 
more appropriate sample of data.  By creating new tools to 
extract novel features, samples can be easily analyzed to see 
how they compare (e.g. how do popular songs from 1980 – 
1989 compare to songs from the past year).  
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While we demonstrated the utility of the workbench for rela-
tively large-scale or surface features, the disappointing re-
sults of our attempts at chord recognition shows that the data 
may not be suited for every task.   

Although this project focused on developing tools to col-
lect data from Spotify, work by other researchers also demon-
strated the efficacy of collecting data from sources like 
eChords and the sites that house midi transcriptions of popu-
lar songs. These sites also give access to lyrical content—a 
musical feature that is grossly understudied [23]. 
Additionally, sites like Spotify and Soundcloud give invalu-
able insights into audience perception.  Review sites (e.g., ge-
nius.com) can provide valuable information relating to im-
portant musical features as well as audience perception infor-
mation.  Thus, we feel that the ideal dataset for analysis of 
popular music will contain data from multiple sources. 

4.2 Integration with existing tools 

Our sample analyses demonstrated the value of analyzing 
data from different sources using a toolkit with ready-to-use 
routines by developing a converter for music21 that parses 
Spotify data into a music21 stream. Computational analysis 
toolkits such as music21 have useful components that per-
form melodic, rhythmic and harmonic analysis. By integrat-
ing our workbench with these existing tools, we take ad-
vantage of their existing functionality. 

At present, we are currently developing a web scraping tool 
to collect chord information from Ultimate Guitar.com and 
Chordify.net. Given that other researchers have used chord 
transcriptions from websites like e-chords.com [15], future 
work will need to include integrating the prototype with ex-
isting tools such as music21, etc. As popular music scholars 
develop more quantitative analyses of popular music, exten-
sions to the existing tools as well as novel tools and features 
will need to be developed.  A priority for future improve-
ments to our workbench is to include friendly user interfaces 
to allow some of the tasks to be performed by people without 
any software development or programming skills. 

4.3 Comparative analysis 

Finally, our project demonstrated the value of performing 
comparative musical analysis by combining data across mul-
tiple sources (e.g., finding Billboard hits within the Spotify 
dataset). We evaluated the usability of the data itself as well 
as developed new features for comparison.  Given the com-
plexity of some types of analysis (e.g., harmonic analysis), 
more difficult tasks will require substantial manual interven-
tion. However, we aim to include several automated tools like 
the ones shown here to handle routine tasks, which will ulti-
mately improve both the quality and timeliness of an ana-
lyst’s work. 

5. FUTURE WORK 
While this project focused on proof-of-concept prototypes to 
demonstrate the value of updating/creating musicology tools 
to make them easier to use in the study of popular music, ad-
ditional work is needed in the following areas: 

5.1 User Interface 

The prototypes developed in this project are still mostly de-
pendent on the users having python programming skills.  The 
excel workbook (e.g., see Figure 12) developed to perform 
some of the example comparative analyses is an example of 
the type of tool that can be used to improve an analyst’s work-
flow. Since there are many existing popular tools for data vis-
ualization, (e.g. Sharepoint/PowerBI, Tableau, Plotly), future 
work will include such tools as well as developing an online 
version of the workbench featuring user-friendly interfaces 
for non-programmers.  

5.2 Chord detection 

The three initial prototypes for chord detection from Spotify 
pitch class profiles show that more work is needed.  However, 
given the importance of harmony in popular music, develop-
ment of this feature will be valuable.  Other research in this 
area that suggests that pitch class vectors similar to those out-
put from Spotify (i.e. EchoNest pitch class profiles) can be 
used for key or chord detection [2], and, that chord detection 
may be improved with some additional processing [7]. One 
key challenge that will have to be addressed in future work is 
the alignment of the time segments in the Spotify data with 
the segments in the ground truth dataset [13].  

5.3 Development of new metadata  

In this paper, our analyses made use of computed metadata 
such as average song length, average section length, and sec-
tion modality to aid the analysis of popular music and to dis-
cover features that define musical style. Future work will cre-
ate frameworks for more complex schema that, for example, 
could deal with the analysis at the intersection of multiple 
features (e.g., form and harmonic content). This will dramat-
ically facilitate the cross-comparison of multiple features 
such as chord progressions, rhythmic patterns and timbre to 
identify elements of style.   
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ABSTRACT

This study investigates the use of non-linear unsupervised 
dimensionality reduction techniques to compress a music 
dataset into a low-dimensional representation which can be 
used in turn for the synthesis of new sounds. We systemati-
cally compare (shallow) autoencoders (AEs), deep autoen-
coders (DAEs), recurrent autoencoders (with Long Short-
Term Memory cells – LSTM-AEs) and variational autoen-
coders (VAEs) with principal component analysis (PCA) 
for representing the high-resolution short-term magnitude 
spectrum of a large and dense dataset of music notes into 
a lower-dimensional vector (and then convert it back to a 
magnitude spectrum used for sound resynthesis). Our ex-
periments were conducted on the publicly available multi-
instrument and multi-pitch database NSynth. Interestingly 
and contrary to the recent literature on image processing, 
we can show that PCA systematically outperforms shal-
low AE. Only deep and recurrent architectures (DAEs and 
LSTM-AEs) lead to a lower reconstruction error. The op-
timization criterion in VAEs being the sum of the recon-
struction error and a regularization term, it naturally leads 
to a lower reconstruction accuracy than DAEs but we show 
that VAEs are still able to outperform PCA while provid-
ing a low-dimensional latent space with nice “usability” 
properties. We also provide corresponding objective mea-
sures of perceptual audio quality (PEMO-Q scores), which 
generally correlate well with the reconstruction error.

1. INTRODUCTION

Deep neural networks, and in particular those trained in 
an unsupervised (or self-supervised) way such as autoen-
coders [1] or GANs [2], have shown nice properties to ex-
tract latent representations from large and complex datasets. 
Such latent representations can be sampled to generate new 
data. These types of models are currently widely used 
for image and video generation [3–5]. In the context of 
a project aiming at designing a music sound synthesizer 
driven by high-level control parameters and propelled by 
data-driven machine learning, we investigate the use of 
such techniques for music sound generation as an alter-
native to classical music sound synthesis techniques like

Copyright: c© 2019 Roche et al. This is an open-access article distributed under 
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additive synthesis, subtractive synthesis, frequency modu-
lation, wavetable synthesis or physical modeling [6].

So far, only a few studies in audio processing have been
proposed in this line, with a general principle that is sim-
ilar to image synthesis/transformation: projection of the
signal space into a low-dimensional latent space (encoding
or embedding), modification of the latent coefficients, and
inverse transformation of the modified latent coefficients
into the original signal space (decoding).

In [7, 8], the authors implemented this principle with au-
toencoders to process normalized magnitude spectra. An
autoencoder (AE) is a specific type of artificial neural net-
work (ANN) architecture which is trained to reconstruct
the input at the output layer, after passing through the la-
tent space. Evaluation was made by computing the mean
squared error (MSE) between the original and the recon-
structed magnitude spectra.

In [9], NSynth, an audio synthesis method based on a
time-domain autoencoder inspired from the WaveNet speech
synthesizer [10] was proposed. The authors investigated
the use of this model to find a high-level latent space well-
suited for interpolation between instruments. Their au-
toencoder is conditioned on pitch and is fed with raw au-
dio from their large-scale multi-instrument and multi-pitch
database (the NSynth dataset). This approach led to promis-
ing results but has a high computational cost.

Another technique to synthesize data using deep learning
is the so-called variational autoencoder (VAE) originally
proposed in [11], which is now popular for image gener-
ation. A VAE can be seen as a probabilistic/generative
version of an AE. Importantly, in a VAE, a prior can be
placed on the distribution of the latent variables, so that
they are well suited for the control of the generation of new
data. This has been recently exploited for the modeling and
transformation of speech signals [12, 13] and also for mu-
sic sounds synthesis [14], incorporating some fitting of the
latent space with a perceptual timbre space. VAEs have
also been recently used for speech enhancement [15–17].

In line with the above-presented studies, the goal of the
present paper is i) to provide an extensive comparison of
several autoencoder architectures including shallow, deep,
recurrent and variational autoencoders, with a systematic
comparison to a linear dimensionality reduction technique,
in the present case Principal Component Analysis (PCA)
(to the best of our knowledge, such comparison of non-
linear approaches with a linear one has never been done
in previous studies). This is done using both an objec-
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Figure 1: Global diagram of the sound analysis-transformation-synthesis process.

tive physical measure (root mean squared error – RMSE)
and an objective perceptual measure (PEMO-Q [18]); ii)
to compare the properties of the latent space in terms of
correlation between the extracted dimensions; and iii) to
illustrate how interpolation in the latent space can be per-
formed to create interesting hybrid sounds.

2. METHODOLOGY

The global methodology applied for (V)AE-based analysis-
transformation-synthesis of audio signals in this study is in
line with previous works [7, 8, 12, 13]. It is illustrated in
Fig. 1 and is described in the next subsections.

2.1 Analysis-Synthesis

First, a Short-Term Fourier Transform (STFT) analysis is
performed on the input audio signal. The magnitude spec-
tra are sent to the model (encoder input) on a frame-by-
frame basis, and the phase spectra are stored for the syn-
thesis stage. After possible modifications of the extracted
latent variables (at the bottleneck layer output, see next
subsection), the output magnitude spectra is provided by
the decoder. The output audio signal is synthesized by
combining the decoded magnitude spectra with the phase
spectra, and by applying inverse STFT with overlap-add.
If the latent coefficients are not modified in between en-
coding and decoding, the decoded magnitude spectra are
close to the original ones and the original phase spectra
can be directly used for good quality waveform reconstruc-
tion. If the latent coefficients are modified so that the de-
coded magnitude spectra become different from the origi-
nal one, then the Griffin & Lim algorithm [19] is used to
estimate/refine the phase spectra (the original phase spec-
tra are used for initialization) and finally reconstruct the
time-domain signal. A few more technical details regard-
ing data pre-processing are given in Section 3.2.

2.2 Dimensionality Reduction Techniques

Principal Component Analysis: As a baseline, we inves-
tigated the use of PCA to reduce the dimensionality of the
input vector x. PCA is the optimal linear orthogonal trans-
formation that provides a new coordinate system (i.e. the
latent space) in which basis vectors follow modes of great-
est variance in the original data [20].

Autoencoder: An AE is a specific kind of ANN tradition-
ally used for dimensionality reduction thanks to its diabolo
shape [21], see Fig. 2. It is composed of an encoder and a
decoder. The encoder maps a high-dimensional low-level
input vector x into a low-dimensional higher-level latent
vector z, which is assumed to nicely encode properties or

attributes of x. Similarly, the decoder reconstructs an esti-
mate x̂ of the input vector x from the latent vector z. The
model is written as:

z = fenc(Wencx+benc) and x̂ = fdec(Wdecz+bdec),

where fenc and fdec are (entry-wise) non-linear activation
functions, Wenc and Wdec are weight matrices and benc
and bdec are bias vectors. For regression tasks (such as the
one considered in this study), a linear activation function
is generally used for the output layer.

At training time, the weight matrices and the bias vec-
tors are learned by minimizing some cost function over a
training dataset. Here we consider the mean squared error
(MSE) between the input x and the output x̂.

The model can be extended by adding hidden layers in
both the encoder and decoder to create a so-called deep
autoencoder (DAE), as illustrated in Fig. 2. This kind of
architecture can be trained globally (end-to-end) or layer-
by-layer by considering the DAE as a stack of shallow AEs
[1, 22].

Figure 2: General architecture of a (deep) autoencoder.

LSTM Autoencoder: In a general manner, a recurrent
neural network (RNN) is an ANN where the output of a
given hidden layer does not depend only on the output of
the previous layer (as in a feedforward architecture) but
also on the internal state of the network. Such internal state
can be defined as the output of each hidden neuron when
processing the previous input observations. They are thus
well-suited to process time series of data and capture their
time dependencies. Such networks are here expected to ex-
tract latent representations that encode some aspects of the
sound dynamics. Among different existing RNN architec-
tures, in this study we used the Long Short-Term Memory
(LSTM) network [23], which is known to tackle correctly
the so-called vanishing gradient problem in RNNs [24].
The structure of the model depicted in Fig. 2 still holds
while replacing the classical neuronal cells by LSTM cells,
leading to a LSTM-AE. The cost function to optimize re-
mains the same, i.e. the MSE between the input x and the
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output x̂. However, the model is much more complex and
has more parameters to train [23].

Variational Autoencoder: A VAE can be seen as a prob-
abilistic AE which delivers a parametric model of the data
distribution, such as:

pθ(x, z) = pθ(x|z)pθ(z),

where θ denotes the set of distribution parameters. In the
present context, the likelihood function pθ(x|z) plays the
role of a probabilistic decoder which models how the gen-
eration of observed data x is conditioned on the latent data
z. The prior distribution pθ(z) is used to structure (or regu-
larize) the latent space. Typically a standard Gaussian dis-
tribution pθ(z) = N (z;0, I) is used, where I is the identity
matrix [11]. This encourages the latent coefficients to be
mutually orthogonal and lie on a similar range. Such prop-
erties may be of potential interest for using the extracted
latent coefficients as control parameters of a music sound
generator. The likelihood pθ(x|z) is defined as a Gaussian
density:

pθ(x|z) = N (x;µθ(z),σ
2
θ(z)),

where µθ(z) and σ2
θ(z) are the outputs of the decoder net-

work (hence θ = {Wdec,bdec}). Note that σ2
θ(z) indif-

ferently denotes the covariance matrix of the distribution,
which is assumed diagonal, or the vector of its diagonal
entries.

The exact posterior distribution pθ(z|x) corresponding to
the above model is intractable. It is approximated with a
tractable parametric model qφ(z|x) that will play the role
of the corresponding probabilistic encoder. This model
generally has a form similar to the decoder:

qφ(z|x) = N (z; µ̃φ(x), σ̃
2
φ(x)),

where µ̃φ(x) and σ̃2
φ(x) are the outputs of the encoder

ANN (the parameter set φ is composed of Wenc and benc;
σ̃2
φ(x) is a diagonal covariance matrix or is the vector of

its diagonal entries).
Training of the VAE model, i.e. estimation of θ and φ, is

done by maximizing the marginal log-likelihood log pθ(x)
over a large training dataset of vectors x. It can be shown
that the marginal log-likelihood can be written as [11]:

log pθ(x) = DKL(qφ(z|x)|pθ(z|x)) + L(φ, θ,x),

where DKL ≥ 0 denotes the Kullback-Leibler divergence
(KLD) andL(φ, θ,x) is the variational lower bound (VLB)
given by:

L(φ, θ,x) = −DKL(qφ(z|x)|pθ(z))︸ ︷︷ ︸
regularization

+Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction accuracy

.

(1)
In practice, the model is trained by maximizing L(φ, θ,x)
over the training dataset with respect to parameters φ and
θ. We can see that the VLB is the sum of two terms. The
first term acts as a regularizer encouraging the approximate
posterior qφ(z|x) to be close to the prior pθ(z). The second
term represents the average reconstruction accuracy. Since
the expectation w.r.t. qφ(z|x) is difficult to compute ana-
lytically, it is approximated using a Monte Carlo estimate

and samples drawn from qφ(z|x). For other technical de-
tails that are not relevant here, the reader is referred to [11].

As discussed in [12] and [25], a weighting factor, denoted
β, can be introduced in (1) to balance the regularization
and reconstruction terms:

L(φ, θ, β,x) = −β DKL(qφ(z|x)|pθ(z))
+ Eqφ(z|x)[log pθ(x|z)], (2)

This enables the user to better control the trade-off between
output signal quality and compactness/orthogonality of the
latent coefficients z. Indeed, if the reconstruction term is
too strong relatively to the regularization term, then the dis-
tribution of the latent space will be poorly constrained by
the prior pθ(z), turning the VAE into an AE. Conversely, if
it is too weak, then the model may focus too much on con-
straining the latent coefficients to follow the prior distribu-
tion while providing poor signal reconstruction [25]. In the
present work we used this type of β-VAE and we present
the results obtained with different values of β. These latter
were selected manually after pilot experiments to ensure
that the values of the regularization and the reconstruction
accuracy terms in (2) are in the same range.

3. EXPERIMENTS

3.1 Dataset

In this study, we used the NSynth dataset introduced in [9].
This is a large database (more than 30 GB) of 4s long
monophonic music sounds sampled at 16 kHz. They rep-
resent 1,006 different instruments generating notes with
different pitches (from MIDI 21 to 108) and different ve-
locities (5 different levels from 25 to 127). To generate
these samples different methods were used: Some acoustic
and electronic instruments were recorded and some oth-
ers were synthesized. The dataset is labeled with: i) in-
strument family (e.g., keyboard, guitar, synth lead, reed),
ii) source (acoustic, electronic or synthetic), iii) instrument
index within the instrument family, iv) pitch value, and
v) velocity value. Some other labels qualitatively describe
the samples, e.g. brightness or distortion, but they were not
used in our work.

To train our models, we used a subset of 10,000 different
sounds randomly chosen from this NSynth database, rep-
resenting all families of instruments, different pitches and
different velocities. We split this dataset into a training set
(80%) and testing set (20%). During the training phase,
20% of the training set was kept for validation. In or-
der to have a statistically robust evaluation, a k-fold cross-
validation procedure with k = 5 was used to train and test
all different models (we divided the dataset into 5 folds,
used 4 of them for training and the remaining one for test,
and repeated this procedure 5 times so that each sound of
the initial dataset was used once for testing).

3.2 Data Pre-Processing

For magnitude and phase short-term spectra extraction, we
applied a 1,024-point STFT to the input signal using a slid-
ing Hamming window with 50% overlap. Frames corre-
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sponding to silence segments were removed. The corre-
sponding 513-point positive-frequency magnitude spectra
were then converted to log-scale and normalized in energy:
We fixed the maximum of each log-spectrum input vector
to 0 dB (the energy coefficient was stored to be used for
signal reconstruction). Then, the log-spectra were thresh-
olded, i.e. every log-magnitude below a fixed threshold
was set to the threshold value. Finally they were normal-
ized between −1 and 1, which is a usual procedure for
ANN inputs. Three threshold values were tested: −80 dB,
−90 dB and −100 dB. Corresponding denormalization,
log-to-linear conversion and energy equalization were ap-
plied after the decoder, before signal reconstruction with
transmitted phases and inverse STFT with overlap-add.

3.3 Autoencoder Implementations

We tried different types of autoencoders: AE, DAE, LSTM-
AE and VAE. For all the models we investigated several
values for the encoding dimension, i.e. the size of the bot-
tleneck layer / latent variable vector, from enc = 4 to 100
(with a fine-grained sampling for enc ≤ 16). Different ar-
chitectures were tested for the DAEs: [513, 128, enc, 128,
513], [513, 256, enc, 256, 513] and [513, 256, 128, enc,
128, 256, 513]. Concerning the LSTM-AE, our imple-
mentation used two vanilla forward LSTM layers (one for
the encoder and one for the decoder) with non-linear ac-
tivation functions giving the following architecture: [513,
enc, 513]. Both LSTM layers were designed for many-to-
many sequence learning, meaning that a sequence of in-
puts, i.e. of spectral magnitude vectors, is encoded into a
sequence of latent vectors of same temporal size and then
decoded back to a sequence of reconstructed spectral mag-
nitude vectors. The architecture we used for the VAE was
[513, 128, enc, 128, 513] and we tested different values of
the weight factor β. For all the neural models, we tested
different pairs of activation functions for the hidden lay-
ers and output layer, respectively: (tanh, linear), (sigmoid,
linear) and (tanh, sigmoid).

AE, DAE, LSTM-AE and VAE models were implemented
using the Keras toolkit [26] (we used the scikit-learn [27]
toolkit for the PCA). Training was performed using the
Adam optimizer [28] with a learning rate of 10−3 over 600
epochs with early stopping criterion (with a patience of 30
epochs) and a batch size of 512. The DAEs were trained in
two different ways, with and without layer-wise training.

3.4 Experimental Results for Analysis-Resynthesis

Fig. 3 shows the reconstruction error (RMSE in dB) ob-
tained with PCA, AE, DAE and LSTM-AE models on the
test set (averaged over the 5 folds of the cross-validation
procedure), as a function of the dimension of the latent
space. The results obtained with the VAE (using the same
protocol, and for different β values) are shown in Fig. 4.
For the sake of clarity, we present here only the results
obtained for i) a threshold of −100 dB applied on the log-
spectra, and ii) a restricted set of the tested AE, DAE and
VAE architectures (listed in the legends of the figures).
Similar trends were observed for other thresholds and other
tested architectures. For each considered dimension of the

latent space, a 95% confidence interval of each reconstruc-
tion error was obtained by conducting paired t-test, consid-
ering each sound (i.e. each audio file) of the test set as an
independent sample.

RMSE provides a global measure of magnitude spectra
reconstruction but can be insufficiently correlated to per-
ception depending on which spectral components are cor-
rectly or poorly reconstructed. To address this classical is-
sue in audio processing, we also calculated objective mea-
sures of perceptual audio quality, namely PEMO-Q scores
[18]. The results are reported in Fig. 5 and Fig. 6.

As expected, the RMSE decreases with the dimension of
the latent space for all methods. Interestingly, PCA sys-
tematically outperforms (or at worst equals) shallow AE.
This somehow contradicts recent studies on image com-
pression for which a better reconstruction is obtained with
AE compared to PCA [1]. To confirm this unexpected
result, we replicated our PCA vs. AE experiment on the
MNIST image dataset [29], using the same AE implemen-
tation and a standard image preprocessing (i.e. vectoriza-
tion of each 28 × 28 pixels gray-scale image into a 784-
dimensional feature vector). In accordance with the lit-
erature, the best performance was systematically obtained
with AE (for any considered dimension of the latent space).
This difference of AE’s behavior when considering audio
and image data was unexpected and, to our knowledge, it
has never been reported in the literature.

Then, contrary to (shallow) AE, DAEs systematically out-
perform PCA (and thus AE), with up to almost 20% im-
provement (for enc = 12 and enc = 16). Our experiments
did not reveal notable benefit of layer-by-layer DAE train-
ing over end-to-end training. Importantly, for small di-
mensions of the latent space (e.g. smaller than 16), RMSE
obtained with DAE decreases much faster than with PCA
and AE. This is even more the case for LSTM-AE which
shows an improvement of the reconstruction error of more
than 23% over PCA (for enc = 12 and enc = 16). These
results confirm the benefits of using a more complex ar-
chitecture than shallow AE, here deep or recurrent, to effi-
ciently extract high-level abstractions and compress the au-
dio space. This is of great interest for sound synthesis for
which the latent space has to be kept as low-dimensional
as possible (while maintaining a good reconstruction accu-
racy) in order to be “controlled” by a musician.

Fig. 4 shows that the overall performance of VAEs is in
between the performance of DAEs (even equals DAEs for
lower encoding dimensions, say smaller than 12) and the
performances of PCA and AE. Let us recall that minimiz-
ing the reconstruction accuracy is not the only goal of VAE
which also aims at constraining the distribution of the la-
tent space. As shown in Fig. 4, the parameter β, which
balances regularization and reconstruction accuracy in (2),
plays a major role. As expected, high β values foster regu-
larization at the expense of reconstruction accuracy. How-
ever, with β 6 2.10−6 the VAE clearly outperforms PCA,
e.g. up to 20% for enc = 12.

It can be noticed that when the encoding dimension is
high (enc = 100), PCA seems to outperform all the other
models. Hence, in that case, the simpler (linear model)
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Figure 3: Reconstruction error (RMSE in dB) obtained
with PCA, AE, DAE (with and without layer-wise training)
and LSTM-AE, as a function of latent space dimension.

Figure 4: Reconstruction error (RMSE in dB) obtained
with VAEs as a function of latent space dimension (RMSE
obtained with PCA is also recalled).

seems to be the best (we can conjecture that achieving the
same level of performance with autoencoders would re-
quire more training data, since the number of free parame-
ters of these model increases drastically). However, using
such high-dimensional latent space as control parameters
of a music sound generator is impractical.

Similar conclusions can be drawn from Fig. 5 and Fig. 6
in terms of audio quality. Indeed, in a general manner,
the PEMO-Q scores are well correlated with RMSE mea-
sures in our experiments. PEMO-Q measures for PCA and
AE are very close, but PCA still slightly outperforms the
shallow AE. The DAEs and the VAEs both outperform the
PCA (up to about 11% for enc = 12 and enc = 16) with
the audio quality provided by the DAEs being a little bet-
ter than for the VAEs. Surprisingly, and contrary to RMSE
scores, the LSTM-AE led to a (slightly) lower PEMO-Q
scores, for all considered latent dimensions. Further in-
vestigations will be done to assess the relevance of such
differences at the perceptual level.

3.5 Decorrelation of the Latent Dimensions

Now we report further analyses aiming at investigating how
the extracted latent dimensions may be used as control pa-
rameters by the musician. In the present sound synthe-
sis framework, such control parameters are expected to re-
spect (at least) the following two constraints i) to be as
decorrelated as possible in order to limit the redundancy
in the spectrum encoding, ii) to have a clear and easy-to-
understand perceptual meaning. In the present study, we
focus on the first constraint by comparing PCA, DAEs,
LSTM-AE and VAEs in terms of correlation of the latent
dimensions. More specifically, the absolute values of the
correlation coefficient matrices of the latent vector z were
computed on each sound from the test dataset and Fig. 7
reports the mean values averaged over all the sounds of
the test dataset. For the sake of clarity, we present here
these results only for a latent space of dimension 16 for one

model of DAE ([513, 128, 16, 128, 513] (tanh & lin) with
end-to-end training) and for VAEs with the same architec-
ture ([513, 128, 16, 128, 513] (tanh & lin)) and different
values of β (from 1.10−6 to 2.10−5).

As could be expected from the complexity of its structure,
we can see that the LSTM-AE extracts a latent space where
the dimensions are significantly correlated with each other.
Such additional correlations may come from the sound dy-
namics which provide redundancy in the prediction. We
can also see that PCA and VAEs present similar behaviors
with much less correlation of the latent dimensions, which
is an implicit property of these models. Interestingly, and
in accordance with (2), we can notice that the higher the β,
the more regularized the VAE and hence the more decor-
related the latent dimensions. Importantly, Fig. 7 clearly
shows that for a well-chosen β value, the VAE can both
extract latent dimensions that are much less correlated than
for corresponding DAEs, which makes it a better candidate
for extracting good control parameters, while allowing fair
to good reconstruction accuracy (see Fig. 4). The β value
has thus to be chosen wisely in order to find the optimal
trade-off between decorrelation of the latent dimensions
and reconstruction accuracy.

3.6 Examples of Sound Interpolation

As a first step towards the practical use of the extracted
latent space for navigating through the sound space and
creating new sounds, we illustrate how it can be used to
interpolate between sounds, in the spirit of what was done
for instrument hybridization in [9]. We selected a series
of pairs of sounds from the NSynth dataset with the two
sounds in a pair having different characteristics. For each
pair, we proceeded to separate encoding, entry-wise lin-
ear interpolation of the two resulting latent vectors, decod-
ing, and finally individual signal reconstruction with in-
verse STFT and the Griffin and Lim algorithm to recon-
struct the phase spectrogram [19]. We experimented dif-
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Figure 5: PEMO-Q measures obtained with PCA, AE,
DAEs (with and without layer-wise training) and LSTM-
AE, as a function of latent space dimension.

Figure 6: PEMO-Q measures obtained with VAEs as a
function of latent space dimension (measures obtained
with PCA are also recalled).

Figure 7: Correlation matrices of the latent dimensions
(average absolute correlation coefficients) for PCA, DAE,
LSTM-AE and VAEs.

ferent degrees of interpolation between the two sounds:
ẑ = α z1 + (1 − α) z2, with zi the latent vector of
sound i, ẑ the new interpolated latent vector, and α ∈
[0, 0.25, 0.5, 0.75, 1] (this interpolation is processed inde-
pendently on each pair of vectors of the time sequence).
The same process was applied using the different AE mod-
els we introduced earlier.

Fig. 8 displays one example of results obtained with PCA,
with the LSTM-AE and with the VAE (with β = 1.10−6),
with an encoding dimension of 32. Qualitatively, we note
that interpolations in the latent space lead to a smooth tran-
sition between source and target sound. By increasing se-
quentially the degree of interpolation, we can clearly go
from one sound to another in a consistent manner, and cre-
ate interesting hybrid sounds. The results obtained using
PCA interpolation are (again qualitatively) below the qual-
ity of the other models. The example spectrogram obtained
with interpolated PCA coefficients is blurrier around the
harmonics and some audible artifacts appear. On the oppo-
site, the LSTM-AE seems to outperform the other models

by better preserving the note attacks (see comparison with
VAE in Fig. 8). More interpolation examples along with
corresponding audio samples can be found at https://
goo.gl/Tvvb9e.

4. CONCLUSIONS AND PERSPECTIVES

In this study, we investigated dimensionality reduction based
on autoencoders to extract latent dimensions from a large
music sound dataset. Our goal is to provide a musician
with a new way to generate sound textures by exploring a
low-dimensional space. From the experiments conducted
on a subset of the publicly available database NSynth, we
can draw the following conclusions: i) Contrary to the lit-
erature on image processing, shallow autoencoders (AEs)
do not here outperform principal component analysis (in
terms of reconstruction accuracy); ii) The best performance
in terms of signal reconstruction is always obtained with
deep or recurrent autoencoders (DAEs or LSTM-AE); iii)
Variational autoencoders (VAEs) lead to a fair-to-good re-
construction accuracy while constraining the statistical prop-
erties of the latent space, ensuring some amount of decor-
relation across latent coefficients and limiting their range.
These latter properties make the VAEs good candidates for
our targeted sound synthesis application.

In line with the last conclusion, future works will mainly
focus on VAEs. First, we will investigate recurrent archi-
tecture for VAE such as the one proposed in [30]. Such ap-
proach may lead to latent dimensions encoding separately
the sound texture and its dynamics, which may be of po-
tential interest for the musician.

Then, we will address the crucial question of the percep-
tual meaning/relevance of the latent dimensions. Indeed
using a non-informative prior distribution of z such as a
standard normal distribution does not ensure that each di-
mension of z represents an interesting perceptual dimen-
sion of the sound space, although this is a desirable objec-
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(a) Original samples - Left : bass electronic 010-055-100, Right : brass acoustic 050-055-100

(b) PCA

(c) LSTM-AE

(d) VAE

Figure 8: Examples of decoded magnitude spectrograms after sound interpolation of 2 samples (top) in the latent space
using respectively PCA (2nd row), LSTM-AE (3rd row) and VAE (bottom). A more detailed version of the figure can be
found at https://goo.gl/Tvvb9e.

tive. In [14], the authors recently proposed a first solution
to this issue in the context of a restricted set of acoustic in-
struments. They introduced in the variational lower bound
(2) of the VAE loss an additional regularization term en-
couraging the latent space to respect the structure of the
instrument timbre. In the same spirit, our future works will
investigate different strategies to model the complex rela-
tionships between sound textures and their perception, and
introduce these models at the VAE latent space level.
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ABSTRACT

Music is a sequential process for which relations between 
adjacent elements play an important role. Expectation pro-
cesses based on alternations of similarity and novelty con-
tribute to the structure of the musical flow. In this work, 
we explore a polytopic representation of music, which ac-
counts for expectation systems developing at several time-
scales in parallel. After recalling properties of polytopic 
representations for describing multi-scale implication pro-
cesses, we introduce a scheme for recomposing musical 
sequences by simple transformations of their support poly-
tope. A specific set of permutations (referred to as Primer 
Preserving Permutations or PPP) are of particular inter-
est, as they preserve systems of analogical implications 
within musical segments. By means of a perceptual test, 
we study the impact of PPP-based transformations by ap-
plying them to the choruses of pop songs in midi format 
and comparing the result with Randomly Generated Per-
mutations (RGP). In our test, subjects are asked to rate mu-
sical excerpts reconfigured by PPP-based transformations 
versus RGP-based ones in terms of musical consistency 
and of attractiveness. Results indicate that PPP-transformed 
segments score distinctly better than RGP-transformed for 
the two criteria, suggesting that the preservation of impli-
cation systems plays an important role in the subjective ac-
ceptability of the transformation. Additionally, from the 
perspective of building an automatic recomposition system 
for artistic creation purposes, we introduce, in appendix, 
the preliminary version of an automatic method for de-
composing segments into low-scale musical elements, tak-
ing into account possible phase-shifts between the musical 
surface of the melody and the metrical information.

1. INTRODUCTION

Music is usually considered as a sequential process, where 
sounds, group of sounds and motifs are occurring chrono-
logically, following the natural unfolding of time. Under 
this approach, music is considered as a flow of informa-
tion, the organization of which is essentially governed by 
the relations that develop between adjacent elements. This 
property of sequentiality is indeed central to many models
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of music description and generation, including musicolog-
ical models such as Schenkerian analysis [1], generative
theories based on tree-like structures such as GTTM [2],
or computational automata such as Markov chains [3].

From a complementary perspective, it is also commonly
accepted that the organization of music is widely based on
alternations of similarity and novelty which create patterns
and systems of expectation and surprise that ultimately con-
tribute to the structure of the musical discourse from a cog-
nitive point of view [4] [5] [6]. These can be represented as
a Polytopic Graph of Latent Relations [7] where each node
of the graph represents a low-scale musical segment and
vertices correspond to their relation within the expectation
systems.

The aim of this work is to explore the polytopic model
in terms of its relevance to account for the inner structure
of musical segments, by assessing its potential use for the
structural recomposition of music. In fact, as presented in
section 2, the polytopic representation of a musical seg-
ment enables a large range of transformations by applying
various permutations to its nodes, thus generating multi-
ple reconfigurations of its musical content, with the same
elements in a different order.

Specific permutations, called Primer Preserving Permu-
tations (PPP), are of particular interest, as they preserve
systems of analogical implications between metrically ho-
mologous elements within the segment [8]. The central
hypothesis of the present work is that the musical consis-
tency of PPP-transformed segments will therefore be less
affected than it would be by an “ordinary” (i.e. randomly
generated) permutation.

In section 2, we describe the implementation of the poly-
topic reconfiguration process and we elaborate on the or-
ganizational properties of Primer Preserving Permutations
as well as their potential impact on the inner structure of
musical segments.

Then, in section 3, we assess the relevance of the recon-
figuration scheme (and its underlying hypotheses): we re-
port on a perceptual test where subjects are asked to rate
musical properties of MIDI segments, some of them have
been reconfigured with PPPs while others were transformed
by Randomly Generated Permutations (RGPs) designed so
as to possess a comparable number of discontinuities.

In appendix, we introduce an automatic method for de-
composing segments into low-scale musical elements, tak-
ing into account possible phase-shifts between the musical
surface and the metrical information (for instance, anacruses).
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2. BACKGROUND AND FORMALISM

2.1 Musical objects and time-scales

Before detailing the background and formalism aspects of
this work, it is important to specify what musical objects
are under consideration in our study. Following Snyder’s
“levels of musical experience” [9], one may identify three
ranges of time-scales in music: an event-fusion level, up
to 1/32th second (corresponding to early processing), an
intermediate “melodic and rhythmic grouping” level, be-
tween 1/16th and 8 sec. (governed by short-term memory)
and a form level, 16 sec. or above (resorting to long-term
memory).

In this work, we focus on sectional units (i.e. the first
time-scale of the form level) and we study their inner or-
ganization as the result of the relations existing between
successive constituents at the intermediate level, around 1
sec (i.e. typically half-bars). We put a particular focus on
melody, with the consequence that our low-scale objects
are small groups of a few notes with a common harmonic
background.

2.2 Polytopic representations of implication systems

The basic concept of a sequential implication system is that
the observation of a given event by a subject with no par-
ticular preconception will trigger (to that subject) the ex-
pectation that the next event is likely to be similar to the
first one. This is considered as even more so, in the case of
repetition, as is expressed by Narmour’s implication prin-
ciples for the analysis of basic melodic structures [10]:

A+A −→ A

A+B −→ C

thus meaning that the repetition of two similar patterns A
induces the expectation of a third similar patternA, whereas
two different patterns A and B trigger the expectation of
something different from both: C. Narmour’s principles
can be understood as a cognitive model based on Gestalt
Theory, as mentionned in [11].

This sequential implication principle can be extended by
now considering a system of elements viewed as form-
ing the base of an analogical induction process [12]. For
instance, consider the matrices below, and imagine what
could be the missing elements in terms of “logical” impli-
cations:

A B 2 4 ∩ ↓
E . 8 . ∪ .

As developed in [6], such square systems trigger an ex-
pectation process which spans over 2 time-scales simulta-
neously and which writes, in a formalism compatible with
Narmour’s:

A+ f(A) + g(A) −→ g(f(A))

and in particular:

A+B +A −→ B

A+A+B −→ B

These two prototypical cases of square implication systems
are indeed the basis of two very frequent structural pat-
terns,ABAC andAABC, which can be understood as the
denial, in 4th position, of the implication system triggered
by the first 3 elements. But quite a number of other such
redundant patterns can be embedded in this framework.

Further generalizing this principle by encompassing more
time-scales, as in [13], leads to cubic (3-scale), tesserac-
tic (4-scale) and more generally n-cubic systems where n
time-scales are considered simultaneously (see Figure 1).

Figure 1. Graph representation of multi-scale implication sys-
tems. From left to right: segment, square, cube, tesseract.

When mapped with a sequence of musical events, these
polytopic graphs can be used to represent analogical re-
lations between musical objects in metrically homologous
positions at different time-scales [7].

2.3 Structural reconfiguration by node permutations

There are many ways to define a permutation, but the most
adequate one in the context of this work is to view it as a
bijective function ϕ (i.e. a one-to-one correspondence) be-
tween theN time indexes of an original sequence x0...xN−1
and those of the permuted sequence xϕ(0) ... xϕ(N−1).

Applying a permutation to the time indexes creates a cer-
tain degree of disruption in the original flow of the se-
quence. In this paper, we characterize this fact by two
properties: D, the number of discontinuities created by
the permutation and E, the (log2 of the) maximum time-
interval (or excursion) between 2 consecutive elements in
the permuted sequence.

D = #{t | [ϕ(t)− ϕ(t− 1)] 6= 1}0<t<N
E = log2 max

0<t<N
|ϕ(t)− ϕ(t− 1)|

Among all possible permutations ϕ, a particular subset
of them is focused on in this work. They are referred to
as PPPs (for Primer Preserving Permutations) and were
introduced by Louboutin et al. [8] as the set of permuta-
tions which preserve the systemic relations of the musi-
cal elements xt in the sequence, by just interchanging the
time-scales at which they develop. These permutations are
therefore particularly interesting to investigate on the rele-
vance of the implications systems (and their preservation)
in the consistency of a musical segment.

In the case of a sequence ofN=16 elements, the polytope
is a 4-cube, also called a tesseract (see Figure 2), and it
can be viewed as being composed of 4 homologous lower-
scale systems of 4 elements (formed by 4 parallel faces of
the tesseract), themselves linked by an upper-scale system
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PPP Disc. Exc.
ORIG 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

1 0 2 4 6 1 3 5 7 8 10 12 14 9 11 13 15 14 1
2 0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15 7 2
3 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15 6 1
4 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 15 3
5 0 2 8 10 1 3 9 11 4 6 12 14 5 7 13 15 15 2

Table 1. Extensive definition of the 6 PPPs and their properties (discontinuity and excursion - see text).

RGP Disc. Exc.
1 0 3 4 2 7 1 6 5 8 13 10 9 11 14 12 15 14 1
2 0 4 5 6 1 3 8 9 10 11 12 13 14 2 7 15 7 2
3 0 1 2 5 3 4 6 7 8 9 10 12 13 11 14 15 6 1
4 0 5 3 8 6 4 14 2 10 1 9 12 7 11 13 15 15 3
5 0 9 7 1 6 4 2 8 10 3 11 14 13 5 12 15 15 2

Table 2. Examples of RGPs and their properties (discontinuity and excursion - see text).

formed by the first element of each lower-scale system (on
a face which is perpendicular to the 4 lower-scale ones)
(see Figure 3).

Mapping these systems of faces by a permutation, while
preserving time order within faces, yields 5 possibilities
(plus the identity), which correspond to the PPPs defined
in Table 1. Note that each PPP maps 0 to 0 and N -1 to
N -1.

Figure 2. Example of the polytopic representation of a time
sequence in the case of a tesseract.

By construction, PPPs preserve implication systems of 4
elements in the sense that sets of 4 parallel faces in the
tesseract are mapped on another set of parallel faces. By
doing so, analogical systems are preserved, and only the
scales at which they develop are modified: for instance,
[x0x1x2x3] in the original is “transferred” to [x0x4x1x5]
with PPP1 and [x0x4x8x12] with PPP4. Moreover, the last
element of a system never occurs before all the elements
of all the systems it belongs to, have themselves occurred,
therefore preserving a principle of causality in all the ana-
logical implications.

For comparison purposes, Table 2 illustrates 5 Randomly
Generated Permutations (RGPs), which also start with 0,
end with N -1, and have the same profile as their corre-
sponding PPPs in terms of discontinuity and excursion. It
can be easily checked that, unless incidentally, analogical
systems are not preserved by RGPs.

Ultimately, a given permutation is applied to a musical se-

quence of events by reading and copying (in the permuted
order) the original musical material after having segmented
into proper low-scale elements. Figure 4 illustrates this
process on a 8-bar melodic line (original at the top), pro-
cessed as a sequence of N=16 half-bar (2-beat) elements,
resulting in reconfigured melodic lines, the organization of
which is either driven by PPPs or by RGPs.

Figure 3. Representation of the 6 systems of parallel faces on the
tesseract and their corresponding PPP in reference to the original.

2.4 Handling musical surface time-shifts

As a prerequisite to the application of a permutation to a
sequence of musical objects, it is of primary importance to
define precisely the location and boundaries of the objects
that will be subjected to the transformation.

In this work, elementary objects are melodic fragments
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Figure 4. Example of the 11 types of reorganized variants on a 8-bar melodic line.

of 1/2-bar long which correspond to 2 beats in the case of
a 4-4 meter (as is the case in the example of Fig 4).

However, for reconfiguration purposes, these “objects”
may not be optimal if they are blindly synchronized on
downbeats (and sub-downbeats). In a number of cases,
the musical surface of the “proper” low-scale melodic el-
ements should be slightly shifted in order to correspond
to an optimal grouping of the notes and therefore a better
result after permutation.

This situation is illustrated in Figure 5 where the first
melodic element should be considered as starting 1.5 beat
before the first downbeat of the section.

In designing the perceptual test described in the next sec-
tion, this optimal time-shift has been adjusted manually on
a case-by-case basis. However, we present in the appendix,
a preliminary algorithm that has been developed to esti-
mate the time-shift automatically.

3. PERCEPTUAL EXPERIMENTS IN
STRUCTURAL RECONFIGURATION

In this section, we present the details of the methodology
which has been used for the evaluation of polytopic re-
configurations. The general principle has been to design
a perceptual test where subjects are presented with mu-
sical excerpts which are either PPP-transformed or RGP-
transformed, and where they are asked to rate (blindly)
these excerpts both in terms of consistency and attractive-

ness. We then study the difference of ratings across sub-
jects between the two types of transformations.

3.1 Test data

The experiments are performed on the RWC POP corpus, a
subset of the Real World Computing (RWC) music database
created for scientific purposes by Goto et al. [14]. This
dataset has been designed for researchers. It is available
for a small fee and without restrictions.

The RWC POP set is made of 100 songs in WAV and
MIDI formats. According to the authors, they were com-
posed partly in the style of the 80s American hits and partly
in the 90s Japanese style. This corpus is very commonly
used in various task in Music Processing and Information
Retrieval.

Using the RWC songs in our tests has an additional ad-
vantage: there is virtually no risk that subjects participating
to the test already know the songs from which the excerpts
are stemming. This is a favorable situation as the famil-
iarity with a particular song could affect the rating of the
transformed excerpts in an uncontrolled way.

For our experiments, a subset of 24 songs has been se-
lected for which the first instance of chorus is exactly 8-
bar long. The reconfiguration process is applied to the
MIDI version of the chorus. The elements of interest are
the melodic lines, the accompaniment (harmony and bass)
and the drums. We consider that these elements provide an
acceptable rendering of the structural information of the
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Figure 5. Example of a melodic line starting 1.5 beat before the first downbeat of the section.

chorus and they all are transformed synchronously by the
permutations. The average duration of a chorus is 19.5 sec-
onds.

As presented in section 2, these transformations are per-
formed on the original chorus after having segmented it
into 16 elements (with a possible shift of the musical sur-
face of the melody, as explained in section 2.4). Then, the
10 permutations (5 PPPs and 5 RGPs) are applied to the
16 elements, resulting in a re-ordering of the original cho-
ruses, i.e. 10 new musical contents (per chorus), which we
will call “variants” of the original.

To summarize, for each of the 24 choruses, the following
11 variants are considered:

• the original version of the chorus

• 5 PPP-transformed variants (PPP1 to PPP5)

• 5 RGP-transformed variants (RGP1 to RGP5)

The perceptual test is therefore conducted on 24 × 11 =
264 distinct excerpts.

3.2 Protocol

The perceptual experiments are performed with 66 sub-
jects, selected among colleagues and relatives of the au-
thors 1 . About 25% of the subjects are female and 75%
male, aged between 22 and 55 years old.

In order to avoid the bias that could arise if a subject gets
familiar with a particular chorus, each subject is presented
with one and only one variant of each of the 24 choruses,
in a random order. The total number of tests in our ex-
periments is therefore equal to 66 × 24 = 1584, i.e. 144
tests per variant. Moreover, the 11 variants are distributed
as evenly as possible for each subject, i.e. typically 2 (or
occasionally 3) per subject.

After a brief general presentation of the test (during which
the subjects are not provided with any detail on the scien-
tific motivation of the test), they are asked to answer, for
each excerpt, two questions formulated as follows:

1. “Please give your opinion as of the consistency of
the musical construction of this passage”.

2. “Please give your opinion as of the degree of musical
attractiveness of this passage”

The subjects must respond by placing a cursor on a 5-
level scale corresponding to 5 different levels of evaluation
(from very bad consistency to very good consistency and
from very unattractive to very attractive). They also have
the possibility to position the cursor between two gradua-
tions, thus offering them 9 levels of rating altogether.

1 For obvious reasons, the authors themselves were not included in the
panel of subjects.

Asking two different questions aims at leading subjects
to decorrelate as much as possible their rating of the ac-
ceptability of the musical construction (question 1), from
their own personal taste (which they can express in their
response to question 2).

3.3 Scoring

For each subject, we thus collect 24 consistency ratings
and 24 attractiveness ratings.

Let us denote as r, the generic variable which designates
such ratings (ignoring for the moment whether it is consis-
tency or attractiveness, for the sake of notations’ simplic-
ity).

The 24 ratings rjk produced by subject j (1 ≤ j ≤ 66,
1 ≤ k ≤ 24) are distributed into the 11 variants: O for
original, Pi for PPPi (1 ≤ i ≤ 5) and P∗i for RGPi (1 ≤
i ≤ 5). These individual ratings are averaged separately,
thus leading to 11 mean ratings (one per type of variant):

µ0j = 1
m0j

∑
O rjk for the original choruses (1)

µij = 1
mij

∑
Pi
rjk for the 5 PPP variants (2)

µ∗ij = 1
m∗

ij

∑
P∗

i
rjk for the 5 RGP variants (3)

Note that, in practice, m0j , mij and m∗ij are equal to 2 or
3 and their sum is equal to 24.

To evaluate the relative degradation created by the various
reconfigurations of the music material, we can measure:

δij = µ0j − µij (4)
δ∗ij = µ0j − µ∗ij (5)

namely the signed difference, for a given subject j, be-
tween his/her ratings of the reconfigured variants and his/her
ratings of the originals.

For each subject and variant, we can also compute:

πij = µij − µ∗ij = δij − δ∗ij (6)

which measures the (positive or negative) preference of
PPPi-transformed excerpts over RGPi-transformed ones,
for speaker j (where PPPi and RGPi are comparable in
terms of discontinuities D and excursion E).

Ultimately, we focus on 3 scores:

πj =
1

5

5∑

i=1

πij (7)

δi =
1

66

66∑

j=1

δij (8)

δ∗i =
1

66

66∑

j=1

δ∗ij (9)
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where πj provides a global preference score (positive or
negative) on PPPs over RGPs for each subject j, while δi
(resp. δ∗i ) provides a degradation score for each of the PPP-
(resp. RGP-) reconfigured variants, averaged over all sub-
jects.

These two quantities are calculated separately for consis-
tency ratings and for attractiveness ratings.

3.4 Results

Figure 6 and 7 depict the distributions of consistency and
attractiveness preference scores (πj), ranked from lowest
to highest, over the panel of 66 subjects. In both cases, the
distributions are visibly shifted towards positive values, es-
pecially for consistency ratings. Indeed, for consistency,
57.5 subjects have a positive preference for PPPs versus
8.5 having a negative preference 2 (i.e. 87.1 % vs 12.9 %).
The average score for positive judgments amounts to +0.89
whereas it rests at−0.30 only, for negative judgments. For
attractiveness, the proportions are still clearly in favor of
PPPs, but not as contrasted (74.2 % vs 25.8 %), with aver-
age scores of +0.74 and −0.55 respectively.

Figure 8 and 9 represent the relative degradation scores
(δi and δ∗i ) for the 10 variants, ranked in increasing order
of degradation. From the ranking of the permutations, it
is noticeable that the degradation score is primarily cor-
related with the number of discontinuities of the permuta-
tions, as the two permutations with lowerD show a smaller
value of δ as opposed to the three others.

Figure 6. Musical consistency: relative PPP-preference πj of
the test subjects, ranked in increasing order

Figure 7. Musical attractiveness: relative PPP-preference πj of
the test subjects, ranked in increasing order

Globally, these results indicate that PPP-based reconfig-
urations tend to be less disruptive than RGPs against the

2 counting as 0.5 in each category, the subject who scores exactly 0.

perceived consistency of musical segments, thus support-
ing the hypothesis that the preservation of expectation sys-
tems contributes to their inner structure.

Figure 8. Musical consistency: degradation scores δi and δ∗i for
the different permutation variants (PPP and RGP)

Figure 9. Musical attractiveness: degradation scores δi and δ∗i
for the different permutation variants (PPP and RGP)

4. CONCLUSIONS

Systems of relations between elements play a key role in
structural constructions in many cognitive dimensions. The
experiments reported in this paper constitute an initial in-
vestigation on the role of analogical systems (modeled by
polytopic graphs) in the perception of segmental structure
in pop music.

These results indicate a very noticeable trend towards the
hypothesis that the preservation of the analogical implica-
tion systems in musical segments impacts positively the
perception of their inner structure and hence, their accept-
ability. However, more extensive tests on a larger popu-
lation and with more varied musical excerpts are certainly
needed to consolidate these first results, and refine their
precise scope.

In parallel, we intend to develop the proposed reconfig-
uration scheme into a music creation tool which could be
used by composers to experiment new possibilities in em-
ploying musical material with multiple purposes, results
and effects. In this context, the polytopic representation is
an additional advantage, as it is bound to make manipula-
tion interfaces more intuitive and easy to use.

Ultimately, the development of an automatic segmenta-
tion process is a complementary goal towards a fully oper-
ational concept.
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Appendix
Melodic segmentation with a compressibility criterion

In order to perform a relevant permutation-based transfor-
mation to a sequence of musical objects, it is crucial to
define precisely the location and boundaries of the objects
on which the transformation is applied.

As mentioned in section 2.4, it is quite common that the
structure of the melodic line is time-shifted with respect to
the phase of the metrical pulsation. As a consequence, it is
important to take into account this time-shift when defining
the low-level melodic objects. In this section, we present
a preliminary method to automatically estimate this time-
shift.

For doing so, we estimate a segmentation of the melodic
surface by optimizing the grouping of the notes using a
compressibility criterion.

Meter, segmentation and phase-shift

For simplicity and consistency with the rest of our work,
we consider musical segments which are 8-bar long, and
4|4 meter, i.e L = 32 beats, and we assume that we want
to segment the excerpt in m elementary objects. In this
work m = 16.

Let S be the sequence of instants where the strong beats
fall, according to the meter and the bar:

S = (t0, t1, ..., tp, ..., tm−1) (10)

Let us now denote as Σ another segmentation that is not
necessarily synchronized with downbeats.

Σ = (τ0, τ1, ..., τp, ..., τm−1) (11)

In the general case we can write:

τp = tp + θp (12)

where θp is the phase-shift of the musical surface of seg-
ment p in relation to the strong beat location tp.

In compliance with the work reported in the body of this
article, we further assume that θp does not depend on p:

τp = tp + θ (13)

Properties of the phase-shift

When θ = 0, the melodic segments are considered to be
starting synchronously with the downbeat. If θ > 0, this
means that the melodic objects display some phase-delay
with the beat, whereas if θ < 0, they start in anticipation
(as in the case of an anacrusis).

Let α be the “size” of one elementary object in terms of
the number of beats, i.e.:

α =
L

m
(14)

Here α = 2.
Quite naturally, we assume that the phase-shift cannot ex-

ceed the size of the elementary objects, i.e.:

−α ≤ θ ≤ α (15)

Fig. 10, shows the segmentation of a 8-bar melody, rep-
resented in MIDI format. The first 3 notes of this section
are located with a phase-shift of -1,5 (beat) with respect
to the metric boundaries: the thick lines correspond to the
downbeat instants and the thin ones correspond to the seg-
mentation obtained with θ = −1.5 (beat).

Figure 10. Example of a melodic line segmentation starting 1.5
beat before the first downbeat of the section (θ = −1.5 beat).

A compressibility criterion for segmentation

In order to estimate an optimal value of θ, we define a com-
pressibility criterion which scores how redundant is the se-
quence of elements resulting from a given segmentation.

This approach is inspired from Kolmogorov’s informa-
tion theory [15] and relates, in its spirit, to recent work
exploring the potential of approaches based on complex-
ity and compression for modeling music contents (for in-
stance [16] [17]).

Let now Σ be a segmentation as in equation 11 and σp the
elementary object of Σ within the time interval [τp, τp+1[.

We first define the parallel run-length between two melo-
dic elements as the relative duration d ∈ [0, 1] during which
they remain similar to each other (i.e. identical, up to a
translation). We denote as b the translation between the
two similar fragments and we assign to b a binary value of
0 (if no translation) or 1 (when a translation is observed).

We then define an elementary cross-compressibility score
function c(σp, σq) between two melodic objects σp and σq ,
by combining d and b:

c(σp, σq) = d(σp, σq)− λ b(σp, σq) (16)

For the time being, λ is tuned empirically.
We then define a compressibility score function for each

elementary object σp within Σ, which depends on the pre-
vious objects in the segmentation, for instance:

z(σp) =
1

p

∑

h<p

c(σh, σp) (17)

Finally, we compute the entire segmentation compress-
ibility score Z(Σ) as:

Z(Σ) =
1

m

∑

p

z(σp) (18)
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Because θ is the same across segments, all possible seg-
mentations Σ can be tested exhaustively, and the optimal
segmentation is chosen as the one with the highest com-
pressibility score.

Fig. 11 depicts the behavior of Z for a particular exam-
ple, with θ ranging from −2 to 2 by steps of 0.25 beat.
Score values are normalized to 1 for the maximum value.

Figure 11. Behavior of the compressibility score Z for a partic-
ular 8-bar melody, with θ ranging from −2 to 2 beats.

Current performance level

In its current version, the results provided by this algorithm
have been evaluated over the 24 choruses used in the per-
ceptual experiments, by comparing the automatic estima-
tions of the melodic phase-shifts with those determined by
a manual annotation: in 10 cases (out of 24), the automatic
algorithm provided the same result as the expert.

This approach is currently being improved but the current
results encourage us to further investigate the method, so
as to evaluate its full potential.
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ABSTRACT

Sound design is an integral part of making a virtual en-
vironment come to life. Spatialization is important to the 
perceptual localization of sounds, while the quality deter-
mines how well virtual objects come to life. The imple-
mentation of pre-recorded audio for physical interactions 
in virtual environments often requires a vast library of au-
dio files to distinguish each interaction from the other.

This paper explains the implementation of a modal syn-
thesis toolkit for the Unity game engine to automatically 
add impact and rolling sounds to interacting objects. Posi-
tion-dependent sounds are achieved using a custom shader 
that can contain textures with modal weighting parameters.

The two types of contact sounds are synthesized using a 
mechanical oscillator describing a mass-spring system. We 
describe the discretization methods adopted, the solution 
of the nonlinear interaction and an implementation in the 
Unity game engine.

1. INTRODUCTION

High quality audio effects for virtual environments, as seen 
in video games, are important to the user’s feeling of pres-
ence and overall experience. Specifically, impact sounds of 
colliding objects are of great importance to games [1], but 
sound of friction and rolling are also in demand. Sound 
effects are, however, slow and difficult to create and re-
quire specialized talents to implement correctly [2]. Fur-
thermore, lacking realism in the sensory experience of any 
virtual environment leads to a break in perceived presence. 
For example, if a table is struck with a hammer and only 
produces a slight tapping sound, the experience is sending 
conflicting information to its user. To counter this prob-
lem, the field of physical modelling of sound effects is of 
particular interest.

Through this field of knowledge, the automatic genera-
tion of contact sounds can be synthesized without the need 
for large libraries of pre-recorded samples.

One popular synthesis technique adopted to simulate sev-
eral material properties is modal synthesis [3, 4]. In modal 
synthesis, the frequencies of vibration in a material are
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simulated considering the normal modes of real objects.
The normal modes describe the peaks in the spectral con-
tents of a sound. This form of physical modelling of sound
is also easily scaled in its level of detail, since the number
of frequencies that are modelled at any time can be altered
as necessary, and is computationally efficient. This makes
it particularly well-suited for real-time implementation [2].
The modes are not only different because of material, but
also the shape of the object in question and the position
of impact. To accommodate for the position-dependency,
a weighting ratio of each mode changes depending on the
position of impact. The physical properties of simulated
materials are of great importance. For example, materials
that are more stiff will produce inherently higher pitched
sounds when struck.

In this paper, the design and implementation of a modal
synthesis toolbox for the game engine Unity is described.
The simulation is produced to free developers using the
game engine from the time-consuming process of captur-
ing libraries of impact and rolling sound events, and in-
stead have these sounds rendered through a mechanical os-
cillator, based on events within their virtual environments.

2. RELATED WORK

The fields of computer graphics and physical modelling of
sound synthesis often overlap. The finite element method,
though computationally heavy, can calculate the modes of
3D models, as seen in a program like mesh2faust, than can
compute the modes from a mesh [5]. “Example-guided”
automation to modal synthesis has been done, where record-
ings estimate the physical parameters across an example
object. For other objects using the same material - but
different geometric shape, the parameters of the example
object can be used to automatically transfer the modes for
object of differently shaped object [6]. A method model-
ing the wave propagation of a mesh is the digital waveg-
uide mesh, that uses bidirectional delay units to simulate
the reflections and transmissions through connected digital
waveguides at a wave impedance [7].

Impact sounds have been synthesized in various ways.
One example uses banded digital waveguide synthesis,
where dynamically filtered white noise is passed though
bandpass filters to add the characteristics of a material [1].
The mechanical oscillator used in this paper is not only
useful for impact sounds, but can also other interactions
like friction for a rolling wheel, finger rubbing on glass
and squeaking doors [8]. The rolling and rubbing interac-
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tion was further explored by Conan et al., where the same
equation for the force that explains the sphere-plane inter-
action in this project also was used [9]. By utilizing the
sparsity of modal sounds in the frequency domain, some
modal synthesis was found to be 5-8 times faster compared
to the time-domain equivalent [10].

When combined with computer graphics, sound synthe-
sis has used shaders to design physical models of mas-
sive digital instruments [11], where the GPU is used to
help with the computational load. Sound signals have also
been stored as RGBA sound signals to use GPU process-
ing [12]. Similar work storing model parameters in tex-
tures was done in 2001 by scanning objects using a highly
automated robotic facility [13].

Both proprietary and publicly available game engines have
begun incorporating synthesis into their sound design. Rock-
star’s RAGE engine, that was used to develop Grand Theft
Auto V, has a real-time synthesis toolkit for assets “you
can’t necessarily create with samples alone” [14].The mo-
tivation for real-time synthesis was based on dynamic as-
sets, fidelity and memory usage. The publicly available
game engine Unreal Engine has also begun adding real-
time synthesis to their game engine, and is looking into
computing it on the GPU in a way that can be referred to
as audio “shaders” [15].

3. SYSTEM MODELLING

A mechanical oscillator can take the form [16]:

ẍ+ gẋ+ ω2x =
1

m
f (1)

where the oscillator displacement x is used to produce the
audio output. The frequency is set in ω and the damping
constant g is determined by a quality factor q by g = ω/q.
The oscillator velocity and acceleration are determined by
ẋ and ẍ respectively. The modal weighting is determined
by 1/m. Using the K method to eliminate the delay-free
[17] loop that will arise from the force equation and the
trapezoidal rule, the output can be discretized take the form

w[n] = H(Cy[n]+y[n−1])+H(αI+A)w[n−1]) (2)

where w is the vector [x; ẋ], y is the force f and A, C and
H are transformation matrices found from Equation (1)

H =
1

α2 + αg + ω2
·
[
α+ g 1
−ω2 α

]
;

A =

[
0 1
−ω2 −g

]
; C =

[
0
1
m

] (3)

If the frequency, quality factor and modal weight remains
constant throughout the interaction, these matrices need
only be computed once.

The contact force is given by [18]

f(x, ẋ) = xα(k + λẋ) (4)

where x is the same oscillator displacement as in Equa-
tion (1). This mutual dependency creates the delay-free

loop, where the K method can be used. The velocity at the
moment of impact is ẋ, while the constant k is the elastic
coefficient and α is a value between 1.5 and 3.5 that de-
scribes the surface geometry [16]. A value of 1.5 is used in
this paper, which leads to the non-linearity, that is solved
by approximating the value using Newton-Rhapson.

The modal weight at specific positions can be changed
with the weighting factor 1/m in Equation (1). The position-
dependency means the matrices that previously only had
to be computed once on impact have to be computed every
time the modal weight changes. This adds additional con-
stant multiplication for each buffer window, that is negligi-
ble in the overall computation cost, as the modal weight
only appears in the C transformation matrix as seen in
Equation (3). Since a single mode is not enough for a real-
istic sound, multiple instances of the mechanical oscillator
can be coupled together through matrix generalization.

4. IMPLEMENTATION

The synthesis is implemented directly into Unity using C#
utilizing Unity’s base class MonoBehaviour to access the
function OnAudioFilterRead that can insert data directly
into the audio buffer at sample rate.

4.1 Exciters and Resonators

The implementation allows the user to choose which ob-
jects produce sound and select between three interaction
types for those objects. Each sound-emitting object has its
own individual audio source, which allows the output to
be spatialized based on its position in the 3D space. The
three interactions are based on the exciter-resonator rela-
tion, where one object acts as a hammer and adds the ex-
citation to the resonating object. The first two interactions
are exclusively as an exciter or resonator while the third is
both of them combined.

The first interaction type is where the object only is an
exciter. The exciter only emits sound when colliding with
a resonator. This is useful for moving objects hitting non-
moving objects, like a ball hitting a wall or rolling on the
floor.

Having an object set to the second interaction type of a
a resonator is especially useful for static objects. These
are objects that should not act as exciters themselves. In a
virtual environment this can be walls, floors or other non-
moving objects.

The third interaction type is an object being both an ex-
citer and a resonator, which gives the full effect of the sys-
tem. Realistically, all objects are both exciters and res-
onators, but this does not necessarily have to be the case
in virtual environments. This is useful for moving objects
that create a sound, like a falling plate or a rolling glass.

4.2 Material Properties

As described in Equation (1) and modal synthesis, the sound
of the mechanical oscillator is a result of the normal modes
of the resonator, their weighting ratios and quality factors.
The normal modes can be found by analysing a sound or
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computing it from object meshes alongside some of its ma-
terial parameters. Any number of modes can be used for
the material. More detail is obtained with the use of more
modes at the cost of additional computation power. A post-
gain is applied to the output amplify the signal that is oth-
erwise a very low value. In some cases this could affect
the sound, but working with the C# type floats that stores
32-bit floating-point values gives a high bit depth.

Beside the modes and its corresponding parameters, an
object can also be set to be ”rollable”, adding the rolling
sound to the object. There should be distinguished between
sliding objects that require a friction sound and rolling ob-
jects.

4.3 Micro-Impact Rolling

The sound of rolling can in many instances be described as
many small impacts [16]. How rough a surface is will have
an effect on the micro-impacts. Consider rolling sound in
dirt, cobblestones or smooth, new asphalt. On most sur-
faces, where the roughness is not entirely visible like it
is with cobblestones, the rolling sound can be modeled
with randomly spaced impacts. The micro-impacts must
be within a maximum and minimum margin, as too far
spaced apart impacts sound like a repeated knocking, while
impacts too close to each other makes it sound like a con-
tinuous sound and not rolling. The random factor is impor-
tant to avoiding the rolling keeping a constant frequency
and evolving into what resembles a tone. Rolling can be
modelled by having the impacts occurring in between du-
rations of time where the force is set to 0.

4.4 Object Interaction

The triggering of sound is achieved by utilizing MonoBe-
haviour’s collision system in the physics module. These
function are called when objects enter, stay or exit a col-
lision. Upon entering a collision, the relative velocity be-
tween the objects can be found, but the magnitude of this
is not precise enough. If only this value is found, moving
from one surface to another without altitude change or im-
pacting at a narrow angle can have the same velocity as a
direct impact, orthogonal to the surface. The velocity for
the impact is found by taking the dot-product of the veloc-
ity and the normal vector of the contact point. If an object
rolls from one surface to another without moving the ob-
ject vertically, the velocity excitation to control the impact
sound is zero.

If an object is set to being rollable, the velocity is found
as the objects stay in a state of collision. The velocity is
mapped to control the time between each micro-impact.
The more micro-impacts are heard, the faster the rolling is
heard to be. Once the objects exit the collision, there is
no more force added to the system and the audio fades out
naturally as the impacts would.

4.5 Modal Weight Texture

As seen in Fig. 1, a custom shader is built that can contain
multiple textures. The special modal textures do not affect
the visual aspect of the object as they are never rendered,

Figure 1. View of the custom shader from the inspector.

but their modal weighting values can still be accessed. The
precision of the model weighting obtained depends on the
resolution and interpolation of the created texture as well
as how the image file of the texture is imported with or
without compression. The contact point of that returns the
pixel and its modal weight can either be found using the
contact point provided by the collision system or as a ray-
cast when the mouse is used.

5. OBJECT SIMULATIONS

The implementation described has been applied to three
different acoustic system with impact-specific interactions.
Fig. 2 shows a visual representation of the scenarios using
the Unity engine. The first is marbles, that only are af-
fected by gravity and objects in its way, while the second
is a marimba instrument and the third is the surface of a
glass table. Combined, these interactions show the con-
tact synthesis in instances with no modal texture, a one-
dimensional modal texture and a two-dimensional modal
texture.

5.1 Rolling Sphere

The spring-mass system can be used for a free-falling ob-
ject impacting at a single point. The total force impacting
on such an exciter is given by

f (h) = f −mh · g (5)

where f is the impact force approximated using Newton-
Rhapson and mh is the mass and g is gravity. This results
in multiple impacts like a bouncing ball, but the system
determining the force can be set to zero after a single im-
pact, thus only emitting the sound of a single impact. Sim-
ilarly to Equations (2) and (3), the force of the exciter is
also discretized focusing on the displacement and velocity,
that is used to approximate the total force using Newton-
Rhapson.
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(a) Marbles rolling. (b) Glass table and marimba.

Figure 2. The interactive simulations built in the Unity
game engine. Marbles are rolling down only affected by
gravity on the left while specific positions can be pressed
on the right hand side using the mouse.

An example using marble-like objects rolling down a track
is shown on the left hand side of Fig. 2. The marbles are
on “rollable” planes, as described in Section 4.4, where
the material of each plane determines the characteristics of
the impact and rolling. More accurate simulations can be
achieved by taking the incline into account.

5.2 Marimba Instrument

The second physical model is the marimba instrument. The
marimba is described in detail by La Favre [19]. A marimba
is an idiophone made up of bars that vibrate in complex
patterns resulting in the unique sound. It has been shown
that up to 25 modes of vibrations ranging from 0 to 8,000
Hz can be found in a struck C3. Simple marimbas need
only be tuned for the fundamental frequency, while con-
cert marimbas will be at least “triple tuned”. The marimba
can be modelled by having a fundamental frequency with
the second and third modes at 4.0 and 9.2 times the funda-
mental [20], though some calculations put the third mode
above 10.08 times that [19]. A fourth mode can be found
at 19.6 times the fundamental. The modes are transverse
modes, and it is shown that the amplitude of the modes
change depending struck position on the bar by the mal-
let [21].

For this implementation, the modes and their respective
amplitudes at four positions are found by La Favre [21].
The bar is struck at 4 positions; center, off-center, off-
edge and at the edge of the bar. These values are one-
dimensional, as the position only changes in one dimen-
sion from center to edge. A two-dimensional modal tex-
ture could be obtained by striking the bar across the shorter
edge at the same positions.

The instrument is controlled using the mouse. On a click,
a raycast traces a line to the hit object and obtains the
UV coordinates of the raycast hit position. The UV is
transformed to pixel coordinate by multiplying by the tex-
ture’s width and height and the color (and therefore modal
weighting) of the pixel at the coordinate is obtained. The
mechanical oscillator is excited by an initial velocity at im-
pact.

Figure 3. Textures used for the marimba bar, with in-
tensified brightness. The grayscale value of the color is
the modal weight. The leftmost depicts the fundamental
frequency while the rightmost in the connected field de-
picts the fourth mode. In this instance, all other position’s
weighting values are scaled compared to the fundamental
frequency, the modal texture of the fundamental frequency
is is a single value across all positions.

Fig. 3 shows the four mode textures with intensified light-
ing, as it otherwise would be too hard to distinguish be-
tween the dark colors. The four textures are applied to
every marimba bar in Fig. 2 and once hit, the value at the
point is passed on to script controlling the synthesis. To
scale each position to approximately the same overall am-
plitude, the first mode is set to the same for each position
and the rest are scaled after it. The values are set between
0 (not inclusive) and 1, with 0 being completely black and
1 being white. It is not possible to have a value of 0, as
the mechanical oscillator model at one point divides by the
modal weighting. To ensure a value of 0 isn’t read due
to import and compression settings, a check is done while
getting the pixel, setting it no less than a minimum value.

5.3 Circular Glass Table

The surface of a glass table is a simple everyday object
with a circular plane as its top. Since the diameter is equal
all around table, the amplitude of each mode is equal for
all positions at equal direct length to the edge or the cen-
ter. Five recordings were obtained from the glass table and
used to create the modal textures. They can be described
from the edge to the center as the edge, off-edge, middle,
off-center and center. By analysing the recordings to see
which modes were prominent across all of them, 12 modes
were selected to create 12 modal textures.

The surface plot in Fig. 4 shows the values of one modal
texture as height data. A circular texture of the modal
weight of the recordings is created by rotating and inter-
polated line of the data around the center. The texture used
is 800 times 800 pixels for the surface plot, but it can be
as low as 9 times 9 pixels (five for the radius including the
center and 9 for the whole diameter) if Unity’s own im-
age stretching is used for the interpolation, though higher
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Figure 4. A 3D surface plot of the texture for the third
mode of the glass table. The recordings of five posi-
tions from the center to the edge are interpolated around
in a circle with the center as the anchor to create the 2-
dimensional texture.

resolution textures are recommended to achieve smoother
transitions between the weighting of each position.

6. CONCLUSION

In this paper an approach to using physical modelling for
impact and rollings sounds in a virtual environment is pro-
posed. This approach also includes the use of graphical
textures for modal weightings to simulate position-depen-
dent impacts.

The implementation can be extended to other interactions
than an impact. Friction can use the same mechanical os-
cillator albeit with a different force excitation. The friction
interaction of rubbing on a glass could use the modal tex-
turing.

There are clear advantages to this combination of com-
puter graphics and physical modelling of sound synthesis
using the mechanical oscillator. Theoretically, if an object
is modelled in 3D and a visual texture already is created,
modal weights from recordings of its real-world counter-
part can be specified to a point on the visual texture, and a
modal texture can be computed for the whole model.

Since the modal textures are computed offline, which saves
computational cost at runtime, the end result can be de-
scribed as conveniently placed lookup-tables.
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ABSTRACT

In this paper we study tahrir, a melismatic vocal ornamen-
tation which is an essential characteristic of Persian classi-
cal music and can be compared to yodeling. It is consid-
ered the most important technique through which the vo-
calist can display his/her prowess. In Persian, nightingale’s 
song is used as a metaphor for tahrir and sometimes for a 
specific type of tahrir. Here we examine tahrir through 
a case study. We have chosen two prominent singers of 
Persian classical music one contemporary and one from 
the twentieth century. In our analysis we have appropri-
ated both audio recordings and transcriptions by one of the 
most prominent ethnomusicologists, Masudiyeh, who has 
worked on Music of Iran [1]. This paper is the first step to-
wards computational modeling and recognition of different 
types of tahrirs. Here we have studied two types of tahrirs, 
mainly nashib and farāz, and their combination through 
three different performance samples by two prominent vo-
calists. More than twenty types of tahrirs have been identi-
fied by Iranian musicians and music theorists. We are cur-
rently working on developing a method to computationally 
identify these models.

1. INTRODUCTION

The repertoire/system of Persian classical music, radif con-
sists of seven dastgāhs and five āvāzes (secondary dastgāhs). 
Each dastgāh consists of several pieces (gushes). These 
gushes are in different maqāms and they are related to each 
other through a special order, which provides a path for 
modulation from one maqām to another inside a given 
dastgāh [2]. Radif is a model and source for improvisation. 
The pieces in vocal and instrumental radifs are rarely per-
formed exactly as they appear in radifs. The musicians use 
the models and patterns in radif to improvise new pieces. 
During the twentieth century, the radif was established as 
an icon of tradition, authenticity, and heritage. It has been 
the center of discourses about preservation, change, cre-
ativity, imitation, individuality, emotion, style, meaning, 
authority, and national roots in Iranian music. Through 
these discourses, the radif has been developed as a two-
headed arrow pointing towards the future and creativity, 
and at the same time towards the past and authenticity.
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There are two main recorded vocal radifs sung by two mas-
ters of the art during the twentieth century: Davāmi and
Karimi.

Tahrir is rapid transition between the main note and a
higher-pitched note. The second note is usually referred
to as tekyeh, which means leaning in Persian. From sig-
nal processing perspective one of the differences between
tahrir and vibrato is that the pitch rises and fall in tahrir is
usually sharper and the deviation from the main notes can
be larger compared to vibrato [3]. Also, the oscillation in
vibrato is toward both higher and lower frequency around
the main note, but in tahrir mainly the higher frequency
is touched abruptly. There are different types of tahrir in
Persian vocal music that can be categorized from both per-
formance style perspective and from studying the melodic
contour.

We have decided to study the transcriptions of radif as
well as the audio, since these transcriptions are among the
main sources for teaching and learning radif. Musical no-
tation has a long history in Iran. We can see early ex-
amples of musical notation in Maraghi’s works in 14th
century [4]. He uses alphabet letters to show the pitch
and rhythmic circles to illustrate the rhythm of the pieces.
When western musical notation was introduced in Iran, it
naturally replaced the use of alphabets and rhythmic cir-
cles [5]. Nowadays it is part of the musical pedagogy in
modern Iran. Furthermore, transcriptions of vocal radifs
are among important sources for instrumentalists who usu-
ally accompany the vocalists in a form of āvāz and javāb
āvāz (question and answer). In this form the vocalist sings
a hemistich of poetry and the instrumentalist plays a short
sentence as a reply to that. The musical intervals we see
in the transcriptions in this paper, although in some cases
are different than what the vocalists sings, are the intervals
that instrumentalists use in their answer to the voice.

In order to understand different types and styles of tahrir
we need to parametrize the characteristics of tahrir. Since
there has not been enough computational models for an-
alyzing tahrir, the parameters of vibrato can be a good
start for modeling different types of vocal embellishments.
Luwei mentions four computational attributes for vibrato:
rate, extent, sinusoidal similarity, and envelope. Vibrato
rate determines the tempo of the vibrato, the extent shows
the variation in the fundamental frequency of the pitch in
vibrato, sinusoidal similarity examined the similarities be-
tween the shapes of vibratos, and envelope which shows
the changes in the vibrato extent [6].
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2. VOCAL TRADITIONAL MUSIC IN IRAN: A
BACKGROUND

2.1 A brief history of musicological research and
music education in modern Iran

Interest in education and research on Persian music in-
creased during the twentieth century. Among the most
prominent musicians from the early twentieth century to
the 1970s, one can mention Vaziri and Khāleqi, who were
both modernist and in favor of using Western music meth-
ods and ideas to “improve” Persian classical music. The
efforts of such modernist musicians changed the status of
music in the society. The classical Iranian music became
recognized as an element of “high culture” associated with
the newly formed urban middle class. Western ethnomu-
sicologists started to visit Iran for fieldwork and ethno-
graphic research. The main areas of their focus were Per-
sian classical music and folk music. Among the promi-
nent Western ethnomusicologists who worked on Persian
classical and folk music, one can mention Nettl [7] and
Blum [8] and [9], who did their fieldwork in Tehran and
Mashhad in the 1960s, Zonis who visited Tehran during
the years 1963-1965 [10] and [11], and During who vis-
ited Iran multiple times since the mid-1960s. They all
worked closely with very prominent musicians of the time
in Tehran and other large cities. The first works on Persian
classical music were mainly devoted to different aspects
of the radif [12], [7], and [13], as well as biographies of
musicians [14] and [15], documentation, transcription, and
archiving [1].

The process of documentation and transcription of the
radif, together with the availability of recording technol-
ogy, partially, implicitly, and gradually changed the mu-
sic scene of Iran. The idea of preservation and protec-
tion started to work, to some extent, against itself, even
before scholars could notice the flaws and the contradic-
tions of this idea. Descriptive transcriptions of the radif by
various Iranian and Western ethnomusicologists and mu-
sic scholars, and the recordings of masters, later served as
sources of knowledge. The practice of radif has changed
partially from an oral tradition to a written tradition. The
role of memorization of the whole radif has been reduced
to a great extent. Students learn “improvisation” more as a
technique, and perhaps to some extent mechanical, rather
than as a result of full and in-depth knowledge of radif.
Many students use recordings of different masters and tran-
scriptions of radif to familiarize themselves with various
performing styles. The direct master to student teaching,
which was historically central to the practice of the radif,
became inevitably less important in the new setting. This
“modern” setting brings up many questions regarding the
forms of continuity and discontinuity in the functions and
directions of traditional music in today’s Iran.

2.2 Traditional Music after the 1979 revolution

Historical events 1 , after the 1979 revolution and the anti-
Westernization movement changed the cultural scene of
Iran. The restrictive cultural policies of the government al-
most eliminated production of popular music. The govern-
ment defined the “appropriate” (mojāz, acceptable) forms
of music, whose definition always remained vague and chang-
ing. The lyrics have been among the important elements
for deciding the “appropriateness” of music. Persian clas-
sical music, traditionally, has been linked to masterpieces
of Persian poetry, such as ghazals 2 of Hafez, Sa’di, and
Molavi (Rumi). This is an important factor that gives tra-
ditional music a relatively safe position. Another factor
in deciding on the “appropriateness” of the music is the
performers. The government accepts older male musicians
more easily compared with their young and/or female coun-
terparts. In general, there are always exceptions to these
rules. Because of the nature of traditional music, it has
always been one of very few genres that is judged as “ap-
propriate.” In the absence of popular music, famous tra-
ditional musicians, such as Shajariān, Lotfi, and Alizādeh
gained the social popularity of pop stars. This made the
prominent traditional musicians less accessible for teach-
ing. Many of these musicians no longer accept beginning
students. Many of them teach workshops that accept a lim-
ited number of performers from many applicants. These
social factors contributed to fundamental changes in the
classical music.

After the 1979 revolution, international policies made Iran
a difficult destination for Western visitors, including ethno-
musicologists. Furthermore, because of governmental cen-
sorship, the safest areas of studies for insider scholars were
those that did not involve any social and political issues.
Hence (purely) musicological study of “appropriate forms
of music” has been one of the most popular topics for Ira-
nian ethnomusicologists after the revolution. Among the
more recent works in this field one can mention Bubān’s
dissertation which compares the rhythmic patterns of the
Persian language with rhythmic patterns of the radif [5].
She also talks about the insufficiency of Western musical
notation for rhythm in Persian music and suggests a visual
notation. There are many other recent works on the radif,
among which one can mention Asadi’s dissertation, which
is on the structure of the radif [16], Āzādehfar’s book on
rhythm in Persian āvāz [17], Mehrāni’s three-volume work
on the theory of Iranian music [18], Fereyduni’s book on
the characteristics of the vocal radif of Davāmi [19], and
Jafarzādeh’s book on Iranian musicology [20].

2.3 Vocal Traditional Music

The word āvāz has several meanings in Persian. It refers to
humans’ singing as well as the sound of birds and instru-
ments in old Persian literature. In Iranian traditional music,
āvāz specifically means the elaborate improvisatory non-
metric part of the vocal performance usually accompanied
by one instrument at a time in the form of āvāz and javab-e

1 Among the important events one can mention the Iran-Iraq war
(1980-1988), and the Cultural Revolution (1980-1983).

2 A classic form of Persian poetry
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āvāz, also known as question and answer, which is consid-
ered a dialogue between the vocalist and the instrumen-
talist. In this part the vocalist leads the performance and
sings some or all lines of a ghazal 3 , and the instrumen-
talist answers creatively. The vocalist usually sings one or
two verse(s) in each selected gusheh of a dastgāh.

The most common format of the performance is to start
with vocables and then to sing the first line of verse in
darāmad which is the beginning gusheh of each dastgāh
and then sing other lines of verse in a different gushehs of
the same dastgāh in a conventional order. Usually there is
at least one main modulation, which gives a feeling of a
different maqām and then finally last line of verse is sung
in forūd, which is a return to the main maqām. The dura-
tion of āvāz depends on the proficiency of the singer. One
of the main elements of āvāz, which shows proficiency in
singing traditional Iranian music is tahrir. The expertise
and the level of proficiency of a singer is evaluated mainly
in this part of the performance (āvāz). There are singers
who can only sing tasnifs (a metric pre-composed piece).
Tahrir usually appears towards the end of hemistich, or on
the words where vocalist want to emphasis on the meaning.

3. TAHRIR: A CASE STUDY

3.1 Different types of tahrir

Mohammad Reza Lotfi, one of the most prominent Ira-
nian musicians and tār players of the late twentieth century
identifies seven types of tahrir based on Davami’s perfor-
mance of radif [19]. We studied three references in Per-
sian that classify different types of tahrir [19] and [18].
Nashib and farāz are two types of tahrirs according to
these sources.

3.2 Karimi’s Vocal Radif

Karimi is one of the main masters of the art in the twen-
tieth century. His repertoire consists of 145 gushes. His
performance is recorded and available to public. It has also
been transcribed by one the most prominent ethnomusicol-
ogists, Masudiye [1]. It is later transcribed by two other
musicians, Atrāyi and Tahmāsbi. Hence for each gushe of
Karmi’s vocal radif, we could have three MIDI files that
are slightly different. Finally, after much consideration we
found Masudiye’s notation more appropriate for the pur-
pose of our study. Figure 1 shows the way we organize our
study.

Finale (.musx)

.midi

.wav or .mp3

Midi table.csv

Pitch table.csv
smoothed pitch estimate 
(PYIN)

DTW
(Alignment)

Transcriptions

Performances

Figure 1. Audio and midi processing steps

3 Other forms of poetry are also used but are not as common as ghazal

As can be seen in Figure 1, we have used PYIN for pitch
recognition, using Sonic Visualiser, Smoothed Pitch Track
transform by Mathias Mauch and Simon Dixon [21]. Par-
allel to the audio we have made a table corresponding to
the MIDI file, and then we have used Dynamic Time Warp-
ing [22] algorithm in MATLAB to compare these two curves.
We modified the MATLAB dtw plot function, so that we
can mark the differences between the two curves. The re-
sults can be seen in Figures 2 and 4.

3.3 Tahrir-e Nashib and Farāz in vocal radif of
Karimi

Tahrir-e nashib (literally: descend), and farāz (literally:
ascend) are two types of tahrir that is discussed by Fer-
eyduni, Mehrani, and Lotfi. Their melodic movement as
it can be inferred from their names is a slow descend or
ascend towards the main note, where the vocalist or in-
strumentalist usually spends a relatively longer time. The
movement is most of the time towards the shāhed or ist, or
owj, which are the main functional notes in each gusheh.
According to Owen Wright “Shāhed (‘witness’) is the most
prominent pitch of the gusheh, its salience marked pri-
marily by relative duration; ist (‘stand’) is an intermediate
phrase final note other than the shāhed.” [19] p. 33. Owj
(‘peak’) is usually a fifth above the shāhed of a gusheh.

Figure 2 shows tahrir-e nashib in the final phrase (forud)
of the gushe-ye daramād of shur in Karimi’s radif. The
vertical axis shows the pitch value in cents and the hori-
zontal axis is time. As we can see in this figure there is a
mis-match between the audio and transcription. We have
marked the duration mismatches in Midi with yellow. The
red color shows the audio and blue shows the midi. Figure
3 shows the original Masudiye’s transcription of the same
tahrir. The circles below the notes show leaning (tekyeh)
of the main note towards the higher note.

Figure 2. Tahrir-e nashib in daramād of Shur of Karimi

Figure 3. Tahrir-e nashib in daramād of Shur of Karimi,
Masudiye’s transcription, page 13, line 4 of darāmad

One of the melodic characteristics of tahrir, as can be
seen in the above figure, is a repetition of a simpler form
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or group of notes. In the above tahrir the repeating form
consists of a note which leans toward a higher pitch. In
this example the interval between the main note and the
peak of the higher note is at most as high as about a tone
and half (≈300 cents). The vocalist repeats the same pat-
tern in a descending manner. Sometimes different types
of tahrir can be combined to form a more complicated
melodic phrase. For example in darāmad of bayāt tork
we have a longer pattern which consists of a nashib tahrir
followed by tahrir-e farāz. As can be seen in Figure 4, the
whole longer pattern is repeated twice. In figure 5 we see
Masudiye’s transcription of this tahrir.

Figure 4. Tahrir-e nashib followed by tahrir-e farāz in
daramād of Bayāt-tork

Figure 5. Tahrir-e nashib in daramād of Bayāt-tork of
Karimi, Masudiye’s transcription, page 49, lines 3 and 4
of darāmad

3.4 Tahrir-e Nashib and Farāz in Shajarian’s
Performance

Figure 6 shows a sample of Shajarian’s tahrir in gushe-ye
Owj in the hemistich (36’:01”- 36’:14’): “baske shostim
be khunābe jegar jāmeye jān.” 4 This tahrir is on the last
word, jān, and on vowel ā for 5 seconds, involving the se-
quence G, F, F, E, E, D, E, E, F, F, G with tekyehs to higher
pitches. Fereyduni mentions the name “nashib o faraaz”
for this type of tahrir ( [19], P. 19). This name is also men-
tioned by Payvar, in his transcription of Davami’s radif. In
this tahrir, the average duration to reach the peak of the
tekyeh note from the main notes is 0.75 m.s. The highest
frequency jumps in this tahrir are about one and half tone
(≈ 290 cents), and the lowest frequency jumps are about a
half tone (≈ 90 cents).

4. FUTURE DIRECTION

Our goal is to computationally analyze more tahrir types
and their subtle differences. We would like to study tahrirs
performed by various vocalists and to find their stylistic
features.

4 Hamnavā bā Bam [“Compassion for Bam”]. Delāwāz.
(Tehran concert and background documentary). 2006, available at:
https://www.youtube.com/watch?v=7xalZQOFW88

Figure 6. Tahrir-e nashib and farāz in owj of Bayāt-kord
performed by Shajarian
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ABSTRACT

This paper presents VUSAA, an augmented reality sound-
walking application for Apple iOS Devices. The application 
is based on the idea of Urban Sonic Acupuncture, providing 
site-aware generative audio content aligned with the present 
sonic environment. The sound-generating algorithm was 
implemented in Kronos, a declarative programming lan-
guage for musical signal processing. We discuss the con-
ceptual framework and implementation of the application, 
along with the practical considerations of deploying it via 
a commercial platform. We present results from a number 
of soundwalks so far organized and outline an approach to 
develop new models for urban dwelling.

1. INTRODUCTION

City dwellers tend to be in the public space only in their 
transits, going from home to work to groceries to recre-
ation and back home. The faster the transit time the better, 
occupying public spaces only while consuming. The use 
of headphones while transiting fosters new forms of urban 
detachment, this ‘headphone city’ [1] alienates any sense 
of place or community links. We believe that sound and the 
practice of soundwalking are very powerful tools to create 
sense of place and can lead to new forms of urban dwelling.

In this paper, we introduce the Virtual Urban Sonic Acupunc-
ture App (VUSAA), a novel iOS application that generates 
site aware augmented reality urban soundwalks. The app 
relies on the practice and concepts behind sonic acupunc-
ture and aural weather that Moreno is developing in his 
research [2]. Urban Sonic Acupuncture is the parallel in 
the sonic field of the hyper-local urban rehabilitation prac-
tices under the name of urban acupuncture [3] [4]. Aural 
weather echoes prior theoretical work in design and archi-
tectural atmospheres [5] [6]. The concept of “weather” also 
refers to alternative ways of organizing sound [7].

VUSAA is an experimental augmented reality soundwalk-
ing app for iOS mobile devices, based on urban sonic 
acupuncture strategies. It uses sensor technology to gen-
erate sonic content intended to affect the perception of the 
urban environment. VUSAA constitutes a proposal to use 
soundwalking and urban psychogeographic drifting as tools
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for finding new ways of urban attachment and conscious
dwelling by using minute sonic interventions that augment
the sonic reality of the urban space.

The rest of the paper is organized as follows: Background
(Section 2) gives an overview of the prior work on sound-
walk applications and related theory. The Conceptual Frame-
work is discussed in Section 3. We follow up with a de-
scription of the Implementation and the achieved results in
Sections 4 and 5. Conclusions are presented in Section 6.

2. BACKGROUND

In this section we discuss the concepts and practices that
helped in building the conceptual and technical background
of the augmented reality soundwalking app VUSAA.

2.1 Urban Sonic Acupuncture

To address the issue of urban decay, recent urban planning
trends opt for small-scale local participatory actions that
have a global impact in urban life and urban stewardship.
This practice has been called urban acupuncture [3] [4].
Urban sonic acupuncture offers a sonic take on urban
acupuncture practices, based on cultural acoustics and au-
ral architecture [8]. Urban sound, its auditory figures [9],
sound effects [10] [11] and sonic commons [12] have been
thoroughly studied.

Using sound in this way foments urban attachment, social
dialogue, different speeds and wandering [13] in public
spaces. VUSAA offers the possibility of testing the idea
of urban sonic acupuncture in the form of augmented re-
ality, generating minute subtle sonic content according to
the present sonic situation and other environmental data
gathered by the sensors on a mobile device. These sonic
interventions affect the perception and relationships of the
sounds and events that the listener participates in.

In developing the practice of sonic acupuncture, the con-
cept of aural weather was coined by Moreno [2] and for-
mulated inspired by the theory of atmospheres [5]. This
concept can also refer to alternative ways of organizing
music [14] [7], as shown in Section 3.1.

2.2 Prior Soundwalking Apps

Some augmented reality and soundwalking apps exist in
the iOS App Store. GeoComposer/GeoPlayer from sonic-
Planet links field recordings and pre-composed sonic con-
tent to the Google Street View. This creates site-specific 3D
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soundscapes. The soundscapes can be experienced on-site
as audiovisual augmented reality or remotely.

Collectif MU has developed SOUNDWAYS. This app
plays back pre-composed music which gets triggered when
the user enters a specific area linked to a GPS position. The
app displays the area of playback for each sonic event as
bubbles of different size and loudness–balance behaviour.
The walks can be done on-site or remotely, by moving a
cursor around a map on which the bubbles are displayed.
Based on this platform, MSWalks app was developed for
the Sibelius Academy Music Technology Department. The
MSWalks app contains soundwalks specific to the Helsinki
Töölönlahti area. There are plans to include more sound-
walks for different areas in Helsinki.

Walk With Me by Strijbos & Van Rijswijk is another app
with similar GPS-linked sonic bubbles, with the addition of
text information as means of extending the experience of
visiting places. Significantly, this app uses the microphone
input and site-specific sound effects to modify ambient
sounds. 1

2.3 The Kronos Programming Language

Kronos is a declarative programming language designed for
musical signal processing. It features declarative, generic
programming and a semi-functional reactive model. [15]
There is also prior work on deploying Kronos programs on
mobile devices [16].

Kronos applications are modeled as reactive signal graphs.
Implementing an augmented reality application consists of
connecting the various sensors and inputs on the physical
device to the signal graph, which in turn produces the result
audio stream.

3. CONCEPTUAL FRAMEWORK

In all the apps mentioned in Section 2.2, soundwalks are
bound to specific geographical areas and the sonic content
is preordained. None of them uses real-time generated
music; they rely on pre-composed or pre-recorded material.
Among them, only Walk With Me utilizes real-time audio
input in any way.

A motivator for the present study was our belief that using
the microphone input and listening to it, is what makes the
actual environment and its inherent sound relevant to the
provided sonic content. VUSAA proposes a generative way
of engaging sonically with the environment. This is achieve
by making the app aware of the present sonic and other site-
related conditions. Therefore, we decided to exclusively
support on-site, augmented reality soundwalking.

The work of the duo A+O (Sam Auinger and Bruce Od-
land) “Harmonic Bridge” (MASS MoCA, North Adams,
MA, 1997–present), Max Neuhaus “Times square”, and
Alvin Lucier’s slow sweeping waves pieces and “I am sit-
ting in a room” have played an important role in the devel-
opment of sonic acupuncture strategies used in VUSAA.
What all these works have in common is that they take a
non-exclusionary, transformative attitude towards diegetic

1 All the apps mentioned in this section can be downloaded from the
iOS App Store or directly from the embedded link in the text.

sound. This resonates strongly with our goal of urban sound
augmentation. In addition, VUSAA takes direct inspiration
from the practice of soundwalking [17] and psychogeogra-
phy’s [18] inclination to drifting.

3.1 Composing Aural Weather

When composing for an unknown range of possibilities,
spaces and local conditions, it is important to find the bal-
ance between the variety of generated sonic reactions and
the identity of the work itself. In order to compose au-
ral weather, one has to learn how to create music with
a primary dimension other than time, learning “to move
from structure to process, from music as an object having
parts, to music without beginning, middle, or end, music
as weather” [14]. The challenge consists of creating the
conditions in which the sonic atmosphere (aural weather)
provided by VUSAA, installs itself in whatever pre-existing
sonic atmosphere the user might find.

The theory of atmospheres has gained momentum recently
in the fields of architecture and design [5] [6] [19]. These
practices foment peripheral perception and light Gestalt as
means of approaching architecture and design. To install
an atmosphere, Thibaud suggests learning how to master

“the art of transpiring, the art of coloring, and the art of
accompanying” [19]. The connotations of weather, that
atmospheres already have, are suggested in sonic context by
Ingold [20]. Along the same lines, the concept of acouste-
mology – knowing a place through sound [21] – is highly
relevant.

From all this, we envisioned a reactive multi-layered
“weather” in the form of an algorithm with no pre-recorded
material. The algorithm is designed to allow for driving the
user’s attention towards surprising elements in the urban
soundscape. In this way, the aural weather behaves dynam-
ically and musically under complex sonic situations such as
heavy traffic. On the other hand, it gets very subtle under
more a tranquil atmosphere.

Finally, a musical structure that is not based on time re-
quires a great deal of user agency in articulating the tem-
poral dimension, choosing the walking path, the walking
pace, choosing where to point the device’s microphone at,
etc. We tried to avoid the need to interact with the screen.
However, we added a slider to the main screen to let the
user adjust their preferred listening balance between the
microphone and generated sound.

4. IMPLEMENTATION

This section discusses the implementation of the iOS appli-
cation supporting the soundwalk concept that is the topic of
the present study. We will describe the user interface and
sound processors in VUSAA as well as some details specific
to deploying the application on iOS.

4.1 Presentation

The user interface in VUSAA is meant to divert the user
from the screen, prioritizing other means of agency, such
as speed of walking, choice of path, or where to point the
device’s microphone.
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Figure 1. On/Off VUSAA main screen.

The on-screen user interface consists of a slider and two
buttons; please see Figure 1. The application features an
ambience loop of 5 seconds. The user may toggle between
recording and reproduction of the loop by toggling the
Ambience switch; when record is engaged, the audio loop is
overdubbed. The recorded urban sound will be subsequently
played back at different times and loudness levels.

The rest of the interface consists of the info screen and the
statement walk slowly, drift, listen. In the info screen, there
is information about how to use the app and a small intro-
duction to the concepts behind urban sonic acupuncture
and VUSAA. We understood that such an explanation would
be needed to make the app and its sparse user interface easy
to navigate.

4.2 Sound Generation

The signal flow diagram of the VUSAA application is
shown in Figure 2. The actual signal processor respon-
sible for sound generation is implemented in the Kronos
programming language.

The application derives control data from transient anal-
ysis, as well as non-audio inputs including luminance (via
camera), GPS position and the time of day relative to local
sunrise and sunset.

The control data is used to drive several synthesis algo-
rithms in parallel. The recorded ambient loop is processed
with a luminance-dependent high frequency rolloff and
mixed with a thresholded noise generator (“dust”) and fed
into a resonator bank. The bank is tuned to a chord that
changes with the time of day.

Another preset chord controls a pseudorandomly arpeg-
giated Karplus-Strong string model with a luminance-dependant
damping parameter. The excitation for the model is derived
from the microphone input, gated by the transient detector;
percussive sounds in the ambience gain a windchime-like
echo in the augmented soundscape.

A progressively transposing echo is implemented with a
tape loop -style delay effect with a real-time write head and
a slower read head. The transient detector causes the heads
to realign, giving the effect of resetting the transposition
when an audible echo begins.

PROCESSES
(Reson dust, 

Karpluss-Strong,
Loop,

Peak and gliss, 
Panning)

PROCESSES 
AMP
ENV

INPUTS  Mic Camera 
(luminance)

GPS 
Position

DATA (Clock, 
Local Sun)

STEREO LIMITER OUTPUT

INFO RETRIEVAL
(Transient detect, 
luminance, GPS 

delta list)

PROCESSES 
AND 

GENERATIVE 
ELEMENTS

OUTPUT

Figure 2. Overview of the VUSAA algorithm.

All the processes described so far are modulated by slow,
gradually phasing amplitude envelopes. The overall speed
of the envelope is determined by time of day, while the least
significant portion of GPS latitude and longitude change
the phase offsets between the envelopes. This causes new
aspects of the mix to appear as the soundwalker moves
around.

Finally, the synthesized sound is mixed with raw micro-
phone input according to the slider position on the user
interface.

4.2.1 iOS Deployment

Kronos is originally a just-in-time compiler. A mobile
application should, however, be statically compiled. Apple
guidelines prohibit code generation on the device, and in
any case it is best to take that burden away from the end
user.

Kronos does also feature a static compiler called kc, in-
corporating the LLVM [22] code generator. As such, it can
generate C-compatible object files, LLVM bitcode, or sym-
bolic assembly. LLVM is also inherently a cross-compiler,
which means that it can, by default, generate code for ar-
chitectures other than the host machine it is running on.
For iOS development, we configured and built LLVM and
Kronos on macOS with support for x86 and ARM.

When compiling for iOS, Xcode behaves differently de-
pending on the target. If a physical device is connected,
the code generators target its native hardware architecture.
For the iOS simulator, x86 is used. When deploying to the
app store, Xcode builds code for all the three variants of
ARM processor currently supported. As of this writing,
the Apple App store can also record binaries in the LLVM
bitcode. These attain a degree of hardware independence,
and in theory allow support for as-of-yet unknown future
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architectures.

4.2.2 Xcode Integration

We integrated kc into Xcode with a custom build rule. This
way, the Kronos-language DSP implementation can be
added to the Xcode project as a normal source file. Xcode
automatically sets a TARGET TRIPLE variable describing
the platform and architecture for each build. The build rule
relays that to the kc driver, and thus to LLVM, resulting in
transparent cross compilation support; Xcode invokes kc to
build the DSP code for any required hardware targets.

Because we used a non-standard, cross-compilation capa-
ble build of kc for the present project, the specific compiler
binaries were embedded and archived within the VUSAA
repository.

5. RESULTS AND DISCUSSION

5.1 Public Presentations

We presented VUSAA in two events, involving a short the-
oretical presentation and a soundwalk utilizing the app.
Given that not all the attendants had an iOS device or
headphones, devices were provided along with headphones.
Headphone splitters were used to stretch the number of
available iOS devices, allowing for a social soundwalking
experience in pairs, as shown in Figure 3. Having two users
per device meant that two people would have the same sonic
experience, having to negotiate the path to follow and the
app settings.

The first event happened in Venice in June 2017 in the
Research Pavilion – Camino Events of the University of
the Arts Helsinki. The VUSAA-enhanced soundwalk was
hosted in the Giudecca island in the surroundings of the
pavilion. This was a very interesting place for soundwalk-
ing given the absence of car traffic and the interesting noises
produced by the vaporetto platforms. A group of interna-
tional researchers contributed to the discussion after the
soundwalk.

The second event happened in the Tampere Biennale in
Finland for several days. On the first day, we used the app
to transit between art galleries in the opening day. That day,
some sound artists started spontaneously using the app to
listen to other sound art works and musical compositions.
For the second soundwalking event, the walk happened
around the centre of the city, designed by the production
team to experience the app in different urban settings that
ranged from a waterfall area to the transit under a heavily-
used car bridge.

We toured intensively during the Summer of 2017, testing
the app in multiple countries. As a result, we produced a
set of recordings documenting the app evolution and reac-
tions to different urban environments. We presented these
recordings and the concepts behind VUSAA at the Sibelius
Academy Music Technology Department’s Generative Art
Café in Helsinki.

We gathered feedback from the users in the form of notes
taken during discussions following each presentation and
during personal interviews. It seems that VUSAA is particu-
larly successful in creating relationships among pre-existing

Figure 3. VUSAA-enhanced second soundwalking event
during Tampere Biennale 2018.

sound objects. For instance, the always moving “dust” el-
ement is a subtle and yet powerful way of affecting the
perceived fundamental of pitched sound objects. Simulta-
neously, the resonant algorithms are efficient in generating
harmonic content and creating harmonic relations between
disparate sound objects.

5.2 Problems with the App Store review process

We faced an interesting problem during the app review and
publishing process. VUSAA was originally meant to work
in background mode to discourage users from staring at the
screen only. The iOS App Store review team initially re-
jected our app because they did not find a compelling reason
for the application to be accessing the microphone while
in the background. After some back and forth submission-
rejection cycles we asked them for a phone conversation
in which it became clear that their and our notion of audio
content were not aligned. They clearly stated that resonant
dust or softly playing background chords do not count as
audio content.

At that point, it became obvious that our digital platforms
are products subject to corporate ownership and control,
and not public services. A privately owned platform has no
space for flexibility in their interpretations and they have
all the right to reject our submissions or even ban us from
App Store. We learned that proposing an audio application
that consists mainly of a complex passive sonic object was
a difficult proposition for the App Store review team. We
solved this by giving up the background mode altogether.
This decision turned out to have no significant impact on
the app usability during the soundwalking events.

VUSAA app can be downloaded from the App Store from
this link 2 or from Moreno’s website.

5.3 Future Work

Taking into account the received feedback and our findings
through daily use, we have plans for further developing
VUSAA’s variety of processing modules extending the posi-
ble aural weather situations provided by the app. We will
work on keeping the app updated and extend the hardware
compatibility with different headsets. At the same time,

2 VUSAA can be downloaded from this link:
https://itunes.apple.com/es/app/vusaa/id1244860977?mt=8 ; or from the
project’s website: http://josuemoreno.eu/project/vusaa/
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more VUSAA-enhanced soundwalking events are currently
under production in several European cities. Finally, further
development will be done in refining and implementing
the interaction between control parameters and the audio
algorithm.

Currently, there are new projects under development that
are based on the technology and conceptual framework de-
veloped for VUSAA. These elements will allow us to imple-
ment site-specific urban sonic acupuncture projects quickly,
by taking advantage of the rapid development enabled by
Kronos.

6. CONCLUSION

VUSAA constitutes a first attempt at augmented reallity
soundwalking based on urban sonic acupuncture strategies
for iOS mobile devices. It takes advantages of the many
sensing and listening abilities the iOS mobile devices pro-
vide to generate sonic content meant to affect the perception
of the urban environment.

We believe that VUSAA breaks new ground in several
ways; it is the first Kronos-based application that was suc-
cessfully shipped via the iOS App Store. It is arguably the
first site-aware soundwalk app, and definitely the first Urban
Sonic Acupuncture app available. The initial group VUSAA-
enhanced soundwalks and the received feedback from the
users positions this app as a very interesting proposal for
turning soundwalking and urban psychogeographic drifting
into tools for finding new urban dwelling models in which
to develop a more conscious attitude towards sound. We
consider it very promising to use the very same tools that
contribute to urban aural detachment – mobile devices and
headphones – to revert the situation.
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ABSTRACT

Fundamental frequency (f0) modeling is an important but 
relatively unexplored aspect of choir singing. Performance 
evaluation as well as auditory analysis of singing, whether 
individually or in a choir, often depend on extracting f0 
contours for the singing voice. However, due to the large 
number of singers, singing at a similar frequency range, 
extracting the exact individual pitch contours from choir 
recordings is a challenging task. In this paper, we ad-
dress this task and develop a methodology for modeling 
pitch contours of SATB choir recordings. A typical SATB 
choir consists of four parts, each covering a distinct range 
of pitches and often with multiple singers each. We first 
evaluate some state-of-the-art multi-f0 estimation systems 
for the particular case of choirs with a single singer per 
part, and observe that the pitch of individual singers can 
be estimated to a relatively high degree of accuracy. We 
observe, however, that the scenario of multiple singers for 
each choir part (i.e. unison singing) is far more challeng-
ing. In this work we propose a methodology based on com-
bining a multi-f0 estimation methodology based on deep 
learning followed by a set of traditional DSP techniques 
to model f0 and its dispersion instead of a single f0 tra-
jectory for each choir part. We present and discuss our 
observations and test our framework with different singer 
configurations.

1. INTRODUCTION

Singing in a SATB (Soprano, Alto, Tenor, Bass) choir is a 
long standing and well enjoyed practice, with many choirs 
following this format across different languages and cul-
tures. Performances are based on scores, which provide 
linguistic, timing and pitch information for the singers in 
the choir to follow. Professional choirs practice for years 
to ensure that their performance is in tune with a refer-
ence pitch; however, due to the mechanism of voice pro-
duction and expressive characteristics, the pitch of the in-
dividual voices in the choir often deviates from the theo-
retical pitch as indicated in the score. As a consequence, 
analysis and evaluation of a choir performance depends on 
the combination of pitches produced by individual singers 
in the choir. Through history, conductors, teachers, and

Copyright: c© 2019 Helena Cuesta et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

critics have relied on their own interpretation of pitch and
harmony, while listening and/or evaluating a choir. In re-
cent years, a few automatic analysis and evaluation sys-
tems have been proposed [1, 2] to provide an informed
analysis of choirs in terms of intonation. In general, these
systems require the extraction of accurate pitch contours
for individual vocal tracks, which has hitherto been a road-
block for analysis, as multi-f0 extraction systems are not
able to provide sufficient pitch precision and accuracy to
drive analysis systems from full mixed choir recordings.
This can primarily be pinned down to the fact that in a
choral recording, multiple singers with similar timbres are
singing in harmony, and even the same notes within each
choir section, leading to overlapping harmonics, which are
difficult to isolate. While several multi-f0 estimation sys-
tems have been designed for music with easily distinguish-
able sources, e.g. music with vocals, guitar, bass and drums,
very few research has been carried out in the domain of
vocal ensembles, be it because of the lack of annotated
datasets or because modeling several people singing very
close frequencies, i.e. in unison, is very challenging in
terms of f0 resolution.

In this work we address the computational modeling of
pitch in choir recordings. In order to do that, we first eval-
uate how a set of multi-f0 estimation algorithms perform
with vocal quartets and try to identify their main limita-
tions. Then, we use the evaluation results to select the
best-performing algorithm and use it to extract a first ap-
proximation of the f0 of each choir section. In the second
step we use a set of traditional DSP techniques to increase
the pitch resolution around the estimated f0s and model f0
dispersion. The main focus of this adaptation is not to ob-
tain an accurate f0 estimate for each voice inside each choir
section, but to model the distribution of f0 of a choir sec-
tion singing in unison, measured through the dispersion of
pitch values across each part.

The rest of the paper is organized as follows: Section 2
provides a brief overview of the current state-of-the-art for
multi-f0 extraction. Section 3 describes the limitations of
current systems to characterize f0 in unison performances.
Then, in Section 4 we define the evaluation metrics com-
monly used in the field, followed by Section 4.1 present-
ing the dataset used in this study. Section 5 discusses the
initial evaluation of state-of-the-art methodologies on our
particular material. Following this, Section 6 presents a
novel approach to model unison recordings by combining
a multi-f0 estimation algorithm with traditional DSP tech-
niques. Section 7 presents and discusses the results and
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limitations of the proposed system , and finally in Section
8 we provide some conclusions on the method and com-
ments on future research that we intend to carry out.

2. STATE OF THE ART

Multi-f0 estimation involves the detection of multiple con-
current f0 from an audio recording [3] and it is a core step
of the task of automatic music transcription (ATM): con-
verting an acoustic musical signal into some form of mu-
sical notation [4]. We briefly summarize a set of multi-f0
estimation methods that can be applied to vocal music, al-
though they try to estimate f0 values of individual singers,
while we address the modeling of f0 of unison singing.

Duan et al. [5] presented an approach to multi-f0 esti-
mation using maximum-likelihood, where they model two
different regions of the input power spectrum: the peak re-
gion, comprising the set of frequencies that are within a
distance d of the peak frequencies, and the non-peak re-
gion, which is the complement of the peak region. The
input signal is normalized and the power spectrum is com-
puted frame-wise. A set of spectral peaks are extracted
using a peak detection algorithm, and then several f0 can-
didates are computed in the range of one semitone around
each peak. For each time frame, the f0 of each source is
estimated by maximizing the probability of having har-
monics that explain the observed peaks and minimizing
the probability of having harmonics in the region where
no peaks were observed. This is accomplished optimiz-
ing the parameters of a likelihood function that combines
the peak region likelihood and the non-peak region likeli-
hood, treated as independent sets. They use monophonic
and polyphonic training data to learn the model parame-
ters. Their system also estimates polyphony, i.e. how many
sources there are in the mix, which define the number of f0
the model should estimate at each frame. Finally, a post-
processing step using information for neighbouring frames
is implemented to make the pitch predictions more stable.
This process of refining the f0 estimates, however, removes
duplicate estimates, which a problem in the case of several
sources producing the same f0, i.e. unison singing. The
system parameters were learned using training data con-
sisting of mixes of individual monophonic note recordings
from 16 instruments including flute, saxophone, oboe, vi-
olin, bass, and violin among others. Then, they evaluated
the algorithm on 4-part Bach chorales performed by a quar-
tet: violin, clarinet, tenor saxophone and bassoon. These
details about the data they used to train and evaluate the
system are very relevant for our research, since given the
lack of vocal data in the training and evaluation stages, we
expect the system to perform worse in choral music.

Another relevant system for multiple f0 estimation is the
one developed by Klapuri [6], which estimates each f0 in
the mixture iteratively: at every step, the system detects
the most predominant f0 and its corresponding harmon-
ics are then substracted from the spectrum. In this case,
the input signal is passed through a bank of linear band-
pass filters that resemble the inner ear behaviour in terms
of frequency selectivity. Then, the output signal at each
band is processed in a nonlinear manner to approximate

the firing activity in the auditory nerve. After this pre-
processing steps, a frequency-domain signal representation
is obtained by combining the band spectra, which is then
used to extract a pitch salience function to emphasize the
fundamental frequencies present in the signal. From this
representation, multiple f0 values are estimated iteratively:
at each step, a f0 value is estimated and its harmonic par-
tials are removed from the spectrum. This step is repeated
until a f0 value is estimated for each source. In [6] he also
implements a polyphony estimator, which determines how
many f0 values need to be extracted and therefore the num-
ber of iterations. The system was evaluated with a collec-
tion of mixtures of individual sounds (some of them from
the same source as in [5]). The authors does not explicitly
mention any vocals in the dataset, and therefore we assume
the method is not optimized for our particular material.

Schramm and Benetos [7] presented a method specifi-
cally designed for multi-f0 estimation in a cappella vocal
ensembles. They use a two-step approach: first, a system
based on probabilistic latent component analysis (PLCA)
employs a fixed dictionary of spectral templates to extract
the first frequency estimates; as a second step, a binary
random forest classifier is used to refine the f0 estimates
based on the overtones properties. Spectral templates are
extracted from recordings of multiple singers singing pure
vowels in English. These recordings belong to the RWC
dataset [8]. This method uses the normalized variable-Q
transform (VQT) as input, which is then factorized using
the expectation-maximization algorithm to estimate the pa-
rameters of the model. As opposed to the previously pre-
sented methods, this one is focused on vocal ensembles
and it is trained and evaluated with such data, i.e. vocal
quartets, one singer per part. They use a f0 resolution of 20
cents, which is enough for transcription purposes but not to
deal with frequencies as close to each other as in unisons.

Another method for multi-f0 estimation designed for the
case of multiple singers is the one presented by Su et al.
[9]. The authors claim that data is crucial to develop and
evaluate such systems, and yet there is not a labeled multi-
f0 dataset for choir, which is one of the most common type
of music through the ages and cultures. Their work has two
separate parts: first, they present a novel annotated dataset
of choir and symphonic music; then, they build an unsu-
pervised approach to multi-f0 estimation using advanced
time-frequency (TF) analysis techniques such as the con-
centration of time and frequency method. According to
their paper, these techniques help improving the stabiliza-
tion of pitch, which is interpreted in three dimensions: fre-
quency, periodicity, and harmonicity.

Recent advancements in deep learning based systems have
led novel deep learning based multi-f0 extraction systems,
designed to be agnostic to the exact source of the pitched
instruments in the mix. DeepSalience [10] is one of the
most recent systems for multi-instrument pop/rock songs
and mixtures. The model leverages harmonic information
provided by a HCQT transform, comprising 6 constant-
Q transforms (CQT), with a convolutional neural network
(CNN) to extract pitch salience from an input audio mix-
ture. The network is fully convolutional with 5 convolu-
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tional layers, it uses batch normalization and rectified lin-
ear units (ReLU) at each output. The final layer of the
network uses logistic activation, mapping each bin of the
output to the range [0,1], representing pitch salience. It
is trained using cross-entropy minimization. This pitch
salience essentially predicts the probabilities of the under-
lying pitches being present in the input signal with a reso-
lution of 20 cents. Then, using this salience intermediate
representation, they use a threshold to estimate multiple
frequencies at each frame.

These methods are capable of extracting multiple f0 from
a great variety of audio signals, including music and speech.
Most of them are designed for polyphonic signals where
each melody is produced by a single source: one instru-
ment or singer. However, the subject of our study are
choirs, which involve unison ensemble singing, i.e. perfor-
mances where several people sing the same notes. Unison
recordings are challenging for multi-f0 estimation because
of the possible imprecision in the pitch produced by multi-
ple singers or musicians [9]. Since we focus on the analysis
and synthesis of choral singing, it is crucial to take this as-
pect into account to build models that consider these pitch
imprecision.

3. PROBLEM DEFINITION AND APPROACH

The characterization of pitch distribution in unison and choir
singing has not been widely studied. Most of the research
in this topic is authored by Sundberg [11] and Ternström,
who published a review on choir acoustics [12] and car-
ried out several experiments to study f0 dispersion in uni-
son singing [13]. The authors define f0 dispersion as the
small deviations in f0 between singers that produce the
same notes in a unison performance. This magnitude is
directly related to the degree of unison, which Sundberg
defines as the agreement between all the voices sources. In
a later work, Jers and Ternström [14] measured the disper-
sion between singers and found it to range between 25 and
30 cents.

In multi-f0 estimation systems, we usually focus on the
extraction of a single pitch per source, and state-of-the-art
algorithms would then provide a f0 value for each choir
section. However, several singers produce slightly differ-
ent values in each of the voices of a choir. Then, the ques-
tion of which is the correct value to be estimated arises:
most multi-f0 estimation algorithms do not have enough
resolution to discern the individual pitches, which leads
to a potentially imprecise estimation. This suggests that
unison performances need to be treated in a different way.
Ternström [13] claims that while solo singing has tones
with well-defined properties, i.e. pitch, loudness, timbre,
unison ensemble singing has tones with statistical distri-
butions of these properties, and we need to consider those
when modeling them.

In a recent study, Cuesta and al. [1] created the Choral
Singing Dataset (see Section 4.1) to analyze f0 dispersion
in unison ensemble singing by modeling the distribution of
fundamental frequencies. Using individual tracks for each
singer, they extracted f0 curves and computed the mean
f0 as the perceived pitch and the standard deviation of the

distribution as the f0 dispersion. In Figure 1 we display an
example of the f0 trajectories of four sopranos, where we
observe that there are slight f0 differences between them.
This study found dispersion values ranging from 20 to 30
cents on average, depending on the choir section and the
song, which agrees to previous literature [13]. However,
this type of analysis requires an individual audio track for
each singer in the mixture, and this data is difficult to ob-
tain given that choirs are not recorded using this set up.
This particular limitation leads us to explore in the present
study ways of analyzing choir recordings directly from the
singer mixture, which involves dealing with four different
melodies (SATB), each of them involving a unison.

Figure 1: F0 curves of four sopranos singing the same note.
We see how the curves oscillate and differ from each other.

In this study, we propose a methodology for pitch con-
tent analysis on unison ensemble singing that has two main
stages:

1. Multi-f0 estimation. In the first stage, we perform
multi-f0 estimation in the audio mixture in order to
roughly estimate the pitches of the four voices of the
choir. For this part, we evaluate the performance of
a set of existing multi-f0 estimation systems in the
context of vocal quartets, where we have precise f0
ground truth information, to select the one with a
better performance.

2. F0-dispersion modeling In the second stage, we re-
fine the frequency analysis around those pitches to
further characterize f0 dispersion in each of the uni-
son voices. In order to do so, we consider a DSP-
based approach and adapt a method with higher fre-
quency resolution to model each melodic source as
a distribution of f0s instead of a single value.

4. EVALUATION METHODOLOGY

As mentioned in previous sections, we evaluate the perfor-
mance of three state-of-the-art algorithms for multi-f0 es-
timation in vocal quartets, e.g. SATB with a single singer
per section, in order to investigate which method is more
suitable for this music material. We consider the methods
proposed by Klapuri (KL) [6], Schramm et al. (SCH) [7]
and Bittner et al. (DS) [10], all of them publicly available
and representative of the state of the art in the area.
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4.1 Dataset

There are very few datasets of choral music which are an-
notated in terms of f0. In our experiments, we take ad-
vantage of the Choral Singing Dataset 1 further described
in [1]. This dataset was recorded in a professional studio
and contains individual tracks for each of the 16 singers of
a SATB choir, i.e. 4 singers per choir section. Although
each section was recorded separately, synchronization be-
tween all audio tracks was achieved using a piano reference
and a video of the conductor that singers followed during
the recording.

This dataset comprises three different choral pieces: Lo-
cus Iste, written by Anton Bruckner, Niño Dios d’Amor
Herido, written by Francisco Guerrero, and El Rossinyol,
a Catalan popular song; all of them were written for 4-
part mixed choir. This dataset is more suitable for this
study than the one presented in [9]: having the individual
tracks of each singer allows us to create artificial mixes
between voices, e.g. vocal duets or quartets, small choir,
large choir...etc. Using different combinations of all 16
singers, we created 256 SATB quartets for each piece, which
represent all possible combinations of singers taking into
account the voice type restriction, i.e. we need one singer
per voice. These vocal quartets are used to evaluate the
performance of the three algorithms.

4.2 Multi-f0 evaluation metrics

In multi-f0 estimation systems, there are multiple f0 values
per frame n. Following the terminology used by Bittner
[15], we define the ground truth value(s) in frame n as f [n]
and the estimation as f̂ [n], which denote the pitches of all
active sources in that frame.

For a given frame n we denote as true positives, TP[n],
the number of correctly transcribed pitches, and as false
positives, FP[n], the number of pitches present in the es-
timation, f̂ [n], which are not present in the ground truth,
f [n]. Similarly, the false negatives value, FN[n], measures
the number of pitches present in the ground truth which are
not present in the estimation. Based on these, we define
the following set of metrics: accuracy, precision and re-
call, and a set of errors: the substitution error (Esub), miss
error (Emiss), and false alarm error (Efa). Finally, total
error, Etot is reported as the combination of Esub, Emiss
and Efa.

All the presented evaluation metrics also have their asso-
ciated chroma versions, which considers an estimated f0 to
be correct if it is one octave apart from the corresponding
target pitch. For more details about these metrics we refer
the reader to [15].

5. MULTI-F0 ESTIMATION RESULTS

All the SATB quartets of the dataset were evaluated in
terms of multi-f0 estimation: by means of the individual
tracks, we extracted f0 curves for every singer using the
spectral-amplitude autocorrelation (SAC) method [16] and

1 Choral Singing Dataset: https://zenodo.org/record/
1319597

we then combined them to create the multiple f0 ground
truth at each frame.

A summary of the results is displayed in Figure 2, where
we present the accuracy, recall and precision averaged for
each of the algorithms in the three songs of the dataset.
We observe that DeepSalience (DS) outperforms Klapuri
(KL) and Schramm (SCH). It is also interesting to point out
that the difference between these metrics and their chroma
versions is very small, thus suggesting that the three algo-
rithms are fairly robust in terms of octave errors. We also
observe that the algorithm by Schramm et al. has a higher
variability with respect to the other ones, suggesting that
its performance is highly dependent on the input signal.
Also, it is important to mention that while KL and DS pre-
dict multi-f0 values from a long audio file, i.e. a full choral
recording, we splitted our audio material in shorter clips
(each of them 10 seconds long) to evaluate SCH method:
the PLCA algorithm employed in this method is compu-
tationally very expensive and we could not obtain results
using the full recordings.

0.0 0.2 0.4 0.6 0.8 1.0
Score

Recall

Precision

Accuracy

Averaged results
DS
KL
SCH

Figure 2: Accuracy, precision and recall for each of the
three algorithms (DS, DU, SCH) averaged over all the
dataset, i.e. all the SATB quartets.

In terms of error analysis, Table 1 provides the average er-
rors for each of the algorithms. These results suggest that
extracting multiple frequencies from a vocal ensemble is a
very challenging task, since the total error is almost 40%
in the best performing method. A part from this, we can
extract a few more insights: all algorithms have a very low
false alarm error, which means that they almost never re-
port an f0 when there is not one in the ground truth; in
addition, DeepSalience does a good job regarding the sub-
stitution error, which means that it rarely reports a wrong
f0. However, the miss error is pretty high, especially in
Klapuri’s algorithm, which means that there are a lot of f0
that are not extracted. In the case of Schramm’s method,
though, the miss error is lower, suggesting that their voice
assignment step improves the performance of the multi-f0
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DS SCH KL
Substitution error 2.3% 10% 12%
Miss error 35% 28% 48%
False alarm error 0.4% 1.5% 8%
Total error 38% 40% 67%

Table 1: Summary of error metrics in multi-f0 estimation .

estimation. We could also relate these differences to the
fact that SCH is the only method designed for and trained
with singing voice data. However, given the length limi-
tation of SCH and based on the overall results, we select
DeepSalience as the method to be used in the first stage of
our model.

6. F0 DISPERSION MODELING

The first step of our method presented above uses Deep-
Salience to extract multiple pitch estimations at each frame
of the audio input. In the ideal case, at this stage we would
obtain one f0 value for each choir section; however, as
discussed in Section 5, although DeepSalience is the best-
performing algorithm from the evaluated set, there are still
some errors in the output.

In the second stage of our method we consider traditional
DSP techniques to increase the frequency resolution of our
model. We compute the spectrogram of the input audio sig-
nal using a Hanning window of 4096 points zero-padded
to twice its length, resulting in an FFT size of 8192. An
excerpt of this spectrogram is displayed in Figure 4 with
magnitude in dB and the frequency axis in cents, where
we observe that f0 values for each choir section are well-
separated.
With this time-frequency representation, we then locate
each of the estimated fundamental frequencies (DeepSalience
output), which will ideally match one of the spectral peaks.
Even though we use a large FFT size, since we want to ob-
tain a high pitch resolution, we interpolate the peaks and
recompute the peak locations as the maximum value of
each interpolated peak. This process is illustrated in Fig-
ure 3, where the top and bottom plots correspond to a vocal
quartet and full choir spectrum, respectively. The dashed
black line represents the original spectrum, while the red
solid lines and the green asterisk correspond to the inter-
polated peaks. We observe that the peaks in the full choir
case (bottom) have less energy and are a bit more noisy
than the vocal quartet ones (see third and sixth peaks for
example).

Once we have this information, we compute the band-
width of each peak as a measure of the dispersion of the
f0 distribution in the unison case. Remember that our aim
is to characterize the distribution of f0 for each choir sec-
tion rather that obtaining a single f0 value. For each choir
section, we find and interpolate the peak in the spectrum
and consider the peak frequency as the mean frequency of
the distribution and its bandwidth as its dispersion. The
bandwidth is expressed in cents (computed with a refer-

Figure 3: Example frames of the spectrum with the inter-
polated peaks corresponding to the estimated f0s (green
asterisk). The top plot corresponds to a 4-singers audio
input (quartet), while the bottom plot corresponds to the
16-singer audio input (full choir).

ence frequency of 220 Hz) and computed as follows:

f0dispersion = b2 − b1 (1)

where b2 and b1 are the frequency bins around the spectral
peak where the amplitude of the spectrum decays 3 dB.
Note that in this first approach we do not take into account
the window type and size used in the spectral analysis, al-
though they influence the peak bandwidth. In further stud-
ies, we plan to study and document the effect of these two
analysis parameters in the dispersion computation.

Figure 4: Spectrogram (zoomed) of the piece Locus Iste
computed using a Hanning window and N = 4096 zero-
padded to twice its length, resulting in an FFT size of 8192.
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Figure 5: Example frame of the spectrum with the interpo-
lated peaks and the boundaries for the bandwidth compu-
tation.

7. RESULTS

In this Section we present the results of the dispersion anal-
ysis averaged by piece and by choir section. Since the first
step of the presented framework outputs noisy multi-f0 es-
timations, the results of the second step displayed here are
obtained using the ground truth pitch values to locate the
peaks. This allows us to perform a better evaluation of the
dispersion computation method, since the errors that come
from the multi-f0 estimation are not present here. In the
real application, the ground truth pitches would be replaced
by the output of the selected multi-f0 estimation algorithm.
Figure 5 shows another example frame of the analysis, with
the peak interpolation and also vertical lines showing the
bandwidth delimitation.

Table 2 provides the f0 dispersion results averaged by choir
section and piece. BTAS stand for bass, tenor, alto, so-
prano, and Q and CM are short for quartet and choir mix,
meaning that the dispersion values belong to a 4-singers
and 16-singers setting, respectively. We would expect the
dispersion values to be larger in the 16 singers case, be-
cause having several voices producing similar frequencies
might generate wider spectral peaks. The differences on
average are not very strong; however, we conducted an
independent-samples t-test to compare the performances of
vocal quartets with the full choir and found that the differ-
ences were significant. For example, there was a signif-
icant difference in the bass section of the quartet singing
El Rossinyol (M=181,SD=39) and the bass section in the
choir mix (M=191,SD=79), α = 0.05, p < 0.001. This
tendency applies to the whole dataset, although the effect
size is small (around 0.2 on average) and therefore we might
need a deeper analysis to find out if the differences are not
only statistically significant but also relevant in terms of
pitch content.

These results can not be directly compared to any ground
truth, since previous studies modeled pitch dispersion in
different ways, i.e. standard deviation of the distribution
[1] or bandwidth of the partial tones [13]. Instead, we
compare the tendency of the results with the ones obtained
by the authors in a previous study where individual pitch
tracks, and thus accurate individual f0 estimations, were
used [1]. In Table 3 we display the results from the men-

Locus Iste El Rossinyol Niño Dios
Q CM Q CM Q CH

B 231 248 181 191 227 257
(57) (130) (39) (70) 58 175

T 136 140 132 136 143 149
(30) (38) (26) (30) (31) (40)

A 100 104 98 103 105 110
(22) (25) (19) (23) (22) (28)

S 76 79 75 80 78 82
(23) (27) (16) (20) (20) (25)

Table 2: Average f0 dispersion results computed as the
bandwidth of the peaks in the whitened spectrum. Disper-
sion values are in cents. Q refers to a SATB quartet with
one singer per section and CM refers to a SATB choir mix
with 4 singers per section. Values in italics are standard
deviations also in cents.

Soprano Alto Tenor Bass
20.16 22.66 22.22 26.02

Locus Iste El Rossinyol Niño Dios
19.32 27.65 21.33

Table 3: Averaged results of pitch dispersion from [1]. All
values represent dispersion in cents, computed as the stan-
dard deviation of the pitch distribution.

tioned work, where the dispersion is averaged by choir sec-
tion (all three pieces together) and by piece (all four choir
sections together). These results suggest that the disper-
sion (in cents) is higher in the bass section of a choir, which
is also true for our results. Following basses, the presented
results have tenors, followed by altos and finally sopranos,
with the lowest average dispersion. In Table 3 we have al-
tos and tenors with very similar average values, and sopra-
nos also obtained the lowest dispersion values. Therefore,
although the dispersion magnitude can not be compared,
the trend is very similar, suggesting that the analysis is con-
sistent.

After an analysis of the results, we observe that this frame-
work has a few limitations, including that the results highly
depend on the performance of the multi-f0 estimation algo-
rithm employed in the first stage. In this paper we evalu-
ated three algorithms which are considered state-of-the-art
and DeepSalience was selected according to the evalua-
tion we carried out, but we hypothesize that using a system
specially designed for singing voice, and even for choral
singing, e.g. [7] and [9], might improve the performance
of the whole method: if the f0 estimates at each frame are
precise, then the peaks would be modelled correctly (as
happened in the dispersion evaluation), yielding more ac-
curate f0 dispersion values. However, these methods were
dismissed from the final approach because of the length
limitation [7] and because it is not publicly available [9].

The proposed framework models the f0 distribution of a
unison using two values: the f0, extracted in the first stage
and refined in the second stage, and the f0 dispersion. We
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believe these values are a good descriptor for unison per-
formances, but a more complex model incorporating tem-
poral evolution analysis could also be considered and used
to estimate the quality of a choir or in choral synthesis ap-
plications.

8. CONCLUSIONS

In this paper we presented a framework for the f0 modeling
in choral singing recordings that uses a two-stage method-
ology: first, a deep learning based multi-f0 estimation sys-
tem is employed to obtain one pitch value for each choir
section; second, we locate these frequencies in a whitened
version of the spectrum of the input signal with a higher
pitch resolution. This process allows us to model each uni-
son as a distribution of f0, characterized by two values: the
mean f0 and the f0 dispersion. The preliminary results we
obtained do not show strong differences in the dispersion
between a large and a small number of singers, but more
data might reveal different patterns. Since we evaluated
this framework as a case study, more experiments will be
done in the near future, and a deeper analysis of the re-
lationship between the time-frequency representation and
the results will be carried out to make the system more ef-
fective.
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[1] H. Cuesta, E. Gómez, A. Martorell, and F. Loáiciga,
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ABSTRACT

In this work we examine a simple mass-spring system in
which the natural frequency is modulated by its own oscil-
lations, a self-coupling that creates a feedback system in
which the output signal “loops back” with an applied coef-
ficient to modulate the frequency. This system is first rep-
resented as a mass-spring system, then as an extension of
well-known frequency modulation synthesis (FM) coined
“loopback FM”, and finally, as a closed-form representa-
tion that has a form similar to the transfer function of a
“stretched” allpass filter with time-varying delay, but with
the fundamental difference that it is used here as a time-
domain signal, the real part of which is the sounding wave-
form. This final representation allows for integration of
instantaneous frequency in the FM representation and ul-
timately a mapping from its parameters to those of loop-
back FM. In addition to predicting the sounding frequency
(pitch glides) of loopback FM for a given carrier frequency
and time-varying loopback coefficient, or equivalently of
the self-coupled oscillator for a given natural frequency
and coupling coefficient, the closed form representation is
seen to be a more accurate representation of the system as
it does not introduce a unit-sample delay in the feedback
loop, nor is it as numerically sensitive to sampling rate.

1. INTRODUCTION

It is well known that introducing nonlinearities into a linear
system may contribute computational complexity making
it prohibitive for real-time use [1,2]. If, however, the aim is
to apply the dynamic sound effects of nonlinear coupling to
a synthesized sound, prioritizing real-time parametric con-
trol over acoustic accuracy, there are representations in the
literary canon of parametric abstract synthesis techniques
that can be explored. In spirit and purpose similar to [3],
this work explores the relationship between a physically
self-coupled oscillator to the well-known abstract synthe-
sis technique, frequency modulation (FM).

As shown in Section 2, a simple physical model of a two-
degree-of-freedom (2-DOF) mass-spring system that ex-
hibits modal coupling behaviour, can be “abstracted” and
represented as a simplified self-coupled oscillator, one in
which the mass influences its own oscillation in a feed-
back system. Discretization of this oscillator’s displace-
ment, yielding a second-order bandpass filter, is problem-
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atic when the frequency, and thus the filter coefficient de-
pendent on frequency, is made time varying. The system
is shown in Section 4 to be strongly related to FM, and
to resolve issues of filter instability, the self-coupled os-
cillator is presented in terms of a variant of FM so called
“loopback FM” [4] to distinguish it from the related, but
distinct, “feedback FM” [5]. Finally, the closed-form rep-
resentation of the loopback FM oscillator is given, offering
improved numerical accuracy, eliminating the need for a
unit-delay in the feedback loop and, perhaps most advan-
tageous for musical applications, revealing the nonlinear
oscillator’s sounding frequency. The musical application
of this work is explored in a related paper by the same au-
thors, whereby a modal synthesis model of percussion in-
struments is implemented using loopback FM oscillators,
allowing for a linear model to be enhanced by the rich and
dynamic sounds caused by nonlinear modal coupling that
are characteristic of these instruments [6].

2. A COUPLED OSCILLATOR

ℜ{z2}

kk
m m

ℜ{z1}

Figure 1. A two-degree-of-freedom oscillator having two
masses and three springs of equal value, where the dis-
placement of each mass is given by ℜ{z1,2}.

The equations of motion for a two-degree-of-freedom mass-
spring oscillator with mass m and spring constant k are

mz̈1 + kz1 + k(z1 − z2) = 0

mz̈2 + kz2 + k(z2 − z1) = 0, (1)

with displacement of each mass being given by ℜ{z1,2(t)},
and z1,2(t) having assumed solutions

z = Aejωt, ż = jωAejωt, z̈ = −ω2Aejωt, (2)

and where (1) has 2 natural modes of oscillations: one
where A1 = A2:

−ω2A1+ω2
0A1+ω2

0(✘✘✘✘✘✿0
A1 − A2) = 0 and ω = ω0 (3)

and the other where A1 = −A2:

−ω2A1 +ω2
0A1 +ω2

0(✘✘✘✘✘✿2A1
A1 − A2) = 0 and ω =

√
3ω2

0 ,

(4)

454

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



where ω0 =
√

k/m. In addition to the 2 natural modes,
z1,2 may exhibit coupled behaviour (e.g. given a specific
set of initial conditions) in which one mass influences the
oscillations of the other. To explore coupled behaviour, we
begin with a generalized parametric expression in which
frequency is modulated by the oscillations of the system

ω = ω0+d1ℜ{z1}+d2ℑ{z1}+d3ℜ{z2}+d4ℑ{z2}, (5)

where coupling coefficients d1,2,3,4 specify the amount of
frequency deviation contributed by the oscillations of each
mass (considering both real and imaginary parts of com-
plex z1,2). In this work, a special simplified case of (5) is
explored where d2,3,4 = 0 and ω = ω0 +d1ℜ{z1}, and the
oscillator is merely coupled to itself, creating a system that
will be later referred to in Section 4 (and was previously
coined in [4]) as “loopback FM”.

Since frequency ω is now made time varying, the re-
lationship between instantaneous frequency ωi(t) and in-
stantaneous phase θi(t),

ωi(t) =
d

dt
θi(t) and θi(t) =

∫ t

0

ωi(t) dt, (6)

must be considered before defining assumed solution z1:

z1(t) = exp

(
j

∫ t

0

(ω0 + d1ℜ{z1(t)}) dt

)
(7)

a system for which sounding frequency is not as easily pre-
dicted as in (2). Furthermore, if d1 is made time varying,
the sounding frequency will change over time, resulting in
a pitch glide—a known characteristic of nonlinearly cou-
pled systems—having a trajectory dependent on the nature
of the function d1(t).

2.1 Assumed solution

Given the more general assumed solution z1(t) = ejθ(t),
its first and second derivatives with respect to time are
given by

ż1(t) = jθ̇(t)z1(t), (8)

z̈1(t) = jθ̈(t)z1(t) + jθ̇(t)ż1(t)

= (jθ̈(t) − θ̇(t)2)z1(t), (9)

with the angle and its derivatives given by

θ(t) =

∫ t

0

ω0 + d1ℜ{z1(t)} dt, (10)

θ̇(t) = ω0 + d1ℜ{z1(t)}, (11)

θ̈(t) = d1ℜ{ż1(t)}
= d1ℜ{jθ̇(t)z1(t)}
= d1ℜ{jθ̇(t)ℜ{z1(t)} − θ̇(t)ℑ{z1(t)}}
= −d1θ̇(t)ℑ{z1(t)}. (12)

The equation of motion adapted from (1) for a single mass-
spring oscillator

mz̈1(t) + kz1(t) = 0 (13)

in which the spring constant is modulated such that
√

k(t)/m = ω0 + d1z1(t) (14)
k(t) = m(ω0 + d1z1(t))

2 (15)

may be represented as

z̈1(t) + (ω0 + d1z1(t))
2z1(t) = 0, (16)

which, having additional terms 2ω0d1z
2
1 and d2

1z
3
1 , is now

nonlinear in z1. To verify that the interpretation of k(t)
given in (14-15) satisfies the equation of motion for a self-
coupled (feedback) oscillator, equation (9) is first substi-
tuted for z̈1(t) in (16),

jθ̈(t) − θ̇(t)2 = −(ω0 + d1z1(t))
2, (17)

and (12) substituted for θ̈(t) in (17) to yield

−jd1θ̇(t)ℑ{z1(t)} − θ̇(t)2 = −(ω0 + d1z1(t))
2

θ̇(t)
(
jd1ℑ{z1(t)} + θ̇(t)

)
= (ω0 + d1z1(t))

2 (18)

where, by (11), the LHS parenthetical expression in (18) is

jd1ℑ{z1(t)} + ω0 + d1ℜ{z1(t)} = ω0 + d1z1(t) (19)

to finally yield

θ̇(t)(ω0 + d1z1(t)) = (ω0 + d1z1(t))
2

θ̇(t) = ℜ{ω0 + d1z1(t)}, (20)

showing an instantaneous frequency equal to (11) when it
is assumed to be real, thus further showing

√
k(t)/m =

ω0 + d1z1(t) satisfies the equation of motion.

2.2 Implementation of mass-spring oscillator

One known solution for the discretization of the mass-spring
oscillator is using the trapezoidal rule for numerical inte-
gration (or bilinear transform). A version of (13) that is
driven by force function Fk(t) = F (t)/k:

z̈1(t) + ω2
0z1(t) = Fk(t), (21)

has s-transform

s2Z1(s) + ω2
0Z1(s) = Fk(s), (22)

and transfer function

H(s) =
Z1(s)

Fk(s)
=

1

s2 + ω2
0

, (23)

which, when taking the z-transform by substituting s with

c
1 − z−1

1 + z−1
, where c = 2/T without prewarping, yields

H(z) =

(
1

c2 + ω2
0

)
1 + 2z−1 + z−2

1 − 2
c2 − ω2

0

c2 + ω2
0

z−1 + z−2

. (24)

The numerator and denominator polynomials of (24) may
be expressed in polar form as,

B(z) =
(
1 + z−1

)2
(25)

A(z) =
(
1 − az−1

) (
1 − a∗z−1

)
, (26)
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where roots of A(z) (poles of H(z)) are the complex con-
jugate pair having sum

2
c2 − ω2

0

c2 + ω2
0

=
(c − jω0)

2 + (c + jω0)
2

(c + jω0)(c − jω0)
=

c − jω0

c + jω0︸ ︷︷ ︸
a

+
c + jω0

c − jω0︸ ︷︷ ︸
a∗

.

(27)
The gain of filter H(z) is given by

G(ω) = |H(ω)| =
1

c2 + ω2
0

|B(ω)|
|A(ω)| , (28)

where

|B(ω)| =

∣∣∣∣
(
e−jωT/2

(
ejωT/2 + e−jωT/2

))2
∣∣∣∣

=
∣∣e−jωT

(
2 + ejωT + e−jωT

)∣∣
= 2(1 + cos(ωT )), (29)

|A(ω)| =
∣∣∣e−jωT/2

(
ejωT/2 − ae−jωT/2

)∣∣∣ ×
∣∣∣e−jωT/2

(
ejωT/2 − a∗e−jωT/2

)∣∣∣
=

∣∣e−jωT
(
−a − a∗ + ejωT + e−jωT

)∣∣

=

∣∣∣∣−2

(
c2 − ω2

0

c2 + ω2
0

− cos(ωT )

)∣∣∣∣ , (30)

and (28) reduces to

G(ω) =
1 + cos(ωT )

|c2 − ω2
0 − (c2 + ω2

0) cos(ωT )| . (31)

Transfer function (24) is a linear-time-invariant second-
order bandpass filter having, as shown by (31), a spec-
tral peak in the magnitude at ω0 and taking the inverse
transform of (24) yields an undamped sinusoidal oscilla-
tor that closely matches (21). Though (24) is well behaved
for static ω0, it has problems when made time varying. It
could be made tuneable by introducing a loss as in [7], but
this would have consequences when placed in a feedback
system where the loss would accrue.

2.3 Discrete-Time Complex Oscillator

A point in the complex plane zs(0) = Aejφ0 can be made
to rotate with angle ωiT via a complex multiply

zs(1) = ejωiT Aejφ0 , (32)

or equivalently, as shown in [4], using a power preserving
rotational matrix. If ωi is static (indicated here by subscript
s), regular rotations every time sample n = 0, 1, ..., N − 1
produces an oscillator given by the complex sinusoid:

zs(n) = (ejωiT )nAejφ0 = Aej(ωinT+φ0), (33)

having instantaneous phase ωinT + φ0, initial phase φ0,
and instantaneous angular frequency ωi. If however, ωi

is made time varying, the representation in (33) no longer
applies and the relationship between frequency and phase
given in (6) must be considered before defining the oscil-
lator. For example, if the oscillator frequency changes lin-
early from ω1 to ω2 over Td seconds, the instantaneous
phase would be given by

∫ t

0

(
ω2 − ω1

Td
t + ω1

)
dt =

ω2 − ω1

2Td
t2+ω1t+C, (34)
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Figure 2. Though implementing an oscillator via a rotation
of its previous sample (akin to a numerical integration of
frequency) produces a similar result to implementing the
phase analytically (top), there is a difference, and the error
observed (bottom) can compound.

yielding the discrete-time oscillator (by substitution t →
nT ) notably different from (33):

zl(n) = exp

[
j

((
ω2 − ω1

2Td
nT + ω1

)
nT + φ0

)]
,

(35)
where initial phase φ0 is set to the constant of integration
C. It is possible to implement this oscillator via sample-
by-sample rotations of angle ωi(n)T though not of an ini-
tial complex value as in (33), but rather of its current state:

ejωi(n)T zl(n − 1) = ejωi(n)T ejωi(n−1)T , ..., ejωi(0)T Aejφ0

= exp

[
j

n∑

m=0

ωi(m)T

]
Aejφ0 . (36)

The summation in (36) can also be viewed as a numeri-
cal integration of the instantaneous frequency, which, as
shown in Figure 2, comes at a cost of numerical error when
compared to using the instantaneous phase (34) directly.
Though in many cases this error is negligible (and inaudi-
ble), it is the reason why, as discussed in the following
section, it is often preferable to implement frequency mod-
ulation (FM) as phase modulation (PM), especially in cases
where networks of multiple carriers can cause such error to
compound.

3. FM/PM REPRESENTATION

In the well-known synthesis technique first introduced by
Chowning [8], the frequency/phase of an oscillator may be
made to change sinusoidally, introducing sidebands about
a carrier frequency and changing the sound’s spectrum in
a way that’s dependent on the amplitude, phase, and fre-
quency of the modulating sinusoid. In frequency mod-
ulation (FM) synthesis, a carrier oscillator has a center
frequency ωc that is modulated by a sinusoid having am-
plitude d and frequency ωm, yielding instantaneous fre-
quency

ωi(t) = ωc + d cos(ωmt), (37)

where d determines the oscillator’s peak frequency devia-
tion from ωc. Notably, (37) has a form very similar to (5)
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with d2,3,4 = 0, and this will be developed in the next sec-
tion. The corresponding instantaneous phase is obtained
by integrating (37) according to (6), yielding

θi(t) =

∫ t

0

ωi(t) dt = ωct +
d

ωm
sin(ωmt) + φc, (38)

showing that FM may be equivalently expressed as phase
modulation (PM), where it is the initial phase term that is
sinusoidally time varying,

φ(t) = I sin(ωmt) + φc, (39)

with amplitude

I =
d

ωm
, (40)

a value known as the index of modulation because of how
it influences the magnitude of sidebands at fc ± kfm in
the resulting spectrum. FM synthesis is frequently imple-
mented as PM, preferred because of improved numerical
properties (such as those illustrated in Figure 2) and accu-
racy less dependent on sampling rate, with the real signal
being given by

xc(t) = cos(ωct + I sin(ωmt)), (41)

or, as the real part of the complex exponential sinusoids,

xc(t) = ℜ{zc(t)} = ℜ
{

ej(ωct + ℑ{zm(t)})
}

, (42)

where
ℑ{zm(t)} = I sin(ωmt). (43)

Using the complex form has the power-preserving advan-
tage discussed above and in [4], and allows FM to be repre-
sented as a sample-by-sample rotation of its current state,
shown by beginning with (42) at time sample n − 1:

zc(n − 1) = ej(ωc(n − 1)T + ℑ{zm(n − 1)}), (44)

then adding and subtracting ℑ{zm(n)} to its argument

∠zc(n − 1) = j(ωcnT + ℑ{zm(n)} − ωcT

−ℑ{zm(n)} + ℑ{zm(n − 1)})

= ∠zc(n)

−j(ωcT + ℑ{zm(n) − zm(n − 1)})

(45)

so that zc(n − 1) may be represented first as a multiplica-
tion by zc(n)

zc(n − 1) = zc(n)e−j(ωcT + ℑ{zm(n) − zm(n − 1)}),
(46)

and then finally in its causal form

zc(n) = ej(ωcT + ℑ{zm(n) − zm(n − 1)})zc(n − 1).
(47)

Notably, this result is equivalent to taking the derivative
of the phase with respect to continusous-time t to produce
instantaneous frequency,

ωi(t) =
d

dt
(ωct + ℑ{zm(t)}) = ωc +

d

dt
ℑ{zm(t)},

(48)

then using a finite different approximation to obtain its
discrete-time form

ωi(n) = ωc +
ℑ{zm(n)} − ℑ{zm(n − 1)}

T
, (49)

which, when normalized by the sampling period T yields
the angle of rotation in (47).

4. SELF COUPLING AND LOOPBACK FM

Applying the above to the self-coupled oscillator in (5)
where d2,3,4 = 0 and the instantaneous frequency is ωi(t) =
ω0 + d1ℜ{z1(t)}, it is evident from (44 - 47) that this sys-
tem may be expressed as a sample-by-sample rotation of its
current state, where the carrier oscillator is “looped back”
to serve as the modulator of its frequency, with added unit
sample delay necessary for implementation:

zc(n) = ej (ωc + Bωcℜ{zc(n − 1)}) T zc(n − 1), (50)

and modulation amplitude Bωc = d determines the peak
frequency deviation from ωc, while the loopback coeffi-
cient B functions as the index of modulation according to
(40).

A more accurate representation of (50) is expected of one
in which a delay of one sample is not required and which
does not essentially implement a numerical approximation
of the system’s instantaneous phase, as shown by (47 - 49).
Integrating the instantaneous frequency ωc+Bωcℜ{zc(t)}
with respect to continuous-time t yields an alternate repre-
sentation of the system in which the corresponding instan-
taneous phase is given by

θi(t) =

∫ t

0

ωc + Bωcℜ{zc(t)}dt

= ωct + Bωcℜ
{∫ t

0

zc(t) dt

}
. (51)

Though the integral term in (51) may be implemented via
numerical integration to yield the discrete-time representa-
tion of instantaneous phase:

θi(n) = ωcnT + BωcTℜ
{

n−1∑

k=0

zc(k)

}
, (52)

this solution does not improve upon—and in fact is ex-
actly equal to—equation (50) when incorporated into the
phase modulation representation ejθi(n). Furthermore, it
does not provide greater understanding of the system’s be-
haviour, and in particular, reveal at what frequency it will
sound. It is preferable, therefore, to solve (51) analytically.

4.1 Analytic Solution to θi(t) for static B

Figure 3 plots the real part of zc(n) given in (50), show-
ing a periodic signal having a period of M samples and a
sounding frequency of f0 = fs/M Hz, a signal that can
also be described by the real part of

z0(n) =
b0 + ejω0nT

1 + b0ejω0nT
, (53)

where ω0 = 2πfs/M . Equation (53) is similar in form to
the transfer function of the “stretched” allpass filter used in
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Figure 3. The real part of zc(n) given in (50) is plotted
(with offset) for 4 linearly spaced values of B, showing
a nonlinear relationship to resulting period in samples M
(and sounding frequency f0 = fs/M Hz,fs = 44.1 kHz).

0 100 200 300 400 500 600 700 800 900 1000

time (samples)

-1

0

1

2

3

4

5

6

7

8

am
pl

itu
de

 (
lin

ea
r,

 o
ffs

et
 fo

r 
vi

si
bi

lit
y)

Re{z
c
(n)}, B = .9

f
c
 = 2000

f
c
 = 1500

f
c
 = 1000

f
c
 = 500

Figure 4. The real part of zc(n) given in (50) is plotted
with 4 linearly spaced values of fc = ωc/(2π) showing
a linear relationship with resulting period in samples M
(and sounding frequency f0 = fs/M Hz, fs = 44.1 kHz).

[9], though here it is used as a time-domain signal that is a
function of time sample n—a complex oscillator of which
we ultimately take the real part to produce the sounding
waveform. It is also interesting to observe a similarity be-
tween the waveforms in Figures 3-5 and those produced
by feedback amplitude modulation (FBAM) [10] for in-
put cos(ω0nT ), as well as the related time series in [11].
Though the pulse shape and offset are indeed different,
their similarity does suggest further study of their relation-
ship would be worthwhile.

Though Figure 6 shows z0(n) and zc(n) diverging for in-
creased values of fc = ωc/(2π) and B (not shown), this is
improved with increased sampling rate (reducing numeri-
cal error as well as the effect of the unit-sample delay in
(50)), providing confidence that z0(n) is actually the pre-
ferred and more accurate solution to the self-coupled os-
cillator. With this assumption, the integral of zc(t) with
respect to continuous-time t in (51) may now be expressed
analytically by the integral of continuous-time z0(t) (ob-
tained by substitution nT → t in z0(n) given in (53))
which, as shown in Appendix A for static ω0 and b0, is
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Figure 5. Higher values of fc with lower values of B can
produce signals that show low-frequency amplitude mod-
ulation (beating) most prominent here when B = .5 and
fc = 5000 Hz (top). The beat period (≈ 80 samples)
and beat frequency (≈ fs/80 = 551, fs = 44.1 kHz), is
also visible as the frequency difference (bottom) between
higher frequency components closer to the Nyquist limit
fs/2. This strongly suggests aliasing, and artifacts disap-
pear when fs is increased.

given by
∫ t

0

z0(t) dt = b0t +
1 − b2

0

jω0b0
log

(
1 + b0e

jω0t
)
. (54)

Representing the term inside the logarithm in polar form

1 + b0e
jω0t = A(t)eφ(t), (55)

where
A(t) =

√
1 + 2b0 cos(ω0t) + b2

0 (56)

and

φ(t) = tan−1

(
b0 sin(ω0t)

1 + b0 cos(ω0t)

)
, (57)

the real part of (54) may be expressed as

ℜ
{∫ t

0

z0(t) dt

}
= b0t +

ℜ
{

1 − b2
0

jω0b0
(log(A(t)) + jφ(t))

}

= b0t +
1 − b2

0

ω0b0
φ(t), (58)

and the final expression for phase θi(t) in (51) becomes

θi(t) = ωct + Bωcℜ
{∫ t

0

zc(t) dt

}
.

= ωct(1 + Bb0) + Bωc
1 − b2

0

ω0b0
φ(t). (59)
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Figure 6. ℜ{zc(n)} (solid) and ℜ{z0(n)} (broken) show
increasingly less agreement over time for higher fc and
higher B (not shown) as they drift out of phase.

for yet unknown values b0 and ω0, solved in terms of loop-
back FM parameters fc and B in the following section.

4.2 Mapping b0 and ω0 to Loopback FM Parameters

Expressions for parameters b0 and ω0 may be obtained by
first setting the angle of z0(t), well known but derived in
Appendix B as

∠z0(t) = ω0t − 2 tan−1

(
b0 sin(ω0t)

1 + b0 cos(ω0t)

)
, (60)

equal to the instantaneous phase of the loopback FM rep-
resentation given in (59):

ωct(1 + Bb0) + Bωc
1 − b2

0

ω0b0
φ(t) = ω0t − 2φ(t), (61)

where φ(t) is given in (57). Setting linear terms on the left-
and right-hand side (LHS and RHS) of (61) to be equal,
yields one expressions for ω0:

ω0 = ωc(1 + Bb0), (62)

while setting LHS and RHS oscillating terms to be equal
yields a second expression for ω0:

ω0 =
ωcB(1 − b2

0)

−2b0
. (63)

Setting (62) equal to (63) yields the quadratic equation

Bb2
0 + 2b0 + B = 0, (64)

where b0 is given in terms of loopback FM parameter B:

b0 =
±

√
1 − B2 − 1

B
. (65)

Finally, substituting (65) into (62) yields an expression for
ω0 as a function of loopback FM parameters B and ωc:

ω0 = ωc(1 + B
±

√
1 − B2 − 1

B
) = ±ωc

√
1 − B2. (66)

4.3 Allowing for Time-Varying Sounding Frequency

The derivation in the previous section assumes a static loop-
back variable B which, by (66), also produces a static sound-
ing frequency ω0 and static b0. To produce a change in
sounding frequency over time, B must be made time vary-
ing and the expression for z0(t) made more generalized:

z0(t) =
b0 + ejθ0(t)

1 + b0ejθ0(t)
, (67)

where the argument of the exponential terms is the integral
with respect to time of time-varying frequency ω0(t):

θ0(t) =

∫ t

0

ω0(t) = ±
∫ t

0

ωc

√
1 − B(t)2 dt. (68)

and ω0(t) is adapted from (66) for time-varying B(t). Clearly
the expression resulting from (68) is dependent on the na-
ture of function B(t).
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Figure 7. Waveform ℜ{zg(n)} (top) show that introduc-
ing a scalar multiple g to the loopback FM equation (69)
introduces a change in both sounding frequency and am-
plitude. Waveform ℜ{zc(n)} (bottom) shows that setting
the feedback coefficient to B(n) = gn produces the same
pitch change but without imposing an amplitude envelope.

Consider the case where the complex oscillator is multi-
plied by a scalar value g such that when it is looped back,
its amplitude envelope decays exponentially:

zg(n) = gej (ωc + ωcℜ{zg(n − 1)}) T zg(n − 1), (69)

where here B = 1. As shown in Figure 7, and evident
from (69), the system will have both an amplitude envelope
and a time-varying frequency, the latter equal to that of
the loopback FM oscillator (50) in which B is made time
varying with exponential function

B(n) = gn, n = 0, 1, ..., N − 1. (70)

Representing loopback FM with time-varying B(n) instead
of (69) allows amplitude and (sounding) frequency envelopes
to be divorced and independently described. If B(n) is
exponentially time varying according to (70), θ0 may be
adapted from (68) and represented as a function of discrete-
time sample n:

θ0(n) =

∫ n

0

ω0(n)T dn = ±
∫ n

0

ωcT
√

1 − g2n dn,

(71)
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which, as shown in Appendix C, yields final expression

θ0(n) =
ωcT

log(g)

(√
1 − g2n − tanh−1(

√
1 − g2n) + C

)
,

(72)
where C is an integration constant. Of course a differ-
ent solution would result for θ0(n) if B(n) were made to
change linearly with sample n:

Bl(n) = kn + l, n = 0, 1, ...N, (73)

yielding

θ0(n) =

∫ n

0

ωc

√
1 − Bl(n)2 dn

=
ωcT

2k

(
Bl(n)

√
1 − Bl(n)2 + sin−1 B(n)

)
+ C.

(74)

Figure 8 shows the spectrum of z0(n) overlaid with a dark
curve plotting time-varying fundamental frequency f0 =

fc

√
1 − B(n) for B(n) = gn (top) and B(n) = kn + l

(bottom). The close fit between curve and lowest spectral
harmonic shows that the fundamental frequency of loop-
back FM can be accurately predicted for both static and
time-varying B and, in the latter case, use of (72) and (74)
in expression for z0(n) in (67) is valid.
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Figure 8. The spectrum of z0(n) with time-varying
argument θ0(n) overlaid with fundamental frequency
fc

√
1 − B(n) (dark curve) for B(n) = gn (top) and

B(n) = kn + l (bottom), validating use of θ0(n) in
z0(n) for known functions B(n) and showing sounding
frequency of loopback FM can be accurately predicted.

It is clear that when B changes, so does the expression for
θ0, which might be seen as a limitation of this approach,
except that it could be argued there are only a few ways
in which one would expect B to change, and these can
be expressed as functions with more subtle changes being
accomplished via parameters settings. Furthermore, it is
always possible to apply a numerical integration scheme if
an analytical solution is not available.

Finally, it should also be noted that though it is possible
to set a desired trajectory for sounding frequency ω0(t) in
z0(n), there is no guarantee this will be mappable to loop-
back FM parameters and the oscillator given by (50).

5. CONCLUSIONS

This work explored possible representations of the non-
linearly self-coupled oscillator, laying the groundwork for
analysis and synthesis of systems with coupling in multi-
ple modes. Beginning with the physical representation of
the mass-spring system, an implementation of the oscilla-
tor using the bilinear transform is proposed, producing a
biquadratic resonant filter that, without loss, is marginally
stable and not well behaved when made time varying. Nev-
ertheless, the assumed solution for equation of motion with
frequency ω0 + d1ℜ{zt(t)}, which could serve as an im-
plementation when made discrete, is shown to be valid.

The modulation of the oscillator’s frequency is formu-
lated with a variant of FM synthesis called loopback FM,
whereby the carrier oscillator loops back to serve as a mod-
ulator of its own frequency. Because of the integral rela-
tionship between frequency and phase, an alternate more
numerically accurate closed-form representation of the sys-
tem is required to produce an analytical solution to the
oscillator’s phase, ultimately revealing it’s sounding fre-
quency. This closed-form representation of the loopback
FM oscillator is presented first in its static case, yielding
mappings between the parameters of the two representa-
tions, and then in its more general form to allow for time-
varying sounding frequency.
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Appendix A
The integral of z0(t) with respect to t may be represented

as the sum of two integral terms:
∫ t

0

z0(t) dt =

∫ t

0

b0

1 + b0ejω0t
dt +

∫ t

0

ejω0t

1 + b0ejω0t
dt.

(75)
The first term of (75) may be represented by
∫ t

0

b0

1 + b0ejω0t
dt = b0

∫ t

0

(
1 + b0e

jω0t − b0e
jω0t

1 + b0ejω0t

)
dt,

(76)
which, when employing u-substitution where

u = 1 + b0e
jω0t,

du

dt
= jω0b0e

jω0t, dt =
du

jω0b0ejω0t
,

(77)
may be further expressed as
∫ t

0

b0

1 + b0ejω0t
dt = b0t − b0

∫ t

0

b0e
jω0t

u

du

jω0b0ejω0t

= b0t − b0

jω0

∫ u

0

1

u
du

= b0t − b0

jω0
log(u). (78)
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The second term of (75) is given by
∫ t

0

ejω0t

1 + b0ejω0t
dt =

∫ t

0

ejω0t

u

du

jω0b0ejω0t

=
1

jω0b0

∫ u

0

1

u
du

=
1

jω0b0
log(u). (79)

Summing (78) and (79) and substituting values for u in
(77) yields the final expression for the integral of z0(t):

∫ t

0

z0(t) dt = b0t +
(1 − b2

0) log
(
1 + b0e

jω0t
)

jω0b0
. (80)

Appendix B
The angle of an expression have the form

H(θ) =
c + ejθ

1 + cejθ
, (81)

is given by

∠H(θ) = ∠
(
c + ejθ

)
− ∠

(
1 + cejθ

)

= ∠
(
ejθ

(
1 + ce−jθ

))
− ∠

(
1 + cejθ

)

= ∠ejθ + ∠
(
1 + ce−jθ

)
− ∠

(
1 + cejθ

)

= θ − 2 tan−1

(
c sin(θ)

1 + c cos(θ)

)
.

Appendix C
Employing u-substitution where u =

√
1 − g2n and

du

dn
= −1

✁2
(1 − g2n)−1/2

✁2g2n log(g), (82)

it follows that −g2n = u2 − 1 and

dn = −
√

1 − g2n

g2n log(g)
du =

u

log(g)(u2 − 1)
du, (83)

so that θ0(n) in (71) may be expressed as

θ0(n) = ±
∫ n

0

ωcTu dn =
ωcT

log(g)

∫ u

0

u2

u2 − 1
du. (84)

The integral term in (84) may be solved as
∫ u

0

u2

u2 − 1
du =

∫ u

0

(
1 − 1

(1 + u)(1 − u)

)
du

=

∫ u

0

1 du −
∫ (

(1 + u) + (1 − u)

2(1 + u)(1 − u)

)
du

= u − 1

2

∫ u

0

(
1

1 − u
+

1

1 + u

)
du.

Making substitutions

s = 1 − u, ds = −du and p = 1 + u, dp = du (85)

yields
∫ u

0

u2

u2 − 1
du = u +

1

2

∫ s

0

1

s
ds − 1

2

∫ p

0

1

p
dp

= u − 1

2
(log(p) − log(s))

= u − 1

2
log

(
1 + u

1 − u

)
+ C

= u − tanh−1(u) + C,

where C is the integration constant, and the final expres-
sion for θ0(n) is

θ0(n) =
ωcT

log(g)

(√
1 − g2n − tanh−1

(√
1 − g2n

)
+ C

)
.

(86)
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ABSTRACT

This paper presents SonaGraph, a framework and an ap-
plication for a simplified but efficient harmonic spectrum 
analyzer suitable for assisted and algorithmic composition. 
The model is inspired by the analog Sonagraph and relies 
on a constant-Q bandpass filter bank. First, the historical 
Sonagraph is introduced, then, starting from it, a simplified 
(“cartoonified”) model is discussed. An implementation 
in SuperCollider is presented that includes various utilities 
(interactive GUIs, music notation generation, graphic ex-
port, data communication). A comparison of results in re-
lation to other tools for assisted composition is presented. 
Finally, some musical examples are discussed, that make 
use of spectral data from SonaGraph to generate, retrieve 
and display music information.

1. INTRODUCTION

Access to spectral information is crucial for a large number 
of audio-related practices spread along the sound/music 
continuum, such as sound synthesis and processing [1, 2], 
audio restoration [3], composition for acoustic instruments 
(algorithmic/assisted composition [4, 5]), music informa-
tion retrieval [6]. The great majority of available appli-
cations are based on Fourier transform, as implemented 
by the Fast Fourier Transform (FFT) algorithm. The ef-
ficiency (in computational terms) and the effectiveness (in 
terms of results) of the FFT are well known. While data 
gathered via FFT allow for reconstruction and manipula-
tion of the input signal (audio level), they are not imme-
diately suited for perceptual and music tasks, so that vari-
ous post-processing operations are needed to extract mu-
sic information [6]. In contrast to the audio level, this 
higher level, both perceptual and musical, might be called 
–following [7]– sound object level (see also [8]). Start-
ing from FFT data, in order to pass from the first level to 
the second, a double conversion step has to be taken into 
account, that concerns both time and frequency [6]. With 
respect to FFT, time resolution is defined by the hop size 
(the step size in which the window is to be shifted across 
the signal), while the phenomenological one instead con-
centrates on a (not obvious) notion of sound event. The 
other step is required to convert frequencies (in Hertz) into

Copyright: 2019 Andrea Valle. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

a pitch-based representation (a typical but not necessary
example being 12-TET). This step is notoriously problem-
atic because FFT samples frequency in a linear fashion,
while the tonotopic representation in the ear, thus at the
basis of musical practices, is logarithmic. This means that
half of the information output from an FFT concerns, in
perceptual terms, the highest octave, a quarter the second
octave, and so on. In essence, high frequencies are over-
represented and/or low frequencies are under-represented
[2]. Spectral information is typically inspected visually,
and many data visualization softwares and libraries are avail-
able to generate sonographic (i.e. spectrum over time) rep-
resentations. Well-known applications targeted at the mu-
sic domain are Sonic Visualiser [9], Acousmographe 1 , ianal-
yse5 2 : as they all rely on FFT, they all provide a sono-
graphic visualization based on a linear distribution of fre-
quencies. This issue is often partially solved by drawing
logarithmically the frequencies, but since the starting in-
formation is linear with respect to frequency, the result is
usually a sonogram that looks blurred in the low register
while becoming very detailed in the highest one. To sum
up, FFT spectral data are in principle too large and only
partially fitting if the sound object level is at stake. While
typically these issues are practically solved with satisfying
results, still they leave room for different designs.

2. MAIN GOALS AND INTENDED USERS

SonaGraph is a spectral analyzer that, by means of a very
basic design, aims at providing a spectral representation in
form of a sketch, assuming that a sketch results in minimal
but correct, clear and relevant information about a certain
sound object. Because of its barebone structure, such an
analyzer is efficient as it performs a large data reduction.
While not fitted for audio manipulation (because of data
loss), it allows to gather and easily manipulate musically
relevant data from the musician’s perspective (i.e. at the
sound object level). Its design is inspired by the so-called
“cartoonification”, proposed in the audio domain in rela-
tion to the modelling of acoustic behaviour [10]. Cartooni-
fication is a procedure that leads to a drastically simplified
model that nevertheless remains consistent with some gen-
eral principles. SonaGraph is intended as a tool bridging
the audio level to the symbolic one by providing a simpli-
fied spectral data structure that can be easily understood
by musicians without a particularly deep knowledge of the

1 http://inagrm.com/en/showcase/news/203/
acousmographe

2 https://logiciels.pierrecouprie.fr
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Figure 1. Sonagraph tracings: large (left) and narrow
(right) bandwidth filter setting.

mathematics at the basis of more accurate methods and
frameworks (e.g. [11]). As spectral information is imme-
diately converted into pitch, standard music symbolic con-
cepts and operation (e.g. chords and the relative typical
manipulation) can be directly applied by the musician to
spectral data. Moreover, thanks to the one-to-one corre-
spondence between spectral data and music symbols, au-
tomated music notation can be generated easily while pre-
cisely representing the reduced spectrum. In the following,
the general framework is introduced, then an application is
presented. As musicians are the intended target, a compar-
ison with BACH [12], a state-of-the-art tool used by com-
poser in the same context (assisted composition including
spectral analysis and automatic notation transcription) is
provided. Finally, two musical applications are discussed.

3. THE ANALOG SONAGRAPH

The SonaGraph model is inspired by the Sonagraph, an
analog device initially developed at Bell Labs in telecom-
munication field [13] and commercialized by Kay Electric
from the ’50s. The Sonagraph allowed to plot a representa-
tion of sound spectrum over time (a “sonagram”). Its hard-
ware implementation was based on a bank of heterodyne
filters performing a multistep spectrum scan (thus, it did
not work in real time), connected to a stylus that burned
progressively (i.e. frequency by frequency) a special pa-
per foil [13, 14]. Time resolution depended on the (ad-
justable) rotation speed of the cylinder on which the paper
was drawn. Features of the Sonagraph were the possibility
of using two different bandwidths (large and narrow) and
the ability to plot frequencies in a dual mode, that is, lin-
early and logarithmically. Figure 1 shows two examples of
Sonagraph’s tracings for the same signal respectively with
large and narrow bandwidth setting for the filter bank, both
plotted with linear frequency (each tracing also includes
the signal’s amplitude envelope on top).
By making sound structure extensively accessible for the
first time, the Kay Sonagraph allowed fundamental advances
in two domains. The first is acoustic phonetics, starting
from the 1952 pioneering study of Jakobson, Fant and Halle
[15], that, by means of sonagraphic exploration, led to the
acoustic definition of phoneme (even if the very first use
can be traced back to 1947 [16]). The second is bioa-
coustics, and in particular ornithology. Once available,
the Sonagraph immediately became a fundamental instru-

ment for the study of bird singing as it provided visible and
annotable forms to represent the extraordinary variety of
ornithological phonations [14]. For Pieplow, this “golden
age” of the Sonagraph extended for more than forty years,
from 1951 to 1995 3 . A third application has been crucial
for the fate of contemporary music, and thus it is partic-
ularly relevant here. In the domain of acoustic analysis
of music instruments, Leipp made abundant and pioneer-
ing use of the Sonagraph to exemplify a vast set of acoustic
phenomena and music instrument behaviours [17]: Leipp’s
approach was a fundamental pivot for the reflection that
would lead during the ’70s Grisey and his companions to
the technical and aesthetic formulation of Spectralism [18].
The Sonagraph for the first time showed sound as a sort of
virtual score: a form of notation in which notes are re-
placed by continuous graphic elements [19]. Bridging or-
nithology and music, Mâche’s zoomusicological approach
largely relied on sonagraphic traces [20].
Indeed, since more than twenty years the Sonagraph has
been superseded by FFT-based softwares [14]. Interest-
ingly, Leipp [17] strongly supported the perceptual appro-
priateness of the sonagraphic display even if all his exam-
ples were plotted linearly. In the ornithological field, on
the contrary, Marshall insisted with equal emphasis on the
perceptual requirement of a logarithmic frequency display,
due to the tonotopic organization of the auditory system,
a feature common to all vertebrates, including both birds
and humans. For Marshall, linear frequency displaying
was simply “absurd” [21].

4. A CARTOONIFIED MODEL

The Sonagraph provides a reference for a “cartoonified”
model of spectrum analysis based on a filter bank. The
idea of a filter bank that extracts information from audio
signal is actually at the basis of the venerable technique
of the Vocoder, proposed at Bell Laboratories by Homer
Dudley in the late 1920s as a device for representing the
vocal signal (by means of an “encoder”) and then resyn-
thesizing it (through a “decoder” component) [22]. The
main issue with a filter bank technique is that it does not
respect the phase, which is crucial in signal reconstruction.
Hence the digital algorithm of the Phase Vocoder that, as
the name indicates, instead takes into account phase, and
can be seen as a filter bank interpretation of Fourier Trans-
form [23]. While FFT is the standard spectral tool in mu-
sic information retrieval [6], filter bank approaches to fre-
quency decomposition have been proposed as an alterna-
tive [24, 25]. Even if phase is required for signal recon-
struction (i.e. at the audio level), it can be discarded in
case of spectral analysis targeted at musical information
extraction (i.e. sound object level). In relation to this as-
pect, it can be observed that the typical output in terms
of musical information relies on standard music notation
(the so-called common practice notation, CPN). Thus, as
already discussed, if FFT data are gathered, a large data
reduction has to be performed in order to output CPN, and
various techniques have been proposed accordingly [6]. A

3 http://earbirding.com/blog/archives/1229
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cartoonified approach to the problem can be pursued by
reversing the perspective, that is, by starting from output
data, i.e. pitches. While MIDI protocol encodes pitches
in 27 values (0 − 127), typical musical data in CPN are
satisfyingly represented by means of a piano keyboard (88
pitches). In both cases, the amount of data is fairly lower
than typical FFT frequency resolutions. Following a car-
toonified approach, in the SonaGraph architecture (Figure
2) the analysis step is thus performed through a bank of 88
constant-Q bandpass filters, tuned logarithmically in rela-
tion to piano keys (Log filter bank). The rationale for such
a “musical” choice is to achieve a good compromise be-
tween the pitch resolution and the size of the bank, while
covering more than 4 KHz (precisely, 27.5 − 4186 Hz).
The filter bank has an overall tuneable resonance factor
Q (therefore a variable band depending on the central fre-
quency), on the model of the narrow/wide band distinc-
tion of the analog Sonagraph (but more general). Each fil-
ter is connected to an amplitude envelope follower (Amp
follower), as in Dudley’s Vocoder encoder. The output
signal resulting from amplitude following is slightly inte-
grated (Smoother: in fact, a sort of low pass filtering) to
eliminate too rapid variations. While this operation per-
manently compromises phase information, it provides a
clearer information on amplitude variation at the sound ob-
ject level (lower time resolution). Each filtered signal, once
smoothed, is then converted from linear amplitude to deci-
Bel (Converter) and sampled at a regular rate (Sampler).
The sampling rate (sr) determines the spectral time reso-
lution and can be adjusted (as in the variable speed of the
metal drum in the Sonagraph). Appropriate values for sam-
ple rate depend on the analysis’ goals and on the spectral
variation of the signal that is being considered: empirically,
values between 10 and 50 Hz (in this last case, already at
audio rate) provide a good compromise between the sound
object level and audio accuracy. For each sample, the Sam-
pler module returns a vector of 88 values estimated in dB
(hence on, bin), which is stored as a column in a 2D ma-
trix. In the latter, intuitively, rows represent the time do-
main, each containing the values of the sampled signal for
a single filter at rate sr. The two-dimensional signal thus
obtained can be analysed in real-time (Analyzer) or stored
(Archivist) and imported later. With respect to the audio
signal (and the FFT one), Analyzer takes into consideration
an extremely reduced data amount, making the implemen-
tation of operations on the single bin –and more generally
on subsets of the matrix– very simple and computationally
inexpensive, thus fitting real-time operations. For example,
one can easily investigate maxima and minima in spectral
regions by selecting certain frequencies or obtain informa-
tion about spectral peaks, e.g. ranking the first n frequen-
cies in relation to amplitude or with respect to a threshold
(i.e. frequencies with amplitude higher than t).
The SonaGraph cartoonified analysis framework is repre-
sented in Figure 2, region A, while region B depicts some
added functionalities. The frequency resolution is indeed
calibrated on the 12-TET system. The latter is intended
as a standard reference grid providing a uniform percep-
tual pitch sampling as codified by Western practice. But
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Figure 2. SonaGraph architecure.

the filter bank can be easily modified, e.g. it can be tuned
by providing an array of frequencies rather than a uniform
half-tone step (see [26] for a discussion on the relations be-
tween spectrum and tuning) or it can be expanded/reduced
in size. As an example, to reach a quarter-tone resolution,
the bank can be doubled in size in order to double resolu-
tion, or, in a non real-time fashion, two filtering processes
can be run with different tunings, then gathered data can
be properly assembled.

5. APPLICATION DESCRIPTION

The SonaGraph framework has been implemented as a set
of classes for the SuperCollider audio and music program-
ming environment [27, 28]. The latter provides sound pro-
cessing capabilities via its audio server component, but
also GUI programmable elements, MIDI support and a high
level OOP language to manipulate spectral data, thus seam-
lessly bridging audio and sound object level. Moreover,
other functionalities are available via internal access to the
Unix terminal. All the functionalities represented in Fig-
ure 2 are encapsulated in the classes described by Figure
3: boxes represent classes while operations are indicated
by labels written in plain text. Underlined text indicates
the three main operation metacategories: analysis, integra-
tion/communication and graphic export.

SonaGraph is the main class, providing general audio man-
agement (including resynthesis), sampling, analysis, archiv-
ing. In relation to Figure 2 it implements section A plus
Synthesizer and MIDI converter from section B. It also
provides a common unified method interface for the other
classes (integration, in relation to Figure 3). The filter bank
is implemented via second order band pass filters, with a
default (but modifiable) very high Q (= 1000), that has
proven effective. Other audio functionalities include a fun-
damental frequency detection analysis (implementing the
Tartini algorithm [29]), synced to the same sampling rate
of the Sampler, and a bank of sine oscillators and a vir-
tual piano instrument, both to resynthesize spectral data as
a control step (Synthesizer in Figure 2). SonaGraph also
includes MIDI support, both in terms of real-time MIDI
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Figure 3. SonaGraph classes.

 pitch 

 pitch 

Figure 4. SonaGraph interactive GUI (top) and Praat (bot-
tom).

communication (e.g. to MIDI synthesizers, as those sup-
ported by DAWs) and Standard MIDI File (SMF) creation.
The SMF export creates voices by selecting rows in the
sonogram. In order to simplify the MIDI file structure, a
voice grouping algorithm is applied, so that consecutive
pitches having an amplitude greater than a selected thresh-
old are grouped together in a single note.

The SonaGraphGui class supports an interactive GUI for
inspection and playback of the analyzed sound. Its aim is
to help the exploration of gathered data both visually and
aurally. Mainly inspired by Praat GUI 4 , it provides a scal-
able window showing the sonogram (top) and the wave-
form (bottom), and including also a visualization for the
estimated fundamental pitch. Figure 4 shows the Sona-
Graph GUI (top) an the Praat GUI (bottom) for the same
signal (a voice sample: formants are apparent) for sake
of comparison. In the SonaGraph GUI, mouse-pointing
in the window results in a vertical red line indicating the
selected bin and a horizontal one showing the frequency.

4 http://www.praat.org/

Figure 5. HarmoSpectrum GUI.

Figure 6. HarmoEvent onset data in the GUI.

On the left of the vertical line, time is indicated (in Fig-
ure 4: 0.368), on the right MIDI pitch (50), note (D4)
and frequency (146.83) are shown for the selected point.
Space bar allows to start/stop source playback from the se-
lected bin. While clicking, a synthesized short piano note
is generated to provide a reference for the pointed pitch. A
threshold for amplitudes can be set, so that values under the
threshold are not shown. In the SonaGraph GUI, pitches in
red indicate the fundamental pitch estimation (like the blue
line in the Praat GUI, in both cases a label has been added
to the GUIs in Figure 4 to help the reader). Note that for-
mants are highly visible in a speech sound (and help com-
parison between the GUIs), but they do not coincide with
the fundamental pitch.
The HarmoSpectrum class features all the methods for spec-
trum processing, including interactive GUI and music no-
tation generation. Conceptually, it operates on a single bin
while operations on multiple bins (i.e. selecting a bin range
representing more time samples) are handled by SonaGraph
by averaging amplitudes and passing the averaged single
bin to HarmoSpectrum. Data are available to the Super-
Collider language for further manipulation and can be ex-
plored visually through an interactive dedicated GUI (Fig-
ure 5, left). The GUI shows the spectral envelope for the
selected, averaged spectrum (bins 40 to 50 from Figure 4,
left): each component is labelled with MIDI note (top) and
symbolic name (bottom), while octaves are indicated by
vertical lines. By clicking on the window, a piano note
is played back for the selected pitch as a reference. As it
can be seen from spectral peaks in Figure 5, left, the most
prominent pitches in MIDI notation are 47, 48, 50, 51, 52,
60 (49 is just under the selected threshold). Given an am-
plitude threshold, they can be viewed directly in musical
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Figure 7. Generated notation imported into GUI.

notation by invoking a dedicated method that exploits the
LilyPond environment for notation description and type-
setting [30]. The method writes LilyPond code on a tempo-
rary file, renders it by calling the LilyPond executable via
Unix terminal, and loads the rendered image into a window
(Figure 5, right). By clicking on the window, the chord is
played back using a synthesized piano. The LilyPond code
can be written on a user-specified file so to remain acces-
sible for further usage.
HarmoEvent performs some basic operations on sonogram
evolution over time in order to recognize discontinuities.
As the only information is the spectral one, it detects an
“event” by comparing the difference between averaged am-
plitudes of adjacent bins. Two parameters are available:
a threshold value for minimum amplitude difference, and
minimum distance (in bins) between events. While very
crude, this operation implements a typical approach to on-
set detection by spectral-based novelty function (or spec-
tral flux, [6]). Once detected, events can be automatically
visualized in the GUI (see vertical orange lines in Figure
6, that also demonstrates different displaying threshold and
ratio with respect to Figure 4). A segmentation procedure
is available that split the signal between adjacent onsets,
thus obtaining event sub-signals: it applies a minimum en-
velope to avoid clicks, and exports the resulting event sig-
nals to audio files.
As already discussed, CPN visualization and export are
crucial in bridging spectral content to music application.
Following the model discussed for HarmoSpectrum, Son-
aGraphLily manages the mapping from sonographic data
(rather than spectral snapshots) to music notation by gen-
erating LilyPond code. It creates LilyPond text source
files, renders them as graphic files and –if needed– loads
them into GUI for real-time playback. Automatic gener-
ation of notation is a complex topic, and various heuris-
tic approaches have been proposed [31, 32]. In our case,
the threshold setting for filtering out lower amplitudes is

time (seconds)

0 1

Oct Hz

9 4186.01

8 2093

7 1046.5

6 523.25

5 261.63

4 130.81

3 65.41

2 32.7

Figure 8. A PostScript rendering.

crucial in order to avoid cluttered notation. Two solutions
are provided by the SonaGraphLily class. In the first case,
voices are created from sonogram pitch rows and displayed
on separate staves. While this visualization is useful from
an analytical point of view, the number of voices may esca-
late quickly (with default values, up to 88), thus becoming
visually unmanageable. A second solution groups notes
according to a standard piano notation, with much more
(but potentially too much) compact results. For sake of
comparison, Figure 7 shows for the same audio sample
(again, the one from Figure 4) the two notations as loaded
in the GUI. As in SMF export, a voice grouping algorithm
is applied (not applicable in Figure 7). The voice-based
notation window (Figure 7, top) has been cut to 7 voices
(of 16) for sake of readability. The transcription algorithm
transparently maps the sonogram’s time resolution by as-
signing a semiquaver duration value to each bin. Tempo
is thus calculated by taking into account the sample rate
(here, 12 Hz = 12/4× 60 = 180 bpm), while meter is set
to 4/4. In Figure 7, the rendered notation files are loaded
into a GUI, that allows for playback using both synthesized
piano (for note data) and the original audio sample (as a
comparison), providing also a crossfade slider for variable
mixing (spec/snd, spectrum vs sound).
Finally, the PsSonaGraph class is dedicated to graphical
export of the sonogram, using the standard (but customiz-
able) grey scale for plotting amplitudes of frequencies over
time. It creates a PostScript file [33] from analysis data
with adjustable graphic parameters, and converts it into
PDF format via terminal utilities. Figure 8 shows a PostScript
output from the sonogram in Figure 4, by setting a higher
amplitude threshold. It includes reference octave and fre-
quency annotations at each side of the red lines.

6. A SHORT ANALYTICAL COMPARISON

Although cartoonified, to an informal perceptual apprecia-
tion the frequency resolution of SonaGraph provides use-
ful and adequate clues on the spectral information of the
sound taken into account, even if the model per se is un-
doubtedly oriented specifically towards harmonic informa-
tion. In order to further verify the results, in this section
two automatic transcriptions from spectral data over time
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Figure 9. Music notation transcription for “trumpet”.

into musical notation are compared. In particular, the com-
parison has been performed between SonaGraph and Au-
diosculpt 5 /BACH [12]. In Audiosculpt, FFT data are pro-
cessed via partial tracking, in order to filter out amplitudes
lower than a selected threshold. The resulting SDIF file
is imported into the BACH library for Max/MSP that al-
lows for pitch interpretation of spectral data. As BACH is a
state-of-the-art tool in assisted composition, it shares with
SonaGraph the same purpose and intended users. Four
mono files have been taken into account. With the aim of
comparing the two systems, samples have been chosen to
represent spectral configurations with different features in
relation to different acoustic situations (harmonic/inharmonic,
monophonic/polyphonic, music/environment). All sound
files have been normalized previously to the analysis pro-
cesses. The analysis by SonaGraph has been performed
according to the previous discussion, with a sample rate
= 50 Hz and by selecting all amplitudes> −30 dB. Such a
sample rate results in a very high tempo = 750 bpm, as the
rationale in this case (rather than in Figure 13) is not to pro-
vide a performance indication but to capture spectral trans-
formation. In BACH, a time quantization is introduced,
so that it matches the SonaGraph’s one for sake of com-
parison, both in terms of tempo, note value quantization
(16th) and meter (4/4). BACH’s pitch resolution has also
been constrained to half-tones (standard MIDI notes). As
it is possible to export from BACH music notation as Lily-
Pond code, results can be easily compared (even if BACH
export uses a single treble clef, while SonaGraph a piano
staff). Figures 9-12 show the transcriptions for four au-
dio samples. Amplitude threshold for SonaGraph example
is kept at −30 dB, while Audiosculpt/BACH threshold is
adjusted so to provide comparable examples. As apparent
from the examples, BACH and SonaGraph makes use of
two opposite enharmonic transcription strategies, respec-
tively assigning [ and ] alterations. Temporal misalign-
ment in terms of notation results from implementation de-
tails, depending on a fixed offset at initialization, and, if
relevant, is indicated by a dashed line.
Results are substantially the same if a harmonic spectrum
is taken into account, as in the case of a melodic trum-
pet phrase (Figure 9). Figure 10 shows the transcrip-
tion of a sample from a wind turbine, presenting some har-
monic components over a very noisy background. In this
case, while generally coherent, transcriptions have proven
to strongly depend on amplitude threshold. The SonaGraph’s
one (bottom) is strongly sensitive to some higher frequency
components that characterize the sound attack. They can

5 http://anasynth.ircam.fr/home/english/
software/audiosculpt
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Figure 11. Music notation transcription for “octandre”.

be revealed in the Audiosculpt analysis by lowering the
threshold, but many other frequencies then become rel-
evant for transcription. This clearly shows that the two
analysis model have a different sensitivity. The same situ-
ation applies to Figure 11, a transcription from an excerpt
from dense orchestral sound (a tutti in ff from Varèse’s
Octandre). While the overall material is approximatively
the same, sensitivity to amplitudes varies between the two
analysis. A general difficult case for spectral analysis is
related to noisy sounds. Figure 12 shows a transcription
from a coin tossed on a hard surface, with no clear har-
monic content. While both transcriptions capture a generic
energy accumulation in the same higher frequency region,
details in terms of pitch sensibly vary.
In conclusion, transcriptions in both environments are sub-
stantially coherent, sometimes revealing more or less clearly
various perceptual details, as a result of the different sen-
sitivities to amplitude. While the BACH system is gener-
ally more flexible, the automatic notation, relying on FFT,
is generated by a hidden process, not directly accessible
to the musician. On the other side, SonaGraph data, while
simplified, are directly mapped into notation, and their ma-
nipulation by the user can be transparently observed into it.

7. MUSICAL EXAMPLES

A first straightforward musical application of the Sona-
Graph framework has occurred in the piece/installation Orolo-
gio da rote 6 . The piece is a reflection on signals broadcast
in the Italian mediascape and includes a set of music quota-
tions from historical jingles from RAI, the Italian national
public broadcast service. It is scored for 3 modified radios
and an automated piano, in particular a Yamaha Disklavier
that can be driven by MIDI messages. Once collected from
various sources, both acoustic signals and music jingles
have been analyzed via SonaGraph and the resulting spec-
tral data stored. During the performance, data are con-
verted into MIDI, and MIDI messages sent in real-time to

6 https://soundcloud.com/vanderaalle/
orologio-da-rote
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Figure 12. Music notation transcription for “coin”.

11. Codex Faenza - Ensemble Organum
De toutes flours
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Omen duration: 16.02 sec x 8 = Total duration: 2'08''16

Notes:

 1 

 2 

 3 
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5 

Figure 13. Omen notation for Haruspex cledonomans, 11.

the Disklavier (with amplitudes mapped onto velocities).
Most of the piano material is thus a sort of spectral (and
ghost-like) reconstruction of existing sounds, not dissimi-
larly from Peter Ablinger’s Speaking piano 7 .
A second project has involved SonaGraph in composition
and heavily relies on music information retrieved from gath-
ered data. The work Haruspex cledonomans is a collection
of “ominous formulas” for improvisation written for ad li-
bitum improvisers 8 . Each piece of the collection is a for-
mula that describes information for two logical music lay-
ers, the “omen”, written in standard music notation, and the
“prophecy”, to be constructed/improvised while the omen
is playing. Omens originate from 43 short audio phrases
extracted from recordings of various composers/musicians,
including classic, jazz, rock and ethnic sources. All the
fragments have been analyzed via SonaGraph. In each
analysis, the sample rate has been matched by ear to be
approximatively synchronized to music pulse. Then, the
spectral data have been automatically transcribed into mu-
sical notation, disregarding octaves so that only pitch classes
are present (i.e. chroma). Omens are intended as the back-
ground layer for improvisation, and in each piece informa-
tion extracted from the sonogram is provided to the mu-
sician(s) as a guide for the “prophecy” improvisation. As
a consequence, some basic MIR techniques have been ap-
plied to SonaGraph analysis data. Figure 13 shows one of

7 https://ablinger.mur.at/speaking_piano.html
8 https://soundcloud.com/vanderaalle/sets/

haruspex-cledonomans

the omens. The whole notation is generated automatically
from processed spectral data by means of LilyPond (as de-
scribed before) and the Python-based Nodebox graphic en-
vironment 9 , with Python code scripted from SuperCol-
lider. In Figure 13, the five blocks provide various in-
formation for the improviser. While blocks 2 and 3 de-
pend on different compositional parameters (here not rel-
evant), blocks 1, 4 and 5 are directly generated from Son-
aGraph data. Block 1 provides the omen notation in CPN
(as discussed before). While the omen has to be played by
the background musician, notation also includes a possible
chord interpretation of note clusters (i.e. simultaneous col-
lections of more than 2 notes), intended as a guide for the
improviser. An analysis step is performed by a specialized
class, not yet included in the framework core, ChordAn-
alyzer. Chords are specified in a template list collecting
abstract chord structures (e.g. a major chord is indicated as
{0,4,7}). Templates have been compiled from various mu-
sic theory sources. If a cluster is found and if it matches a
certain chord structure, then the relevant chord indication
is written on top of the staff. Chord analysis works enhar-
monically and disregards chord position. Block 4 (“Pitch
class relevance”) displays the chroma set with symbolic
names, varying the font and the circle sizes proportion-
ally to the amount of occurrences of each pitch class in
the sonogram. It thus indicates to the improviser possible
pivot notes to be taken into account. Finally, block 5 is
a visualization of the omen as a piano roll. It allows to
quickly understand chroma distribution over time. Time is
proportional to duration, so that the piano rolls of the var-
ious ominous formulas are scaled proportionally to their
absolute durations. On top, a histogram provides an over-
all indication of the number of pitches for that time unit
(“amount”), as a general density information.

8. CONCLUSIONS

The SonaGraph framework proposes a cartoonified (i.e.
simplified but effective) model for spectral analysis ori-
ented toward computer-assisted and algorithmic compo-
sition. Geared toward symbolic applications, it extracts
spectral information that, while strongly reduced, is still
adequate perceptually. Such a reduction makes the model
efficient in terms of data storage and manipulation, and
suitable for real-time usage. Thus, it can be easily inte-
grated into a pipeline connecting sound to music appli-
cation, in terms of symbolic representation (music nota-
tion and MIDI). In short, while sketchy, the gathered data
are transparent to music manipulation (sound object level)
rather than to sound (audio level). The SuperCollider code
of the actual implementation (still in progress) is available
on GitHub 10 and includes help files with examples.
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[20] F.-B. Mâche, Musique, mythe, nature ou Les dauphins
d’Arion. Paris: Klincksieck, 1983.

[21] J. T. Marshall, “Voice in communication and relation-
ship among brown towhees,” The Condor, vol. 66,
no. 5, pp. 345–356, 1964.

[22] H. Dudley, “The Carrier Nature of Speech,” The Bell
System Technical Journal, vol. XIX, no. 4, pp. 495–
515, 1940.

[23] M. Dolson, “The Phase Vocoder: A Tutorial,” Com-
puter Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[24] M. Müller, Information Retrieval for Music and Mo-
tion. Heidelberg: Springer, 2007.

[25] C. Schörkhuber and A. Klapuri, “Constant-Q Trans-
form Toolbox for Music Processing,” in Proceedings of
7th Sound and Music Computing Conference, X. Serra,
Ed. Barcelona: SMC, 2010.

[26] W. Sethares, Tuning, Timbre, Spectrum, Scale. Lon-
don: Springer, 2005.

[27] S. Wilson, D. Cottle, and N. Collins, Eds., The Super-
Collider Book. Cambridge, Mass.: The MIT Press,
2011.

[28] A. Valle, Introduction to SuperCollider. Berlin: Lo-
gos, 2016.

[29] P. McLeod and G. Wyvill, “A smarter way to find
pitch,” in Proceeding of the 2005 International Com-
puter Music Conference, X. Serra, Ed., Barcelona,
2005, pp. 138–141.

[30] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a
system for music engraving,” in Proceeding of the XIV
CIM 2003, Firenze, 2003, pp. 167–172.

[31] D. Byrd, “Music notation software and intelligence,”
Computer Music Journal, vol. 18, no. 1, pp. 17–20,
1994.

[32] A. Valle, “Integrated Algorithmic Composition. Fluid
Systems for including notation in music composition
cycle,” in NIME 2008: Proceedings, 2008, pp. 253–
256.

[33] Adobe, PostScript Language Reference, 3rd ed. Read-
ing, Mass.: Addison-Wesley, 1999.

469

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Sound in Multiples: Synchrony and Interaction Design using
Coupled-Oscillator Networks

Nolan Lem
Center for Computer Research in Music and Acoustics (CCRMA) Stanford University

nlem@ccrma.stanford.edu

ABSTRACT

Systems of coupled-oscillators can be employed in a va-
riety of algorithmic settings to explore the self-organizing 
dynamics of synchronization. In the realm of audio-visual 
generation, coupled oscillator networks can be usefully ap-
plied to musical content related to sound synthesis, rhyth-
mic generation, and compositional design. By formulating 
different models of these generative dynamical systems, 
I outline different methodologies from which to generate 
sound from collections of interacting oscillators and dis-
cuss how their rich, non-linear dynamics can be exploited 
in the context of sound-based art. A summary of these 
mathematical models are discussed and a range of appli-
cations are proposed in which they may be useful in pro-
ducing and analyzing sound. I discuss these models in re-
lationship to one of my own kinetic sound sculptures to 
analyze to what extent they can be used to characterize 
synchrony as an analytical tool.

1. INTRODUCTION

Coupled Oscillators networks are dynamical systems that 
describe how ensembles of interacting elements are able 
to self-organize and synchronize over time. In terms of 
sensory perception, they have been examined in a wide 
range of fields including those related to rhythmic entrain-
ment, biomusicology, psychoacoustics, signal processing, 
and generative music [1, 2]. In the field of computer mu-
sic, there have been a plethora of synthesis techniques that 
attempt to generate interactive and collective phenomena. 
These include techniques related to additive and granular 
synthesis, microsound, swarm models, texture synthesis, 
physical modeling synthesis, and statistical signal process-
ing [3–5]. Previous work in coupled oscillators as a gener-
ative musical devices has been explored by Lambert where 
he looks at coupled oscillators as a "stigmergic" model, 
producing complex output through an audience’s interac-
tion with a system of coupled Van der Poll oscillators [6]. 
Operating within a similar territory, this paper proposes 
several generative paradigms to create sound in different

Copyright: c© 2019 Nolan Lem et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

synthesis and rhythmic schemes. Lastly, I describe one of
my own kinetic sound sculptures that was inspired from the
system dynamics of a specific coupled oscillator model.

2. MATHEMATICAL DESCRIPTION

Coupled oscillators are a broad category of interacting dy-
namical systems that describe a wide range of natural phe-
nomena such as firefly synchronization, pace maker cells,
neural networks, and cricket chirping models [7, 8]. One
of the most basic coupled oscillator models is known as
the Kuramoto model [9]. In this formulation, the govern-
ing equation for each oscillator’s phase is shown for the
ensemble in Equation (1)

φ̇i = ωi +
K

N

N∑

j=1

sin(φj − φi − αo) (1)

where φi is the phase of the ith oscillator and φ̇i is the
derivative of phase with respect to time. ωi is the intrinsic
frequency of the oscillator, i, in a population of N oscilla-
tors. K is the coupling factor and the sin(φj − φi) term
is the phase response function that determines the interac-
tion between each oscillator and the group. We can add
a phase offset or "frustration" parameter αo in the phase
response function to force oscillators into different phase
orientations or to account for a time delay in the model.

As a visual description, it’s useful to describe the system
by the movement of a "swarm of points" moving about a
circle, each point representing one oscillator with its own
intrinsic frequency drawn from a probability distribution,
g(ω) (which is generally taken to be a unimodal gaussian
distribution).

Figure 1. "Ensemble of coupled oscillators represented in
a circle map as a "swarm of points" moving about a circle
[7].
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Depending on the g(ω) from which the oscillators are
drawn, Kuramoto was able to show that in the limit as N
goes to∞, the critical coupling, Kc, will define the point
at the which the system will undergo a phase state tran-
sition characterized by collective synchrony. This critical
coupling, Kc is shown in Equation (2)

Kc =
2

πg(0)
(2)

where g(0) is the mean of the distribution of initialized
intrinsic frequencies in the set of ωi. If K > Kc the os-
cillators’ phases will begin to spontaneously align and the
system state can be said to be characterized by synchrony.

We can extract the complex order parameters, R (phase
coherence) and ψ (average phase) to solve for the system
in the limit as N goes to ∞. This modifies the govern-
ing equation to be in terms of a mean-field approximation
of the oscillators’ phases: each oscillator is no longer be-
holden to the phase of every other oscillator but is coupled
to the ensemble’s summed, average phase. This is shown
in Equation (3).

Rejψ =
1

N

N∑

i=1

ejψi (3)

The phase coherence R is a good indication of the syn-
chrony of the system at large: when R = 1 the system
exhibits complete synchrony (all phases are aligned) and
when R = 0, the oscillators are desynchronized (points
are simply running around the circle at their own intrinsic
frequency, ωi). Applying these complex order parameters
to Equation (1), we form Equation (4).

φ̇i = ωi +KR
N∑

j=1

sin(ψ − φi) (4)

We can add an external forcing term by adding another
term with a different phase response function, Λe(φi) as
shown in Equation (5).

φ̇i = ωi + Λe(φi) +KR sin(ψ − φi) (5)

Now the system equations demonstrate a trade-off be-
tween frequency alignment by external forcing and phase
alignment by the attractive coupling as a function of their
phase response curves. We can choose Λ(φ) to be from
any distribution but certain functions are associated with
different system behavior. For example, if we let Λ be a
"sawtooth interaction function" [10], we can force the os-
cillators into a "incoherent state" where all oscillators will
settle on the same frequency but with a constant phase off-
set, αo, as seen in Equation (1). Depending on N, this will
space out the oscillators to have a constant phase offset,
0 < φc < 2π.

More complex behavior can emerge when we let ωi, K,
N and Λ(φ) of Equation (5) become a function of time
as well. Additionally, even more complex behavior arises

when we let K take on different values between different
micro-ensembles of coupled oscillators.

The complex order parameters are simply one way to
evaluate the group synchrony of the system. Frank and
Richardson’s "cluster phase method" uses the complex or-
der parameters to derive another degree of synchronization
in multi-variate time series [11]. These have implications
in different sonification, synthesis and rhythmic schemes
that result from the aforementioned generative model.

3. COUPLED OSCILLATORS AS GENERATIVE
SONIC DEVICES

Using this coupled oscillator model, we can extend these
different parameters and states to synthesize sound on a
continuum of collective rhythms both at the beat and sam-
ple level. As a general paradigm, rather than solving these
N th order equations analytically (which computationally
can become intractable rather quickly), we can generate
the system output using numerical analysis and employ it
to generate sound in several different ways. As such, we
can modify the rate at which the system is generated and
map the output to sonic parameters in different perceptual
time scales. This is the crucial link that maps a theoretical
mathematical system to the sensory phenomena of audi-
tory processing. For this end, this approach can be looked
at as a sonification of the data that operates on a temporal
spectrum.

3.1 Sound synthesis with Coupled Oscillators

3.1.1 Additive Synthesis

Because these non-linear oscillators trace out sinusoidal
trajectories, the most basic synthesis method would be to
simply treat the system as an oscillator bank where each
oscillator’s instantaneous phase is a signal amplitude at
an audio rate. As the system begins to self-organize and
phase-align, their collective entrainment would be perceived
as a collection of sine waves of different initial frequen-
cies emerging to a single frequency over time. As the cou-
pling coefficient is increased to reach Kc, Fig. 2 shows
the power spectrum of a group of oscillators becoming en-
trained to the center frequency of a gaussian distribution of
oscillators from 0 to 5 kHz. Here we can see how oscilla-
tors with intrinsic frequencies near the center of frequency
distribution are recruited (or entrained) first whereas oscil-
lators near the tails of the distribution take longer to syn-
chronize to the mean frequency.

We can also replace the external forcing in Equation (5)
with the frequency content of audio that could drives the
individual oscillators. In this synthesis model, the oscil-
lators could act as a Nth order filter bank with center fre-
quencies determined by their assignable intrinsic frequen-
cies. This differs from a phase vocoder model insofar as
the center frequencies of the filter bank are not fixed in
frequency but are coupled according to some schema and
therefore allowed to deviate by some amount.

471

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



Figure 2. Ensemble of 100 sinusoidal oscillators becoming
entrained to a frequency at the center of the distribution.

3.1.2 Spectral Processing

Other more complex synthesis techniques can be derived
from extracting instantaneous phase from an input audio
file using instantaneous frequency estimation techniques
where the signal can be decomposed into a collection of
instantaneous phases (via a Hilbert Transform and phase
unwrapping). We can apply coupling between the instan-
taneous phases using coupled oscillator dynamics to per-
form transformations on the temporal or spectral informa-
tion. For example using a FFT interpretation of the phase
vocoder model, we can divide the time-varying signal into
several spectral bands and–after unwrapping each chan-
nel’s instantaneous phase–apply band-limited coupled os-
cillator networks to modulate their instantaneous phase forc-
ing them to become entrained to a center frequency within
the spectral band over time. Because the critical coupling
of Equation (2) is a function of the intrinsic frequency dis-
tribution set by g(ω), we can populate these spectral re-
gions of the input spectrum with oscillators drawn from a
gaussian distributions with µ centered around the FFT bin
center frequency. This has the effect of encouraging oscil-
lator synchronization within the channel-dependent (band-
limited, constant-Q) region. In this synthesis scheme, the
external forcing function, Λe(φi), is passed the instanta-
neous phases extracted from each of the spectral bands by
the FFT. An example is shown in Fig. 3 where a flute
playing a major scale is resynthesized using the aforemen-
tioned method. This example makes use of 130 oscillators
split into 10 coupled groups where coupling is increased
over the duration of the sound file ultimately resulting in
full synchrony per band-limited group.

Ultimately, this coupled-oscillator phase vocoder model
would allow the frequency content of an input audio sig-
nal to modulate and synchronize the frequency content (or
spectral entrainment) of the source sound. Sounds that are
characterized by spectra that conforms to certain harmonic
relationships could force the coupled oscillators into differ-
ent periodic or synchronous states. Clearly, because this
method utilizes phase vocoding analysis, it would work

Figure 3. Spectrum of flute playing a major scale (top).
Phase vocoder coupled oscillator resynthesis using ten
coupled oscillator networks (bottom).

best with analysis techniques that prioritize horizontal phase
coherence over vertical phase coherence.

3.2 Rhythmic Generation: Coupled Oscillators as
Control Signals

We can use the dynamics of the coupled oscillator system
to control rhythmic generation or musical parameters. The
idea of synchronization lends itself well to many aesthetic
ideas of minimalist and procedural music where musical
parameters are slowly modulated over time.

If we set the coupled oscillator ensembles to be iterated
at a rate that is well below a sampling rate suitable to audio
synthesis, we can use Equation (5) to trigger audio events
when the instantaneous phase of each oscillator φi encoun-
ters a zero-crossing. To accomplish this, we can trigger an
"audio event" using the basic sonification scheme detailed
in Equation (6) below.

audio event(φi) =

{
1, if φi−1 < φi

0, otherwise
(6)
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Therefore, as each oscillator completes one cycle (crosses
the zero-point of the circle), they trigger a sound such as
the playback of a sample. The system generates complex
rhythmic behavior when different groups of oscillators take
on different coupling coefficients to form microensembles
that are locally coupled. When the system parameters are
modulated over time, the system can be forced into differ-
ent polyrhythmic relationships that converge and devolve
over time.

This could also be meaningfully applied to musical forms
by allowing the instantaneous phase of each oscillator to
control the position of a virtual "playback" head of a rhyth-
mic figure to create complex temporal canons that can be
brought together in temporal unison by adjusting the cou-
pling coefficients over time. Similarly in the realm of syn-
thesis, we could allow the instantaneous phase to control
the playback (or the index of a buffer) of a sampled sound
file in a buffer. In this paradigm, the system produces con-
trol signals to modulate parameters of a piece of music.

4. SONIC PHENOMENA AND COUPLED
OSCILLATORS

If these mathematical models are sufficiently generalizable
and applicable to musical analysis, they can describe and
generate a plethora of meaningful musical techniques with
examples taken from contemporary music composition and
sound art. Perhaps the most axiomatic example demon-
strating collective perceptual entrainment is Györgi Ligeti’s
Poème Symponique” (1962) for 100 metronomes [12]. In
this piece one-hundred metronomes are pre-wound, set to
different tempos, and then triggered en masse. As each
metronome comes to rest at different times, the dynam-
ics of the ensemble at large are well modeled using a un-
coupled oscillator model where each metronome is set to
a different ωi. As different auditory streams of periodic
rhythm are presented concurrently, the listener latches onto
different frames of temporal reference where a sense of
beat (induction) emerges from their competing periodic
stimuli. Modifying Ligeti’s original piece by coupling the
metronomes by placing them onto a low-friction surface
such as a table with wheels, the mechanical movements
of the pendulums will begin to couple their swinging mo-
tion to one another. If coupling is sufficiently strong, the
metronomes will become phase-aligned to tick at a mean
frequency [13].

The simultaneity of periodic rhythms characterized by
Poème Symphonique can also be well applied to the anal-
ysis of acoustic crowd dynamics where researchers have
used coupled oscillator models with spatial mean-field cou-
pling to account the physics of crowd applause [14]. This
acoustic phenomena bears resemblance to many stochas-
tic generative methods that are capable of modeling the
sound of natural phenomena (e.g. rain, hail, wind, etc.).
However, the potential of the system to be controlled to
self-organize over time might allow for interesting forms of
collective synchrony that emerge amidst the dense acous-

tic textures characterized by nature. In terms of acoustic
signalling in animal populations, coupled oscillator sys-
tems have been used to describe many different forms of
biomusicological phenomena particularly those related to
chorusing and stridulation [1,15,16]. Using research from
these biomusicological models, generative chorusing syn-
thesis that incorporate coupled oscillator synchronization
methods could be an interesting avenue of exploration in
sound generation and user interface design.

4.0.1 Compositional Techniques

In terms of music analysis and composition, coupled oscil-
lator dynamics of synchrony can be thought of as a tempo-
ral canon in which different fugal patterns are stretched and
compressed over time to conform to a governing tempo-
ral duration. In the minimalist genre, the rhythmic “phas-
ing” effect in Steve Reich’s music (e.g. “Clapping Mu-
sic”, “Come Out”, “Piano Phase”) could be approximated
by a coupled oscillator model that converges in and out
of synchrony. "Phasing" could be accomplished by set-
ting an ensemble of oscillators with different initial phases
but the same intrinsic frequencies and phase-aligning them
over time. Reich himself has intuited that in this composi-
tional technique, “[t]he listener becomes aware of one pat-
tern in the music which may open his ear to another, and
another, all sounding simultaneously and in the ongoing
overall texture of sounds." [17]. His formulation of pattern
as rhythm reinforces similar perceptual notions of Ligeti’s
Poème Symphonique insofar as that the listener has access
to simultaneous layers of competing perceptual informa-
tion and that auditory feedback allows certain phenomena
to take precedence over others.

Lastly in the field of sound-based art, several contempo-
rary artists have experimented with auditory phenomena
that is well-modeled by coupled oscillator systems. These
include works by Zimoun, Pei Lang, and Céleste Boursier-
Mougenot [18]. These artists are known for their use
of multiples of sound objects set in repetitive motion to
create large masses of sound from simple additive means.
For instance, Zimoun’s installation-based work employs
hundreds of kinetic objects to construct complex sound
masses in physical environments. Taken to the extreme,
these sound sculptures make use of a material-oriented ad-
ditive synthesis that could be approximated by dynamical
system models.

5. MODELLING SYNCHRONY THROUGH
SCULPTURAL FORM: HIVEMIND

The rich musical dynamics inherent in coupled oscillator
networks have inspired my own sonic investigations in an
attempt to experiment with how to exploit these systems
in physical, sculptural form. Much of my understandings
of coupled oscillator dynamics in sound have been through
the development of computational models that have allowed
me to interact with this dynamical system through mathe-
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matical analysis and numerical analysis 1 . For these pieces,
I’ve written programs to explore numerical analysis (python),
user interaction in real-time (SuperCollider), and perfor-
mance based programs (CHuCK) to allow me experiment
with the system behavior under different parameterizations.
This repository also hosts several synthesis implementa-
tions mentioned in section 3.1.

5.1 Audio-visual Resonance: "Hivemind"

Figure 4. "HiveMind" at Pioneer Works Brooklyn,NY.
video: https://vimeo.com/127874298

Figure 5. Kinetics of audio-visual resonance of "Hive-
Mind" sound sculpture: clay bowls as driven coupled os-
cillators

"Hivemind" explores the sonic potentials of ceramics by
revealing the pitched resonance of porcelain bowls using a
coupled-oscillator mechanical system. Two reciprocating
platforms are populated with over 300 clay vessels with
marbles placed about the inner bowls. By modulating the
speed of the applied pushing motion (see Fig. 5), this
piece surveys the acoustic potential of ceramic as mate-
rial by exposing the audio-visual "resonance" of different
bowls. When this pushing motion matches the natural ro-
tational frequency of the bowl’s topography, the marble be-
gins to rotate and loop with more velocity thereby ampli-
fying the characteristic resonance of the bowl. Because
each bowl contains a different resonant frequency, clus-
ters of similarly-sized bowls can be amplified to create
slowly-changing bell-like sonorities. The pushing motion
of the two platforms drive the system into different dy-
namic states to form a time-based composition of audio-
visual resonance.

1 for more information, see my code repository: https://
bitbucket.org/no_lem/kura-python/

From the perspective of coupled oscillation, the recipro-
cating platform can be thought of as a type time-dependent
external forcing factor, Λe(φi, t) from Equation (5) that
drives the system. Because the marbles’ motion are be-
holden to this external force, each bowl can be looked at
as a resonant filter at some center frequency determined by
their shape. The input to these filters is simply the pushing
motion by the reciprocating platform and their audible out-
put is the sum of their (damped) oscillations. Even though
the individual marbles are not explicitly coupled to one
another, they resonate in concert with the frequency (and
amplitude) of the external sinusoidal pushing force. To ex-
plicitly couple the oscillators, one would have to resort to a
different physical implementation that would allow the in-
stantaneous phase of each physical object to interact with
the others.

6. CONCLUSIONS

This paper looked at the extent to which coupled oscillators
can be useful to describe a wide range of musical phenom-
ena by demonstrating several ways in which they model
synchronous auditory phenomena. There’s still much terri-
tory to be explored in this area of applied musical research.
For instance, this paper only looked at one such synchro-
nization scheme–the Kuramoto model–to describe a type
of self-organization. There are several other synchroniza-
tion models (pulse-coupling, sync and swarm models, Van
Der Poll oscillators, etc.) that could be exploited in the
context of art and music generation. Similarly, this pa-
per only briefly mentioned several applications related to
digital signal processing, rhythmic generation, or music
perception. One particularly promising area of research
is neural resonance theory in the context of beat induc-
tion and meter perception as posed by Large [2]. As
an outgrowth of dynamic attending theory, his canonical
model accounts for the entrainment of endogenous cor-
tical rhythms from the acoustic rhythms of the external
world [19]. More importantly, his canonical model is de-
rived from a coupled-oscillator model of dynamical sys-
tems. Future research learning how to integrate these no-
tions of perceived beat and rhythm into different generative
models would be well served in the area of music creation
and sound art.
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   At the same time, a significant body of research 
literature addressing jazz improvisation has been 
developing over the last couple of decades. This work 
includes topics on jazz storytelling [5], including 
references on the concept by well known jazz musicians 
and scholars. Some [6] introduce the concept of re-telling 
to refer to the re-working of a standard, based on a 
famous recording of a master, stressing the important 
tension between individual voice and tradition. Others [7] 
explore machine learning of jazz grammars, using basic 
building-blocks or  “slopes,” touching upon the antitheses 
of abstraction versus vocabulary, and attempting to 
codify harmonic tension. 
   A relevant work that focused on Sonny Rollins’s 
thematic improvisation [8] will be explored further, 
below. 
    Weimar’s  Jazzomat Research Project [9] has produced 
several databases of annotated solos and licks, including 
the “Dig That Lick” database. Studies on the use of pat-
terns in jazz [10],  [11], have stressed the importance of 
auditory and motor patterns organizing into a stored 
menu of pattern libraries.  
   Researchers at the Georgia Institute of Technology 
have been developing robotic applications of computer 
improvisation [12] that are informing and are being in-
formed by our work.  
   Francois Pachet in 2001 produced The Continuator, 
later developed in the European project MIROR 
(mirorproject.eu) [13], focuses on learning sequences by 
linear analyses of input patterns and phrases to generate a 
response. Improvisations have been generated in real time 
based on input of musical sequences [14]. Explorations 
on the improvisers’ thought processes during a duo [15] 
have attempted to reveal the intent and the scheme or 
scenario behind an improvisation. Musical passage 
coding as  “phrase” and “variation” has been used to 
assist a music program to acquire “common sense,” [16], 
while a very interesting interview of Ornette Coleman by 
Jacques Derrida touches on the relationship between 
language and jazz improvisation.1   
  All the above approaches deal with a structural analysis 
of jazz improvisations, thus studying the jazz vocabulary 

1http://www.ubu.com/papers/Derrida-Interviews-Coleman_1997.pdf
Interview originally appeared in French in the magazine Les In-
rockuptibles no. 115 (20 aout-2 septembre 1997): 37-40,43. 

ABSTRACT 
“Jazz mapping" is a multi-layered analytical approach to 
jazz improvisation. It is based on hierarchical segmenta-
tion and categorization of segments, or constituents, ac-
cording to their function in the overall improvisation. The 
approach aims at identifying higher-level semantics of 
transcribed and recorded jazz solos. At these initial stag-
es, analytical decisions are rather exploratory and rely on 
the input of one of the authors and experienced jazz per-
former. We apply the method to two well-known solos, 
by Sonny Rollins and Charlie Parker, and discuss how 
improvisations resemble story-telling, employing a broad 
range of structural, expressive and technical tools, usually 
associated with linguistic production, experience, and 
meaning. We elucidate the implicit choices of experi-
enced jazz improvisers, who have developed a strong 
command over the language and can communicate ex-
pressive intent, elicit emotional responses, and unfold 
musical “stories” that are memorable and enjoyable to 
fellow musicians and listeners. We also comment on po-
tential artificial intelligence applications of this work to 
music research and performance. 

1. INTRODUCTION
1.1 Goals: The project aims at advancing our current un-
derstanding of jazz improvisation and, by extension, of 
musical creativity. It introduces and applies a musical 
language-mapping scheme that can support the creation 
of a large annotated corpus of transcribed solos, assist in 
the pedagogy of improvisation and serve as a reference 
point in human and artificial musicianship research. The 
utility of the approach may also extend to research in 
other domains that explore hierarchical sequential data 
and real-time decision making, such as generative model-
ing of natural language and speech. 
1.2 Related work: Formal music analysis is usually 
concerned with breaking the musical surface into 
segments based on similarity, and with studying how 
these are put together syntactically as a piece of music 
unfolds in time, thus attributing internal cohesion [1] 
Semiotic analysis (paradigmatic and syntagmatic) is a 
typical example of a method which categorizes segments 
according to similarity [2] Paradigmatic analysis has been 
computationally modeled in the past [3], [4]. 
Copyright: 2019 Dimitrios Vassilakis et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 3.0 
Unported License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited.
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and syntax, but they are not progressing deeper into the 
semantics of the language. 
   Based on the above approaches, and while we 
acknowledge that the topic of semantics in jazz might be 
too complex to describe with a formal syntactic analysis, 
we make a first attempt in interpreting the various 
constituents that result from the analysis, together with 
their function and style in the improvisation, expanding 
into issues of semantics, syntactical analyses, story telling 
and thematic development.  
1.3 Proposed outcome: The “jazz mapping” project has 
potential implications to machine learning and Artificial 
Intelligence (AI) system development. It can provide 
means for AI to manage in a human-like way the essen-
tial human tension among past, present, and future char-
acterizing all decision-making. This potential can be real-
ized through “teaching” an AI system the rules that gov-
ern annotation and how these rules dynamically interact 
and change when actualized as experienced present or 
“now”.  
   We will begin by identifying and adapting to jazz im-
provisation musical contexts basic human communication 
tools/codes, concepts and structures such as: question and 
answer/call and response, fragment, lick, phrase, thematic 
development, short/long, memorable or abstract, and ref-
erences among phrases. A similar approach can potential-
ly be used to explore concepts such as harmonic tension, 
phrasing, articulation, expressiveness, sonic character or 
“sound,” etc., to generate jazz solos much like a jazz im-
proviser/storyteller would, using layers of multi-
reference.  
   A pattern database will be also created as those anno-
tated phrases licks, fragments and patterns will have mul-
tiple uses on “describing” or “outlining” chords and 
chord sequences helping to address issues like originality 
and personal voice and different approaches of players 
like vertical versus linear, voice leading versus modal or 
free.   
 

2. THE JAZZ MAPPING APPROACH  
2.1 Constituents in syntactic analysis. 
 
In order to analyze an improvisation through mapping we 
propose a novel method which consists of the following 
levels: Jazz improvisational structural elements and map-
pings, thematic analyses by defining segments, licks and 
phrases and annotation of syntax and structure. 
 
In our analysis, we define 3 types of constituents, listed 
here by increasing duration and/or complexity: 

1. Segment 
2. Lick 
3. Phrase 

Each of the constituents found would carry a tag describ-
ing the function in the improvisation, such as: re-
sponse/answer, reference, or new idea. 
 
2.2 Definitions 
 
Below we attempt a definition for each constituent, bear-

ing in mind that this is not a fully formal approach yet, 
therefore the criteria for a constituent to belong to a cate-
gory are not fully explicit, and rely to some extend on the 
context of the piece under analysis. 
   
Segment: very short but salient theme, fragment, angu-
lar/linear/long single note, usually one bar (e.g. the the-
matic seed in John Coltrane’s “Love Supreme” Ex.1).  

Ex.1    
(John Coltrane goes on to build part of his solo using this 
fragment in different keys).  
Segment duration does also depend on tempo; visual ana-
logue: a Lego piece or a brick. 
 
Lick: a memorable theme usually between two and four 
bars (e.g. Ex.2, the opening in Charlie Parker’s “Now’s 
The Time”).  

 
Ex.2 
 Lick is longer than a segment and shorter than a phrase 
(again, dependent on tempo, typically not longer than 
four bars); often musicians transpose favorite licks in a 
variety of keys to enhance their “vocabulary” in a certain 
style; can also be used as “mannerisms” to reference an-
other performer or style; visual analogue: a larger, more 
salient and recognizable structure such as a door or a 
window.  
 
Phrase: longer sequence of notes2 that may or may not 
contain discernible segments or licks; visual analogue: an 
entire room or part of a space that can contain 
legos/bricks, doors, windows, etc. 
 
Here is Ex.3, Dexter Gordon’ s 7 bar long phrase from 
“Cheesecake”. 
 

 
Ex.3  
 
Additionally a constituent, according to its function, 
would acquire one of the following characterisations:  
a response/answer to a previous element in the same 
piece (reaction to an internal/local musical event), 
a reference to a previous element in the same piece (allu-

                                                             
2 Our initial focus on horn solos imposes a maximum phrase duration 
based on breath capacity, which can, of course, be exceeded when using 
circular breathing techniques. 
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sion to an internal/local event), or an independent new 
idea. In terms of score annotation for the mapping we use 
S for segment, L for lick, P for phrase, different colours 
for each one, plus r for reference/relationship, a for an-
swer/response, while location is described with brackets. 
 

3. ANNOTATION SYNTAX 
In annotating the above constituents as a piece unfolds in 
time, i.e. syntactically, we developed textual annotations 
to describe constituents and their locations. 

3.1 Location 

Location is annotated as “measure number and beat num-
ber within the measure”. For example, location “1.3” 
means” third beat of the first measure”. Longer durations 
are annotated analogously. For example, an element’s 
duration of  "1.1 - 2.4" means that the element starts on 
beat 1 of measure 1 and ends on beat 4 of measure 2.  

3.2 Constituents and Qualifiers 

Segment = S(Index, Reference, Response) 
Lick = L(Index, Reference, Response) 
Phrase = P(Index, Reference, Response)  
 
Index: numerical order of appearance of a structural ele-
ment  
Reference: 1,2,3… = a first/second/third reference; 0 = 
not a reference 
Response: 1,2,3… = a first/second/third response; 0 = not 
a response 
If both Reference and Response are 0 the element quali-
fies as a New Idea. 

3.3 Annotation Example 

For Measure 1 in Sonny Rollins’s “St. Thomas” we 
would write 1.1 - 1.4; S(1, 0, 0) to indicate: 
beats 1-4 of measure 1 outline the first distinct segment 
of the piece which is not a reference or response to any 
other element but a new idea. 
For Measure 2 we would write 2.1 - 2.4; S(1, 0, 1) to 
indicate: beats 1-4 of measure 2 constitute the 1st re-
sponse (and not a reference) to the 1st segment, which 
was introduced in measure 1. 
For Measures 15-17 we would write 15.1 - 17.1; S(1, 2, 
3) to indicate: the portion beginning at measure 15, beat 1 
and ending at measure 17, beat 1 constitutes the 2nd ref-
erence and 3rd response to the 1st segment. 

3.4 Additional definitions  

*: Mannerism 
A segment, lick, or phrase that exemplifies a performer’s 
style; a structural element that sounds like a quintessen-
tial Sonny Rollins, Charlie Parker, or any artist passage. 
For example: S(1,0,0)* describes the piece’s 1st segment, 
which is neither a reference nor a response, nor a wholly 
new idea but, rather, a stylistic mannerism, pointing to a 
specific style characteristic to an artist or genre.   

This designation helps differentiate between references to 
elements within a given solo and references to the per-
forming artist's "memory bank." 
The following Ex.4 is a Parker mannerism on “Now’ s 
The Time”, that we see in a more elaborate version below 
at our analyses of “Au Privave”. 

 
Ex.4 
 
**: Quote 
A segment that directly incorporates a well-known and 
recognizable structural element from another piece (e.g. a 
theme from Beethoven’s 5th symphony, a lick from a 
Jazz standard or a well-known pop song, or another play-
er’s favorite phrase. 
   The use of quotes in jazz improvisation is happening 
often so if the quotes are properly labelled inside a well-
formed database of phrases, fragments and licks, then we 
can annotate adding specifically the source of the quote 
and a double asterisk: S(1,0,0)**. 

4. ANNOTATION EXAMPLES 

4.1 Sonny Rollins solo on “St. Thomas”. 

Score analyses with brackets and annotation definitions. 
(We also use colors to help identify the constituents 
Segment=green, Lick=red, Phrase=blue): 
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Annotation: 
 
1.1 - 1.4; S(1, 0, 0) 
2.1 - 2.4; S(1, 0, 1) 
3.1 - 3.4; S(1, 0, 2) 
4.1 - 5.1; S(1, 0, 3) 
5.2 - 5.4; S(1, 1, 0) 
6.1 - 6.4; S(1, 1, 1) 
7.1 - 7.2; S(1, 1, 0) 
7.3 - 8.1; S(1, 1, 2) 
8.2 - 9.1; S(1, 1, 3) 
9.3 - 13.2; L(1, 0, 0) 
13.1 - 13.3; S(1, 2, 0) 
13.3 - 13.4; S(1, 2, 1) 
14.2 - 14.4; S(1, 2, 2) 
15.1 - 17.1; S(1, 2, 3) 
17.1 - 17.4; S(1, 0, 0) 
17.4 - 18.2; S(1, 0, 1) 
18.2 - 18.4; S(1, 0, 2) 
19.1 - 19.4; S(1, 0, 3) 
20.1 - 21.2; S(1, 0, 4) 
21.3 - 24.4; L(2, 0, 0) 

25.1 - 32.1; P(1, 0, 0) 
31.4 - 32.1; S(1, 3, 0) 
32.3 - 33.4; L(3, 0, 0)* 
34.2 - 35.4; L(3, 0, 1) 
36.1 - 37.1; S(2, 0, 0) 
37.3 - 37.4; S(2, 0, 1) 
38.3 - 39.4; L(4, 0, 0) 
41.1 - 42.4; L(5, 0, 0) 
44.1 - 52.1; P(2, 0 ,0) 
53.2 - 53.3; S(3, 0 ,0) 
54.2 - 57.2; L(6, 0, 0) 
57.4 - 59.4; L(7, 0, 0) 
60.1 - 61.4; L(3, 1, 1) 
62.1 - 63.4; L(7, 0, 2) 
65.1 - 69.3; P(3, 0, 0) 
69.4 - 71.4; L(8, 0 , 0) 
72.1 - 73.1; L(8, 0, 1) 
73.3 - 74.4; L(9, 0, 0) 
75.1 - 76.4; L(10, 0, 0) 
77.1 - 79.4; L(11, 0, 0) 
80.1 - 81.1; S(2, 1, 0) 
 

4.2 Charlie Parker solo on “Au Privave”. 

Score Analyses: 
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Annotation: 
 
1.1 - 3.4; L(1, 0, 0) 
4.4 - 5.3; S(1, 0, 0) 
5.4 - 6.3; S(1, 0, 1) 
7.1 - 11.4; P(1, 0, 0) 
12.4 - 19.4; P(2, 0, 0) 
20.1 - 23.1; L(2, 0, 0)* 
23.2 - 24.1; S(2, 0, 0) 
24.2 - 25.1; S(2, 0, 1) 
25.2 - 27.4; L(3, 0, 0) 
28.1 - 29.4; L(4, 0, 0) 
30.1 - 31.1; L(4, 0, 1) 
31.4 - 33.1; L(5, 0, 0) 
33.3 - 35.4; L(6, 0, 0) 
36.1 - 37.4; L(7, 0, 0) 
 
4.3 Comments on the 2 solos 
 
For this paper we analyzed 2 solos from different periods 
of jazz and from different players. We see a much longer 
solo on Sonny Rollins, as it is later hard bop period, and 
he is thus able to expand into thematic development, 
while Charlie Parker takes a much shorter solo on the 
blues but he is the one who presented the new bebop lan-
guage that forms the basis of modern jazz improvisation 
to this day. He doesn’t refer back to himself like Sonny 
was able to do later on, he introduces new ideas and also 
plays one of his favorite phrases on the double time that 
since then has become a sort of parkerism for the jazz 
community. We have a sense that Parker was able to play 
so much “music” in a very short solo, while Sonny on a 
longer solo creates movement, interest and innovation by 
his thematic development approach.  
   We see how Sonny Rollins uses the opening segment to 
built thematic development in many instances of the solo, 
not only as related segments, but also as part of licks and 
longer phrases. These elements mark a great development 
in the syntax and the story telling of a jazz solo. 
Both players share the love of the blues, a very basic el-
ement in jazz improvisation and their both have a great 
swing “feel”. 
   Many of the above segments, licks and phrases are part 
of the jazz vocabulary of today and we witness here the 
development of jazz from two masters of their art, who 
among others defined the language and also created a 
very strong personal voice.   
 

5. METHODOLOGY DISCUSSION 
 
5.1 Sequential information (Thematic development) 
 
   Identifying locations in time for each element provides 
the structural skeleton that can support future automation 
of such analyses and AI-system-generated thematic de-
velopment. 
   For example a sequence may proceed as:  
Segment, answer, answer, lick, related segment, answer, 
repeat, original segment, new lick, new segment, answer, 

phrase(that may or may not contain previously intro-
duced segments or licks), first lick reference, answer etc. 
   Codification of sequential development may also find 
applications in speech analysis and several temporal art 
forms. 
 
5.2 How to call and answer 
 
There are plenty of instances of this paradigm in improvi-
sation. What we would learn is the transformation func-
tion that takes us from the initial structural element (such 
as the segment, lick, or phrase) into the response.  
Similarity or contrast can both form the basis of a ques-
tion/answer procedure.  
   We also have information that describes the sequence 
of the responses so we could learn how the first response 
differs from the second, or the third, and so on. 
For example, in the first 4 measures of Sonny Rollins on 
St. Thomas we see there is an initial segment, a response 
segment, a 2nd response segment, and a third response 
segment. In this example each response has more notes 
than the previous. Such trends are learnable. 
 
5.3 Transformations or referencing and embellishing 
 
   This has similarities to the call / response paradigm. 
However, a reference to a previous element is not neces-
sarily a “response” but can serve a different thematic 
structure function. 
   Repeated phrases: here we either annotate as the same 
segment/lick/phrase, but in the case of small alterations to 
the original then this again is mapped as reference and 
answer. 
 
5.4 Hierarchical 
 
Three examples to look out for: 
a) Combine segments to create licks 
b) Combine licks to create phrases 
c) Freely combine all three elements 
While there are instances where a lick or phrase is made 
of smaller elements, not every lick or phrase can be de-
scribed this way. Often, licks and phrases are original and 
do not reference other elements. 
 
5.5 Structural interchange 
 
Cross-reference among the three identified structural el-
ements provides another means of thematic development 
during improvisation. Our analytical approach can cap-
ture this feature through double annotation on the specific 
bar or bars. See, for example, the end of Lick1 and 
Phrase1 on the Sonny Rollins solo where he ends restat-
ing the 1st segment idea. 
 
5.6 Voice leading concept 
 
In be-bop, hard-bop and modern jazz styles voice leading 
is frequently used to end or connect licks, phrases and 
themes. In a more open, modal or free playing this is not 
so evident. Rather, harmonic tension, sound, articulation 
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and note density within phrases provide the most im-
portant cues. We anticipate that an upcoming multi-
layered mapping will address this issue. 
 
5.7 Emotion and creativity 
 
Emotion: A common mechanism in music, also employed 
here, is creating patterns of tension and release that play 
with the listeners’ expectations. 
   To what extent something can be characterized as inter-
esting or emotional is contingent on what preceded it and 
what, eventually, follows. A player known for a specific 
style or mannerism – say, a linear approach – can inhibit 
expectations by switching to a vertical approach, or by 
inserting unexpected pauses, long notes, or sound effects. 
Variations such as these that increase interest and elicit 
affective responses are manifestations of the performer’s 
creativity and capacity to unfold a musical improvisation 
as a compelling story. 
 
5.8 Inspiration 
 
One way to approach “inspiration” could be in terms of 
compelling, unexpected structures that arise out of ran-
domness. As jazz musicians deal with randomness, if 
suddenly - in playing or practice - we get a struc-
ture/phrase that stands out in terms of being memorable 
or highly organized/structured then we recognize this as 
inspiration that usually becomes a new composition or a 
favorite mannerism. 
 
5.9 Thematic development and multi reference 
 
References to previous elements, whether as straight re-
peats or augmented, diminished, displaced, or otherwise 
modified, can be considered a form of self-reference. 
Feeding a database of such manipulations and thematic 
developments to machine learning algorithms can support 
the development of AI systems that exhibit self-
referential behavior and, by extension, apparent self-
awareness. 
 

6. CONCLUSIONS 
We have proposed an analytical method that supports 
systematic annotation of a wide variety of jazz solos and 
can reveal the musical language characteristics of indi-
vidual players and styles. The annotated constituents per 
solo will eventually feed a database of musical segments, 
licks, and phrases that can imply and outline a specific 
chord or a longer harmonic progression. We anticipate 
that this database will enhance the “bag of tricks” of the 
jazz player and help the jazz educator explain jazz styles, 
performers’ personal voices, and characteristic manner-
isms. 
   In jazz, performers always strive to develop a personal 
voice that can stand next to that of the masters. The 
knowledgeable player or listener can usually identify, 
after only a few notes, a master performer who has de-
veloped language and mannerisms that are immediately 
evident. 

    A personal voice consists of sounds and sound struc-
tures with certain recognizable and personal qualities that 
function as a performer’s signature. The mappings sup-
ported in this study can help reveal and codify these sig-
natures and organize them into systematic categories. 
   Further work is required to better define stylistic con-
stituents, flexible enough to codify a broad range of styles 
and personal voices. As we proceed, we will seek the 
insights of top jazz improvisers, worldwide, and assess 
the resulting database through AI machine learning and 
performance.  
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ABSTRACT

In this work, we propose the task of automatically estimat-
ing pitch (fundamental frequency) from video frames of 
violin playing using vision alone. Here, we consider only 
monophonic violin playing (where only one note is being 
played at a time).
In order to investigate this task, we curate a new dataset of 
monophonic violin playing. We propose a Convolutional 
Neural Network (CNN) architecture that is trained using a 
student-teacher strategy to distil knowledge from the audio 
domain to the visual domain. At test time, our network 
takes video frames as input and directly regresses the pitch. 
We train and test this architecture on different subsets of 
our new dataset.
We show that this task (i.e. pitch prediction from vision) is 
actually possible. Furthermore, we verify that the network 
has indeed learnt to focus on salient parts of the image, e.g. 
the left hand of the violin player is used as a visual cue to 
estimate pitch.

1. INTRODUCTION

Humans can obtain some understanding of music simply 
by watching instruments being played, even without access 
to audio recordings of the music itself. Indeed, a trained 
musician might be able to transcribe an entire video purely 
from visual cues alone, although with great painstaking 
manual effort. The movement and position of the instru-
ment and body (specifically the movement of the arms, 
hands and fingers) have a direct correlation with the sound 
produced. In this work, we investigate the following ques-
tion: is it possible for a trained neural network to identify 
the pitch of played notes, simply from the frames of a silent 
video?

Our approach is a valuable first step towards the task of 
complete visual music transcription. While audio based 
music transcription is a widely studied and successful field, 
the task of visual music transcription has not been explored 
to a great extent. Performing this task from standard frame-
rate visual information alone can be extremely useful in 
instances when the audio is of poor quality, missing, or 
mixed with information from other audio sources, e.g. in

Copyright: c© 2019 A. Sophia Koepke et al. This is 
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Figure 1. Pitch estimation from visual information. Given
video frames, the network is tasked to predict pitch using
only the visual information.

the case of polyphonic music. These scenarios are chal-
lenging for purely audio-based pitch estimation methods.

We investigate this by training a network to predict pitch
information from video frames of monophonic solo violin
recordings using only the visual image data (see Figure 1).
Given a set of video frames, the network learns to regress
the corresponding pitch. In order to perform this challeng-
ing task, our method makes use of two insights. First, us-
ing a teacher-student strategy (i.e. training one network us-
ing another network [1]) is important to enforce that the
network learns the visual cues that are correlated with the
corresponding sound. Second, using multiple frames as
input (i.e. a short silent video clip) is preferable to using a
single still frame. This is because the additional frames re-
solve ambiguities such as which string is vibrating (i.e. the
string that is being played on with the bow). These insights
inform our architecture choices, described in Section 3.

The models are trained and evaluated on a new dataset
(Section 4) of violin playing. This dataset is divided into
three subsets which vary in difficulty. The first two subsets
are recordings of a single player photographed by a fixed
mobile phone camera. The third subset consists of ‘in-the-
wild’ videos downloaded from YouTube.

On all of these datasets, our method demonstrates that re-
gressing pitch directly from video frames is indeed possi-
ble (Section 5). Finally, we verify that the method is mak-
ing sensible predictions by investigating what regions of
the image are most salient for the prediction. We find that
our method focusses on the movement and location of the
musician’s arms, hands and fingers; this is similar to how
a human would approach this task.
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Figure 2. An overview of the visual pitch estimation method. We train our framework with a student-teacher strategy by
distilling discriminative knowledge from a teacher network to a student network. The teacher network regresses pitch from
audio whereas the student network is trained to regress pitch from visual information alone. Both networks are trained using
pseudo ground-truth pitch information which is automatically extracted using an audio-based method and thereby does not
require any manual annotation. The audio to pitch network is trained first and then used to train the frame to pitch network
(student) by minimising the distance between the activations of the final three fully-connected network layers of the student
and the teacher network. At test time, given one or multiple visual input frames, the student network is used by itself to
regress pitch. In the case of multiple input frames, the outputs of the first convolutional layers of the student network are
concatenated and fused through a 3D convolutional layer (Fusion module) before being input to the next convolutional
layer.

2. RELATED WORK

Here, we only consider directly related work on cross-modal
information transfer between audio and visual information.
Multi-modal audio-visual representations. Training strate-
gies that encourage synchronisation between the audio and
visual streams have been used successfully for speech syn-
chronisation [2]. More generally the correspondence be-
tween the audio and visual streams (though not their strict
synchronisation) has proven very useful for obtaining mean-
ingful features for sound localisation and separation [3, 4].
In these works, the natural synchronisation in videos can
be leveraged in a self-supervised manner to obtain useful
image and audio representations. Aytar et al. [5] also ex-
ploit this natural synchronisation property in order to trans-
fer knowledge from visual recognition networks into sound
networks. However, we propose a framework that transfers
knowledge the other way round, i.e. from audio to visual
information.
Cross-modal audio-visual generation. Related to our frame-
work are methods that generate audio from visual infor-
mation, e.g. spectrograms or other sound features from vi-
sual information [6–10], or localise sound in video in order
to separate different sounds [11, 12], or analyse vibrato-

patterns for audio-visual association [13].

The URMP dataset by Li et al. [14] is targeted at cross-
modal audio-visual generation. However, it poses two lim-
itations for our task. Firstly, the image resolution of the
released dataset is not very high which makes it difficult to
actually recognise pitch from the visual information alone,
as the key parts of the image (e.g. the fingers of the left
hand) are too small. Secondly, the dataset was recorded in
constrained settings with only a limited number of musi-
cians which limits the generalisability of models trained on
this data to other settings. Therefore, in addition to training
and evaluating our models on the URMP dataset, we gath-
ered a new dataset to train and test our framework that is
of higher resolution and which also contains ‘in-the-wild’
videos.

Music transcription from silent video. More closely re-
lated to ours is the work by Gomez et al. [15] which pro-
poses to leverage visual information to transcribe clarinet
videos using the hand movements in recorded video se-
quences. However, unlike their method, we do not require
any manual tracking or labelling (i.e. finger/hole positions)
as supervision in order to train our network.

Zhang et al. [16] addressed a similar task to ours of visu-
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ally obtaining pitch for violin by detecting the strings of a
violin and by recognising finger events (such as their posi-
tion and whether they are pressing on a string). However,
their method is quite constrained; it involves tracking the
fingers and the strings, and makes assumptions about the
length of the fingerboard which requires the image data to
always be perfectly aligned. In contrast, our method gives
convincing results for different viewpoints and requires no
manual labelling.

Another related method is the physics-based approach for
recovering pitch from silent guitar video by Goldstein and
Moses [17]. However, their method requires mounting a
camera, that allows recording with high frame rates, on the
guitar itself in order to use the actual string vibrations to
predict pitch. Unlike their method, our set-up only requires
the use of a normal camera and it learns to localise the left-
hand position of the musician (relative to the instrument)
in order to infer pitch. Our method can thus be applied
retroactively to videos that have already been recorded.

3. MODEL

In this section, we describe the training and testing frame-
work used to regress pitch from video frames. We treat this
as a classification task. The network takes video frames
as input and estimates the pitch as a MIDI number. An
overview is given in Figure 2.
Teacher-student strategy. We found that directly regress-
ing pitch from the video frames did not generalise at test
time. This is presumably because the visual information
relevant for the pitch prediction task occupies only a small
part in the video frames.

As a result, we train two networks – a teacher and student
network – such that the activations of the student network
are similar to those of the teacher. The teacher network
regresses pitch from audio and the student regresses pitch
from video frames. The rationale for using this strategy is
that, in order to contain relevant information about pitch,
the high-level representation of the visual information (en-
coded in the student) should be close to that of the audio
information (encoded in the teacher). This strategy proved
crucial to obtain a network that generalises at test time.

The teacher network is first trained using STFT spectro-
grams as input to regress the pseudo ground-truth pitch (the
method for obtain this pseudo ground-truth is described in
section 5). The student network is then trained to regress
the pitch with an additional loss that enforces that the ac-
tivations of the higher level layers are similar to those in
the teacher network. For this, we use an L1 loss which is
weighed so that the contribution for each of the three fully-
connected layers is as big as the pitch classification loss.
Both networks are trained to predict pitch with a cross-
entropy loss.
Neural Network Architecture. The teacher and student
network architectures are loosely based on the VGG-M
network architecture [18] and can be seen in more detail
in Figure 2. For the student network, in the case of multi-
ple input frames, the outputs of the first convolutional lay-
ers are concatenated and fused using a 3D convolutional
layer to combine the information from the frames with spa-

(a) Vn1 and VnAll datasets. (b) VnYT dataset.

Figure 3. Pitch distribution over the number of frames in
the three subsets of our dataset; the constrained single-
string data Vn1, the data on all strings VnAll, and the in-
the-wild data VnYT. Pitch is shown in MIDI numbers. The
subsets cover the chosen full pitch ranges.

tial kernel size 3× 3 followed by batch normalization and
ReLU. The output serves as input to the second convolu-
tional layer. For just a single input frame, the output of the
first (2D) convolutional layer is directly input to the sec-
ond convolutional layer. The first two convolutional layers
consist of 7×7 convolutions, whereas the subsequent ones
are 3× 3 convolutions and the last three are 1× 1 convolu-
tions. All convolutional layers have stride 1 except for the
second one, which has stride 2.

4. DATASETS

We curate a new violin playing dataset which consists of
three subsets (Vn1, VnAll and VnYT) that differ in difficulty
and size. The most challenging subset VnYT consists of in-
the-wild violin solo videos downloaded from YouTube 1 .
These are largely comprised of recordings of solo recitals,
etudes, and orchestra auditions. Both Vn1 and VnAll are
recorded in simpler conditions: all videos are of a sin-
gle violinist, have similar backgrounds and are taken from
similar angles.

The datasets vary in terms of the range of pitches. Both
Vn1 and VnAll consist of recordings of a violinist playing
in a practise-like set-up (but without the thousandfold rep-
etitions of the same phrases). The easiest subset Vn1 con-
sists of videos that only contain violin playing on a single
string, resulting in a range of 20 semitones (MIDI num-
bers between 68 and 88). Estimating the pitch is easier in
this case, as there is no ambiguity concerning which string
is being played. VnAll contains videos played in the full
pitch range of the violin without being restricted to play-
ing just on one string. For both VnAll and the most difficult
subset VnYT, we consider a range of 33 semitones (MIDI
numbers between 55 and 88).

All subsets are split into train/val/test sets. Disjoint parts
of the same videos are used for training and validation. The
test sets consist of frames that were not seen during train-
ing (from left-out unseen videos). The precise numbers of
frames and videos are given in Table 1.

1 Example videos: https://youtu.be/-ccYdhQAn10,
https://youtu.be/YGCYelAHdaU
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Dataset Vn1
Train Val Test

# of videos 5 1
# of frames 25308 2791 9875

Dataset VnAll
Train Val Test

# of videos 9 1
# of frames 54865 4107 6373

Dataset VnYT
Train Val Test

# of videos 122 10
# of frames 303391 33063 20067

Table 1. Dataset statistics. Details of the three different
subsets, the controlled setting data on a single string Vn1,
the controlled setting data on all strings VnAll, and the
in-the-wild data on all strings VnYT and their respective
train/val/test splits.

Finally, for all three subsets, we extract frames and pseudo
ground-truth pitch using the spectral domain YIN algo-
rithm [19] using the implementation in the aubio library
(yinfft) [20].

In addition to the above datasets, we consider the subset
of the URMP dataset that contains videos of violin play-
ing. We loosely crop the frames around the violinist and
leave out 4 videos (single-instrument tracks) for testing and
take the remaining violin videos for training and valida-
tion. This results in about 35000 frames for training and
12761 for testing. This dataset contains ground-truth pitch
information. Therefore, we can train with actual ground-
truth pitch. We consider a range of 33 semitones (MIDI
numbers between 55 and 88). All models are trained and
tested with the same train/val/test split on each dataset.

Furthermore, we generate STFT spectrograms for all men-
tioned datasets in order to train the audio to pitch network.

5. EXPERIMENTS

In this section, we evaluate both the audio to pitch (teacher),
and the video frame to pitch (student) models. We con-
sider using a single versus multiple input video frames. We
first train the audio to pitch network to regress pitch from
spectrograms. This network then serves as the teacher net-
work when training the single frame to pitch network or
the multi-frame to pitch network.

The models are trained in PyTorch [21] using the Adam
optimiser [22] with an initial learning rate of 0.001. The
learning rate is divided by a factor of 10 when the loss on
the validation set plateaus. The batchsize isN = 64 for the
single frame architecture and the audio to pitch network,
and N = 24 for the architecture with 5 input frames. The
frames are resized to 400× 200. For the datasets Vn1 and
VnAll, the frames are consistently more tightly cropped
around the instrument whereas there is much more vari-
ation of the location and relative size of the instrument in
VnYT.
Evaluation measures. We report the performance of our

Network RPA RPA tol PA ACA ACE
Dataset Vn1

Audio to pitch 98.30 99.14 96.74 86.03 0.06
Frame to pitch 89.98 91.57 62.41 51.64 0.45

5 fr. to pitch (3D conv) 93.8 94.91 66.7 58.75 0.43
Dataset VnAll

Audio to pitch 94.26 94.40 90.87 94.33 0.06
Frame to pitch 74.17 75.55 47.48 33.3 2.50

5 fr. to pitch (3D conv) 77.24 78.98 50.33 41.66 1.65
Dataset VnYT

Audio to pitch 98.30 99.14 96.74 86.03 0.06
Frame to pitch 44.3 51.37 33.18 45.2 2.50

5 fr. to pitch (3D conv) 62.5 67.89 48.44 51.77 2.34

Dataset URMP
Audio to pitch 98.28 98.5 96.73 98.88 0.07
Frame to pitch 53.11 58.3 42.71 39.86 2.73

5 fr. to pitch (3D conv) 57.3 62.04 45.26 41.79 2.43

Table 2. Evaluation of our models determining the ac-
curacy in predicted pitch for the Vn1, VnAll, VnYT , and
URMP test sets. Higher is better for Raw Pitch Accu-
racy (RPA), Raw Pitch Accuracy with a tolerance of one
frame (RPA tol), Pitch Accuracy (PA), and Average Class
Accuracy (ACA). Lower is better for Average Class Error
(ACE). Using multiple input frames improves the perfor-
mance.

models in Table 2. For Raw Pitch Accuracy (RPA), a pre-
dicted pitch is counted as correctly estimated if it lies within
one semitone of the ground truth pitch. RPA tol addition-
ally allows the prediction to be off by at most one frame.
Furthermore, we report Pitch Accuracy (PA) and Average
Class Accuracy (ACA). ACA gives the averaged per-pitch-
class accuracy. The ACE describes the average error be-
tween the predicted and the ground truth pitch class (ACE
of 1 corresponds to an average error of one semitone).
Video to pitch performance. The audio to pitch teacher
networks reach an RPA of above 90% on the test sets.
This serves as a very good starting point to train the stu-
dent frame to pitch networks. It can be observed that our
method performs best when trained and tested on the sim-
pler dataset with minimal ambiguities Vn1 and then VnAll.
This corresponds with the intuition that this set-up is easier,
as the fingers and therefore the pitch is more clearly visible
at higher resolution as compared to VnYT or URMP. Nev-
ertheless, a RPA of 62.5% for the frame to pitch network
on the in-the-wild YouTube video dataset VnYT means that
the pitch is estimated within a semitone of the ground-truth
on average in 62.5% of the test cases; this verifies that our
method generalises to unseen videos and people at test time
on challenging ‘in-the-wild’ videos. When allowing for an
offset of one frame in the predictions, we achieve an accu-
racy of 67.89% (RPA tol). This accounts for the case that
the alignment between audio and visual information might
not be perfect in the data which is the case for some of
the downloaded videos. The reported lower performance
on the URMP dataset may be due to the lower resolution
size of the frames in the dataset and the limitations in terms
of its dataset size which confirms the benefits of using our
datasets to address this task. These results are impressive,
given that our method estimates the pitch from visual in-
formation only and in unconstrained recording conditions.
However, our method can only predict one pitch playing
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(a) Gradient visualisation for the Vn1 test set.

(b) Gradient visualisation for the VnAll test set.

(c) Gradient visualisation for the VnYT test set.

Figure 4. Discriminative information visualisations using guided backpropagation [23] for the test sets of the Vn1 subset in
(a), the VnAll subset in (b), and the VnYT subset in (c). Heat maps are overlaid in the second rows of (a), (b), and (c). As
demonstrated, the networks focus on the left hand across all the test frames even though the hands are in different positions
relative to the frame. In (c), it can be seen that the network also seems to be focussing on the strings implying that it may
be using vibrations or the movement of the strings in order to estimate pitch. The location of the instrument and strings
relative to the left hand might serve as a further cue for estimating pitch.

at a time and cannot identify chords as it has been trained
only on monophonic data.

Another interesting point is that there is a consistent im-
provement when using multiple frames as opposed to a sin-
gle one as input to the frame to pitch network. This can be
seen very clearly for the VnYT dataset (RPA tol of 67.89%
vs. 51.37%). This is presumably due to the fact that vi-
sually it can be hard to determine just from the fingers of
the left hand which string a note is played on. To solve
this problem, the network needs to determine which string
is active (using for example information from the bowing
hand / bow or from the vibration of the strings). While
the placement of the hand should be visible from a single
image, the vibration of the string is unlikely to be visible
(unless there is significant motion blur) without taking into
account more frames.

Visualizing what has been learnt. To gain an insight
into what the networks have learnt and how they infer the
pitch from a given frame, we apply guided backpropaga-
tion [23] to our trained networks to determine which parts
of the images are most discriminative. As demonstrated in
Figure 4, the networks have learnt that the fingers of the
left hand and the left hand itself are most relevant for pre-
dicting the pitch given a still frame. Potentially the net-
work also makes use of some information about the vibra-
tion of the played strings (e.g. by recognising motion blur

around strings that are vibrating). This confirms that the
networks do not simply memorise parts of a video, but in-
stead learn to localise the left hands/fingers in the image in
order to estimate pitch. However, the image regions which
the networks focus on are actually quite small relative to
the image size.

6. CONCLUSION

We have presented a method for addressing monophonic
visual pitch estimation; given video frames of violin play-
ing, our method can automatically estimate the pitch being
played using vision alone. The presented task is extremely
challenging, as it requires making use of subtle visual cues
(such as the placement of the hand or string vibrations over
the course of multiple frames), yet our network shows con-
vincing results in three different scenarios: when only one
string is played or all strings are played but the person and
environment remains the same, and in unconstrained ‘in-
the-wild’ videos. Moreover, our method is generalisable,
as training the networks did not require any manual anno-
tations; instead, the pseudo ground-truth pitch information
was extracted automatically from the audio data. It will be
interesting to use this framework to improve pitch predic-
tion using both visual and audio information. This could
prove useful when the audio is of poor quality. In addition
to that, estimating pitch from vision might help the task
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of sound source separation when similar instruments are
played on. Furthermore, this method could be pushed fur-
ther to estimating polyphonic violin music played on the
same instrument.
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[3] R. Arandjelović and A. Zisserman, “Objects that
sound,” in Proc. ECCV, 2018.

[4] H. Zhao, C. Gan, A. Rouditchenko, C. Vondrick, J. Mc-
Dermott, and A. Torralba, “The sound of pixels,” in
Proc. ECCV, 2018.

[5] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet:
Learning sound representations from unlabeled video,”
in NIPS, 2016.

[6] L. Chen, S. Srivastava, Z. Duan, and C. Xu, “Deep
cross-modal audio-visual generation,” in Proceedings
of the on Thematic Workshops of ACM Multimedia,
2017.

[7] A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore,
F. Durand, and W. T. Freeman, “The visual micro-
phone: Passive recovery of sound from video,” ACM
Transactions on Graphics (Proc. SIGGRAPH), 2014.

[8] W.-L. Hao, Z. Zhang, and H. Guan, “Cmcgan: A uni-
form framework for cross-modal visual-audio mutual
generation,” CoRR, 2018.

[9] A. Owens, P. Isola, J. McDermott, A. Torralba, E. H.
Adelson, and W. T. Freeman, “Visually indicated
sounds,” in Proc. CVPR, 2016.

[10] A. Ephrat, T. Halperin, and S. Peleg, “Improved speech
reconstruction from silent video,” in ICCV workshop,
2017.

[11] T. Afouras, J. S. Chung, and A. Zisserman, “The con-
versation: Deep audio-visual speech enhancement,” in
INTERSPEECH, 2018.

[12] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wil-
son, A. Hassidim, W. T. Freeman, and M. Rubinstein,
“Looking to listen at the cocktail party: A speaker-
independent audio-visual model for speech separa-
tion,” Proc. ACM SIGGRAPH, 2018.

[13] B. Li, C. Xu, and Z. Duan, “Audiovisual source associ-
ation for string ensembles through multi-modal vibrato
analysis,” Proc. Sound and Music Computing (SMC),
2017.

[14] B. Li, X. Liu, K. Dinesh, Z. Duan, and G. Sharma,
“Creating a multitrack classical music performance
dataset for multimodal music analysis: Challenges, in-
sights, and applications,” IEEE Transactions on Multi-
media, 2019.
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ABSTRACT

The MiningSuite is a free open-source and comprehensive
Matlab framework for the analysis of signals, audio record-
ings, music recordings, music scores, other signals such as
motion capture data, etc., under a common modular frame-
work. It adds a syntactic layer on top of Matlab, so that
advanced operations can be specified using a simple and
adaptive syntax. This makes the Matlab environment very
easy to use for beginners, and in the same time allows
power users to design complex workflows in a modular
and concise way through a simple assemblage of operators
featuring a large set of options. The MiningSuite is an ex-
tension of MIRtoolbox, a Matlab toolbox that has become
a reference tool in MIR.

1. DESCRIPTION

The MiningSuite 1 is an open source Matlab toolbox com-
posed of a large set of modules corresponding to the differ-
ent possible types of signal processing representations and
audio and music descriptors. These modules are structured
into packages related to the different domains of study: sig-
nal processing (SigMinr package), auditory modelling (Au-
dMinr), music analysis (MusMinr), video analysis (Vid-
Minr), physics and motion analysis (PhyMinr), sequence
processing (SeqMinr) and pattern mining (PatMinr).

Thanks to an innovative syntactic layer, both powerful
and user-friendly, designed on top of Matlab, these mod-
ules can be easily applied to particular files or batch of
files, and the numerous options available for each module
can be modified. Modules can be connected and form data
flow graphs. As such, complex design of set of audio or
music analysis operations can be written in a very concise
way through a simple assemblage of modules. They can be
applied to large batches of files as well as to long files with-
out memory issues thanks to implicit signal chunking and
concatenation mechanisms. Another syntactic layer within

1 http://olivierlar.github.io/miningsuite/
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the operators’ Matlab code enables to simplify and clarify
the code. As the internal representation of signals inte-
grates various types of decomposition (into frames, chan-
nels, segments) within a unified framework, the modules
can adapt automatically to these various types of input.

Audio and symbolic representations and processes are
tightly interconnected: The same type of symbolic rep-
resentation is used to represent discrete constructions in-
ferred from audio representation (such as peaks, segments,
onset locations) as well as actual symbolic sequences (such
as scores and MIDI sequences). Operators dedicated to
high-level musical features extraction (key estimation, tempo,
etc.) integrate signal processing, statistical and symbolic-
based methods, and can be applied to both symbolic in-
put and audio input (adding automated transcription steps
wherever necessary).

The integration of expertise developed in separate areas
of study into common modules encourages further reuse
of these individual methods and their intermingling into a
common framework.

MiningSuite is the official continuation of MIRtoolbox
[1]. The architecture of the toolbox is much simpler, al-
lowing faster computation and more transparent and clear
code. Series of operations can be designed more efficiently
and easily. Any signal can be imported and represented as
an object of classes available in the MiningSuite. Each re-
sult also stores the complete description of the list of oper-
ations with all the specified options and parameters. Matri-
ces imported into, used in, and exported from the Mining-
Suite have their internal structure clarified: the role of each
dimension is made explicit using a systematic formalism.
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ABSTRACT

In this contribution, a system that represents drawings of
geometric figures along with their description transcribed
in Braille controlled by means of commands acquired by
a speech recognition scheme is presented. The designed
system recognizes the spoken descriptions needed to draw
simple geometric objects: shape, colour, size and posi-
tion of the figures in the drawing. The speech recognition
method selected is based on a distance measure defined
with Mel Frequency Cepstral Coefficients (MFCCs). The
complete system can be used by both people with visual
and with hearing impairments thanks to its interface which,
in addition to showing the drawing and the corresponding
transcription in Braille, also allows the user to hear the de-
scription of commands and final drawing.

1. INTRODUCTION

Nowadays, there are many voice recognition systems, such
as the successful Siri. However, they still may be unsat-
isfactory for people with certain impairments because the
use of just voice and sound may be insufficient. In the
world there are millions of people who suffer some kind
of communicative disability, and defining a common lan-
guage for all of them is a really complex task. In this con-
text, Braille is a valid and effective tool for both people
with visual and hearing impairments, as it helps them to re-
ceive and understand the information of the world around
them [1]. In this contribution, a system that creates draw-
ing with geometric figures along with their transcription
in Braille is presented. The drawings are built by means
of commands issued by means of a speech recognition ap-
proach. The specificity of this system is the inclusion of
both speech recognition and Braille transcription schemes.

2. SYSTEM DESCRIPTION

The general structure of the system developed is shown in
Fig. 1. In this figure, the two different parts that compose
the system can be observed, specifically: the speech recog-
nition subsystem and the drawing with Braille transcription
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scheme. The whole system has been implemented in Mat-
lab.

Speech 
recognition 

Drawing 
System 

Words 

Figure 1. General structure of the developed system.

The two parts of the system developed are described next.

2.1 Speech recognition subsystem

Among the different speech recognition schemes that can
be employed, a simple approach based on MFCCs has
been selected for the tool developed. MFCCs are used
in different audio analysis applications, including speech
recognition [2]. Fig. 2 shows a schematic of the speech
recognition subsystem. In this figure, it can be observed
that this subsystem has three different parts: pre-processing,
MFCC estimation and recognition.

Pre-processing 
MFCCs 

Features 
Word Recognition 

Vocabulary 

Figure 2. Speech recognition subsystem.

The pre-processing stage is aimed at preparing the voice
to perform the recognition. This block includes three stages:
noise reduction, pre-emphasis and segmentation with win-
dowing. Hamming windows have been employed because
of the fast decay of their side lobes [3]. Then, MFCCs
are calculated using the available Matlab function. 40 Mel
filter are used when after theDCT , the first 36 coefficients
are selected (the first one is not employed). Spoken com-
mand recognition is implemented by simply measuring the
geometric distance between the MFCCs extracted and
the pre-calculated MFCCs of the vocabulary used by the
system (see Table 1). The MFCCs of the vocabulary are
calculated as the arithmetic mean of 10 different record-
ings of each word.

2.2 Drawing with Braille transcription subsystem

The general structure of the Drawing with Braille tran-
scription subsystem is presented in Fig. 3. In each screen
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Geometry Colour Size Position
Cı́rculo Amarillo Pequeño Arriba derecha
Cuadrado Magenta Mediano Arriba centro
Rectángulo Cian Grande Arriba izquierda
Elipse Rojo Centro derecha
Triángulo Verde Centro centro
Pentágono Azul Centro izquierda
Estrella Negro Abajo derecha

Blanco Abajo centro
Abajo izquierda

Table 1. Vocabulary used by the system (in Spanish).

of the developed application, the users have at their dis-
posal visual and hearing resources as well as the possibil-
ity of keyboard interaction and the repetition of the speech
command. As shown in Fig. 3, in order to draw a geomet-
ric figure, position, size, geometry and colour must be said
sequentially. Users can draw as many figures as they want.
Fig. 4, shows the results of a drawing with its description
in Spanish and Braille.

Screen 1 
Welcome 

Screen 2 
Instruction 

Screen 3 
Position 

Screen 4 
Size 

Screen 6 
Colour 

Screen 5 
Geometry 

Another 
Geometry? 

Yes 

No 

Figure 3. Flow diagram of the developed system.

3. SYSTEM EVALUATION

Performance tests have been carried out with 10 different
users, who recorded all the vocabulary words in two differ-
ent scenarios: with and without the possibility of command
repetition. The number of repetitions was limited to three.
Table 2, shows the results of the speech recognition system
implemented with and without repetition. These results in-

Figure 4. Illustration of a drawing done with the system
developed.

dicate that repeating the same word greatly improves the
recognition system, as expected. Note that although the
accuracy in the detection of words can be improved, the
users said they were pleased with its operation.

Vocabulary One repetition Three repetitions
Position 51.10% 74.45%
Size 70.00% 86.64%
Geometry 60.00% 80.00%
Colour 61.25% 83.75%

Table 2. Word recognition evaluation results.

4. CONCLUSIONS

A system that draws geometrical figures, along with their
transcription in Braille on the basis of commands given
through a speech recognition scheme has been presented.
The designed system recognizes simple spoken descrip-
tions needed to draw geometric objects and their simplified
location. The evaluation of speech recognition method de-
veloped shows that repeating the words to create the mod-
els for the later detection greatly improves the recognition
performance, which was sufficient to make the subjects
pleased with its operation. The system can be used by peo-
ple with visual impairments and with hearing impairments
as the interface includes Braille transcription and hearing
aids.
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ABSTRACT

In this contribution, we present an interactive system for
playing while learning music. The game is based on dif-
ferent computer games controlled by the user with a remote
control. The remote control has been implemented using
inertial measurement sensors (IMU) for 3D tracking. The
computer games are programming in Python and allow to
practice rhythm as well as the tune, ascending or descend-
ing, of musical notes.

1. INTRODUCTION

The serious game concept is used to describe games de-
signed to serve an additional purpose to that of pure enter-
tainment. The term serious game had been introduced in
1970 [1] but it was not until early 2000s when they surge
in different types of educational games designed for the
younger learner.

Serious games for music learning are very interesting [2],
especially for children who start to learn music, given the
difficulty involved in the individual study of music. Among
the different elements to practice in the music studio, rhythm
and tone perception are basic and general to any kind of
music. In this contribution, we present an interactive mu-
sic training system that allows to practice rhythm and tone
perception in a fun and easy way, using a remote control
and a computer game.

2. SYSTEM DESCRIPTION

The scheme of the interactive music training system is shown
in Fig. 1. In this figure, it can be seen that the developed
system consists of two different parts: a remote control
and a computer game module. The remote control is de-
signed using inertial measurement sensors (IMU) and the
computer game system is programmed in Python.

2.1 Remote control subsystem

The functionality of the remote control includes to com-
municate with the computer and detect the position and
movement of the user’s hand. Fig. 2 shows the block dia-
gram of the remote control hardware.
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Figure 1. Diagram of the interactive music training system.
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Figure 2. Block diagram of the remote control hardware.

In Fig. 2, the tree basic modules of the remote can be
observed:

• Microcontroller: This module is the core of the re-
mote control system; its function is to calculate and
send the information of hand position and movement
of the users to a computer. Texas Instrument TM4-
C123GH6PM is the microcontroller selected because
it has enough memory to include a real time operat-
ing system for concurrent processing.

• Communication module: Bluetooth HC-06 has been
selected to send information to the computer by means
of Bluetooth 2.0.

• IMU module. This module is used to get measures
of acceleration in the three axes. These measures are
processed in the microcontroller to obtain the posi-
tion and movement of the user’s hand. The intelli-
gent sensor BNO055 has been selected because it is
an inertial absolute orientation 9-axis sensor.

In Fig. 3 the remote control designed is presented. In this
figure, it can been seen that it is a very compact system.
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Figura 4.4. Circuito del sistema empotrado visto sin la carcasa. 

Una vez se tiene todo soldado y en su sitio, se procede a diseñar una carcasa para que 

la PCB y sus componentes estén mejor guardados y protegidos. 

La carcasa para la PCB ha sido diseñada para ser impresa en 3D. Para esto se ha usado 

el programa de diseño FreeCAD para crear el archivo “carcasas_TFG.stl”. Este tipo de 

archivo es el que se usa junto con programas de troceado, en este caso el Slic3r para 

crear el archivo ”carcasas_TFG.gcode” que ya contiene todas las directrices que debe 

seguir la impresora 3D para imprimir la pieza. 

Una vez se ha impreso, se monta ajustando la PCB en el lado superior haciendo que los 

componentes sobresalgan por sus respectivos agujeros, se coloca la batería en la parte 

inferior, y se cierra poniendo 4 tornillos de métrica 3 en los agujeros que se pueden 

observar en la parte de debajo de la carcasa. El diseño impreso y montado se puede ver 

en la figura 4.5, y se puede ver la impresora 3D a mitad de la impresión en la figura 4.6. 

  

Figura 4.5. Mando montado 

 

Figura 4.6. Impresora 3D en proceso de impresión 

 

Figure 3. Remote control designed.
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2.2 Computer game subsystem

The computer game system is programmed in Python. In
order to achieve the requirement of serving to practice rhythm
as well as the tune, ascending or descending, of musical
notes, three different games have been developed: ’Note
order’, ’Rhythm fun’ and ’Virtual Drums’. Also, an utility
to compose your own scores for the rhythm game has been
developed.

2.2.1 Note order game
In this game, the user listens two notes sequentially with a
separation of one second. Once the notes have been played,
the user must choose whether the sequence of notes have
ascending, descending or equal tone. The selection is made
by moving the remote control, up, down or horizontally.
Fig. 4 shows several screenshots of the note order game.
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Figura 6.10. Pantalla de juego de Ordena las notas 

Si lleva el cursor hasta el borde superior, estará indicando al juego que cree que las notas 

han sonado en orden ascendente, es decir, la primera nota que sonó tenía menor 

frecuencia que la segunda. Por el contrario, si el usuario lleva el cursor al borde inferior, 

estará indicando que cree que las notas han sonado en orden descendente. Y, por último, 

si el usuario lleva el cursor a cualquiera de los bordes laterales, estará indicando que 

cree que las 2 notas que han sonado tenían la misma frecuencia. 

Si el jugador ha acertado, aparecerá como pantalla la imagen de la figura 6.11 unos 

segundos y luego repetirá el ejercicio. Si el jugador falla, aparecerá en la pantalla las 

notas que han sonado en un pentagrama, como en la figura 6.12 y pasado unos 

segundos se repetirá automáticamente el ejercicio. 
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Para mover el cursor, el usuario debe de pulsar el botón rojo circular de la figura 6.13 y 

con el botón pulsado, desplazar el mando en la dirección que desea mover el cursor. El 

cursor debería moverse en la pantalla siguiendo la misma dirección en la que se está 

moviendo la mano.  

Figura 6.13. Botón que mantener pulsado para mover el cursor del juego Ordena las notas 

Es posible que el cursor se mueva en la dirección contraria cuando se mueve 

horizontalmente, o que se desplace muy poco. Esto puede deberse o bien que el usuario 

está intentando desplazar el cursor muy despacio, o bien que el juego ha interpretado 

mal cuales son la izquierda y derecha del jugador.  

Para corregir las direcciones del plano horizontal, el usuario debe de, con el juego en 

marcha, pulsar el botón de teclado “S” mientras tiene el mando mirando hacia la pantalla 

como se ve en las figuras 6.14 y 6.15. 

  

Figura 6.11. Pantalla de victoria del juego Ordena 

las notas 

Figura 6.12. Pantalla de derrota del juego Ordena 

las notas 

Figure 4. Note order game screenshots.

2.2.2 Rhythm fun game
In this game, the user has to set the rhythm of a score. The
game includes several predefined scores but the user can
create his own score. The user has two aids: an arrow that
moves through the notes of the score and the sound of a
metronome. Fig. 5 shows a screenshot of the rhythm fun
game.

Capítulo 6. Manual de Usuario 

54 

 

Se puede salir del juego en cualquier momento pulsando “escape”. 

6.1.2.2. Juego de ritmo 

Una vez se elige este juego, en pantalla aparecerán como máximo 9 nombres. Cada 

nombre es una partitura diferente que se ha generado con el modo crea tu partitura, 

explicado más adelante, y toda partitura creada en ese modo se añadirá a este menú. 

En caso de que haya más de 9 partituras, se puede cambiar de página pulsando los 

botones de izquierda y derecha del teclado. 

Para elegir partitura simplemente hay que pulsar el nombre de la partitura que el usuario 

quiera usar para el juego. Una vez se ha elegido partitura, el juego empezará 

inmediatamente después. 

Figura 6.16. Imagen del juego de ritmos 

  

Figura 6.14. Mando posicionado para corregir la 

posición 

Figura 6.15. Imagen pulsando el botón S del 

teclado 

Figure 5. Rhythm fun game screenshot.

2.2.3 Virtual drum game
In this game, the user has the possibility of using the re-
mote control as a drumstick of a drummer. Fig. 6 shows a
screenshot of the virtual battery game.

2.2.4 Compose your own score
With this utility the user has the possibility of using the re-
mote control and the keyboard to compose his own score to
practice rhythm. In this case, the first screen allows to se-
lect the measure and the second one to compose the score.
Fig. 7 show two screenshots of this tool.
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El objetivo de este juego es que el usuario haga el gesto de golpear en el momento que 

vaya a sonar cada nota. Para que el usuario pueda seguir el ritmo, tiene a su disposición 

2 elementos que le van marcando los pulsos.  

El primero es un elemento visual, una flecha situada justo debajo de la partitura que 

cambia de nota en nota siguiendo los pulsos de la canción.  

Como segundo indicador se tiene una pareja de sonidos de instrumentos que marcan los 

pulsos. Este indicador, al contrario que el primero, no marca o señaliza el momento en 

el que sonarán las notas específicas de la partitura, si no que para el usuario es el 

equivalente a un metrónomo, y le sirve para saber los pulsos del compás. 

Si el usuario logra hacer el gesto de golpe en el momento correcto, el marcador de la 

pantalla aumentará. Cuanto más preciso haya sido a la hora de golpear la nota, más 

puntuación obtendrá el usuario, y por golpear varias notas seguidas también se irán 

incrementando la cantidad de puntos que consigue por nota. 

Una vez la partitura acaba, se vuelve al menú de partituras y el usuario puede elegir otra 

partitura para el juego. 

6.1.2.3. Juego libre 

En este juego el usuario tiene la posibilidad de usar el mando como si fuese la baqueta 

de una batería y hacer los sonidos del instrumento imitando golpearlos con la baqueta.  

Una vez se entra en este juego, en la pantalla aparecen representados las diferentes 

partes de una batería, y una baqueta en medio de la batería.  

Figura 6.17. Imagen de la pantalla del juego libre 

Figure 6. Virtual drum game screenshot.UNIVERSIDAD DE MÁLAGA 
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Figura 6.18. Imagen de la pantalla en la que se elige el tamaño del compás 

En esta pantalla, se ve una partitura con unas opciones en la parte de abajo. Pulsar los 

números del teclado hace que se escriba en la partitura los elementos que vienen 

acompañados de ese número en la parte de abajo.  

Figura 6.19. Imagen en la que se muestra la pantalla en la que se crea la partitura 

Se pueden cambiar los elementos inferiores de notas a silencios y viceversa pulsando la 

tecla “S” y también se puede borrar el último elemento añadido pulsando la tecla 

“retroceso” del teclado, aunque una vez se ha introducido un compás no puede ser 
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En esta pantalla, se ve una partitura con unas opciones en la parte de abajo. Pulsar los 

números del teclado hace que se escriba en la partitura los elementos que vienen 

acompañados de ese número en la parte de abajo.  

Figura 6.19. Imagen en la que se muestra la pantalla en la que se crea la partitura 

Se pueden cambiar los elementos inferiores de notas a silencios y viceversa pulsando la 

tecla “S” y también se puede borrar el último elemento añadido pulsando la tecla 

“retroceso” del teclado, aunque una vez se ha introducido un compás no puede ser 

Figure 7. Compose your own score screenshots.

3. CONCLUSIONS

An interactive system for playing while learning music has
been presented. The game is based on different simple
computer games controlled by the user with a specifically
designed remote control. The remote control has been im-
plemented using IMU sensors for 3D tracking. The com-
puter games are programmed in Python and allow to prac-
tice rhythm as well as the tune progression, ascending or
descending, of musical notes. The system has been used
with different music students that were pleased with its op-
eration.
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COPYING CLAVE – A TURING TEST
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ABSTRACT

A blindfolded instructor (evaluator) plays a clave pattern.
A  computer  captures  and  repeats  the  pattern.  After  1
minute the experiment stops. This process is repeated by
a human who also tries to copy the clave. After another
minute they stop and the evaluator assesses both perfor-
mances.

DEMONSTRATION

A clave is a rhythmic pattern used in many forms of mu-
sic to provide a framework for musicians to play with.  It
is  very  common  in  Afro-Cuban  music  and  typically
played with with two pieces of wood or metal to create a
clear loud sound enabling it to be identified through the
rest of the music. 

For the purposes of this demonstration it can be any pat-
tern that can be accurately repeated. For now we are not
concerned  with  deriving  a  tempo  from  the  pattern  or
where it starts and stops.

The instructor is blindfolded. A coin is tossed. Heads the
machine plays first, tails the human plays first. The in-
structor begins to play clave.

On the machine’s turn,  the clave is captured through a
microphone, onset times are recorded and an autocorrela-
tion algorithm is used to identify the pattern. When a re-
peated pattern is identified,  the clave pattern is  silently
checked against the incoming pattern from the instructor
and then, if correct, played back to the instructor via sam-
ples through a speaker. A camera input and CV software
allow  for  visual  feedback  from  the  instructor  as  to
whether it is playing the pattern right or not. A shake of
the head indicates that  the pattern is  played incorrectly
and must stop.

On the human’s turn, ears are used to listen to the clave
and when the pattern is  identified it  is  played back by
lightly tapping the laptop touch pad, this again produces
the sampled clave sound through the speakers. As before
a shake of the head indicates that the pattern is played in-
correctly and the player must stop and try again.

The demonstration will be presented in a lively informal
way allowing people to adopt the role of either the player
or instructor. It is hoped that it stimulates a debate of how
the methods and technology could be further developed,

Copyright:  2019 First author et al. This is an open-access article
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ABSTRACT

This is a system prototype for joint vocal improvisation 
between two people that involves sharing embodied sensa-
tions of vocal production. This is accomplished by using 
actuators that excite two participants’ rib cages with each 
other’s voices, turning a person’s body into a loud speaker. 
A mircophone transmits vocal signals and the players are 
given a Max Patch to modulate the sound and feel of their 
voice. The receiver hears the other person’s speech and ef-
fects through their own body (as if it were their own voice), 
while also feeling the resonance of the sound signal as it 
would resonate in the chest cavity of the other. The two 
players try to re-enact and improvise a script prompt pro-
vided to them while not knowing what the other person can 
hear, of their voice. The game may or may not turn collab-
orative, adversarial, or artistic depending on the game play.

1. INTRODUCTION

In this paper, we present the proof of concept for the Im-
provised Resonator, sketching its architecture, design, user 
experience, and the experimental methodology that will be 
used to evaluate the effects of the experience for the con-
text of this demo.

1.1 Background Work

The Resonance Improviser an example of an Augmented 
Social Embodiment (ASE) system. ASE combines fea-
tures of sensory augmentation devices [1] with social em-
bodiment [2] to use new sensor and wearable technologies 
to transmit and share aspects of our embodiment that can-
not normally be shared. For example, by using haptic com-
munication devices we can remotely transmit information 
about one person’s muscle movements while performing a 
task to the associated muscles and joints of another per-
son [3]. Using sensor technologies to enrich social inter-
actions is related to projects such as “enriched social in-
teractions [4], “mediated intimacy [5], “co-embodied tech-
nology” [6], “interpersonal biofeedback” [7], and “phatic 
technologies [8]. Specifically, these related projects em-
bed wearable technologies in social interactions with the

Copyright: c© 2019 Tejaswinee Kelkar et al. This is 
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Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited.

goal to enhance those interactions. However, very few
of these projects use sensory augmentation wearable de-
vices to transmit information about another person’s em-
bodied state. Many of these previous related projects repre-
sent information about another person in a very symbolic,
abstract way. Instead, the Resonance Improviser directly
transmits vibrations of the vocal cavity from one person to
another.

1.2 User Experience

The users will be instructed to go to opposite corners of
the room, facing away from one another, and looking up
to follow a script that will be presented on a screen. Each
player will also receive a screen to control a Max Patch
to modulate their voice, with noise and glitch effects that
the player themselves will not be able to experience be-
fore sending them to their partner. We adapted a script of
human-computer interactions from Stanford University’s
colorful personality chatbot transcripts, with one player
taking the human role and the other taking the computer
role.

1.3 Hardware Setup

Figure 1. Schematic diagram of demo setup. The two
participants, separated from each other take part in vocal
improvisation, while wearing excitators that communicate
their

Each participant can influence the way their voice will
be heard and felt by their partner by adding various audio
effects. they will transmit their voice with these audio ef-
fects to their partner’s rib cavity without hearing their voice
modulated by the effects for themselves.

The idea of this project is to create a disembodied voice
installation through actuating two participants’s rib cages
with each others’s voices. Two speakers in this interface
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act as resonating bodies producing each others voices. The
two players are encouraged to play with loopers, vocoders,
sampling and glitch to speak with/through each other, while
they dont receive feedback about how their own production
sounds. They also hear the other persons voice through
their own rib cage cavity. This project allows users to
transmit from one person to another an aspect of the in-
ner embodied sensations created by vocal vibrations in the
chest cavity. Using an actuator device, users can feel vibro-
tactile sensations on their own sternum and ribcage recorded
from anothers body while listening to this other person
speak (and/or sing?).

2. CONCLUSIONS

This creates a novel experiential context wherein which
something which is normally an intimate part of our social
embodiment, our voice, is suddenly shared. Exciting your
own rib cavity using someone else’s voice is a body trans-
fer experience. We are familiar with the corporeality and
feel of our own voice and its inevitable resonance while
breathing, speaking, singing, etc., and this makes experi-
encing another person’s voice as vibration in your body an
intimate experience. In essence, they hear the other per-
son’s voice in a way that they only ever hear their own
voice and we are making interpersonal something which
is normally intrapersonal. Embedding physiological sen-
sors and biofeedback in social interactions has been shown
to enhance interpersonal connections and intimacy among
strangers (Bala et al., 2004; Vetere et al., 2005, Gibs et al.,
2005). In a 2014 review of strategies that designers can
use to create technologies to foster interpersonal connec-
tion, Hassenzahl and colleagues suggest joint action as an
effective strategy. Thus, we implemented joint vocal im-
provisation in our design.
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ABSTRACT

Our demo is a web app that suggests new practice mate-
rial to music learners based on automatic chord analysis. It
is aimed at music practitioners of any skill set, playing any
instrument, as long as they know how to play along with a
chord sheet. Users need to select a number of chords in the
app, and are then presented with a list of music pieces con-
taining those chords. Each of those pieces can be played
back while its chord transcription is displayed in sync to
the music. This enables a variety of practice scenarios,
ranging from following the chords in a piece to using the
suggested music as a backing track to practice soloing over.

1. CONCEPT

On a research level, we are exploring a new way of navigat-
ing large collections of music. This is especially relevant
because one of the audio catalogues it is built on is Ja-
mendo, a Creative Commons music platform. This means
that all their music is freely available for personal use, but
typically suffers from low exposure. 100K of the tracks
that Jamendo actively promotes for commercial usage such
as in-store radios (implying a minimum of recording stan-
dards) form one catalogue of our system. The other cat-
alogue consists of 442K tracks of commercial audio from
Deezer’s collection.

Our system can be seen as a novel type of music rec-
ommendation, as the latter is traditionally based on lower-
level features or collaborative filtering [1]. Meanwhile,
other applications of chord recognition are song-centric,
meaning that you first decide which song you want to learn
and then retrieve its chords, without chord-based recom-
mendation [2].

Furthermore, our web app is also an experiment in assess-
ing the usability of automatic chord transcription. Since
the music on Jamendo is unknown, pre-existing transcrip-
tions crowdsourced from the internet are not available, and
since the collection is large, the human effort to transcribe
all tracks specifically for this purpose is prohibitive. In-
stead an automatic chord transcription algorithm is used.
However, even state-of-the-art chord transcription systems
do not always produce results that are of sufficient quality
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Figure 1. The query screen where a chord combination can
be selected.

for musicians to use as a guide to play along with the mu-
sic. The underlying transcription algorithm [3] therefore
produces a measure of confidence in addition to its chord
output. This confidence is then used by the query resolu-
tion algorithm to suggest appropriate music to the users,
together with the selection of chords they specified. As
there is no human ground-truth available to compare the
algorithmic output with, users are simply asked if they find
the chord transcriptions of sufficient quality to be useful
in their practice sessions. The automatic chord recogni-
tion is used for the commercially available audio too be-
cause crowdsourced chord annotations might be available,
but not necessarily in a machine-readable form, of consis-
tent quality and aligned to the audio.

2. INTERFACE

From a user’s perspective, the interface consists of three
screens. The first is the query screen, shown in Figure 1,
where the user makes a selection of chords. This can be a
free selection, or one of the presets that select all diatonic
chords in a certain key can be used. Submitting the chord
selection to the system takes you to a list of results, dis-
played in Figure 2. Here the music pieces that contain the
requested chords are presented. Clicking on each of these
results leads to a music player, as in Figure 3, where the
music is played back with the chords displayed in sync.
The current version of the interface was developed based
on the user feedback and user observations we got from an
earlier prototype [4].
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Figure 2. The list of results for a particular chord query.

Figure 3. The music player displaying the chords in sync
with the music.

Acknowledgments

This work has been partly funded by the UK Engineering
and Physical Sciences Research Council (EPSRC) grant
EP/L019981/1 and by the European Union’s Horizon 2020
research and innovation programme under grant agreement
N◦ 688382.

3. REFERENCES

[1] O. Celma, Music Recommendation and Discovery:
The Long Tail, Long Fail, and Long Play in the Dig-
ital Music Space. Springer-Verlag Berlin Heidelberg,
2010.

[2] W. B. de Haas, J. P. Magalhães, D. ten Heggeler,
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ABSTRACT 

When designing interactive sound for non-utilitarian      
ludic interaction, internal complexity can be a way of         
opening up a space for curiosity and exploration. Internal         
complexity should be understood as non-linear mappings       
between the input and the parameters they affect in the          
output (sound). This paper presents three different       
experiments which explore ways to create internal       
complexity with simple interfaces for curious exploration.  

1. INTRODUCTION 
This paper presents an exploration of the relations        
between physical and computational forms [1], [2]; how        
this affects the overall expression when designing for        
exploration. For us to do this we need to move past more            
utilitarian perspectives like affordance [3], transparency      
and efficiency, and instead consider factors more related        
to ludic play [4] like curiosity [5] and ambiguity [6]. 
 
Our basis for exploration lies in the searching for the          
sweet spot [7], [8] between chaos and predictability. We          
want people to be drawn by their own curiosity of not           
being able to decode the interaction pattern (chaos), while         
at the same time having a sense that their actions are the            
main contributor to the sounds (predictability).      
Specifically, we wonder if it is possible to forward         
curiosity and exploration by designing simple interfaces       
with relatively large non-trivial internal soundscapes.  
 
 

 
 
Figure 1: Can a simple interface (tip of the iceberg) with           
a relatively complex internal logic (bottom of the iceberg)         
create a space for exploration and curiosity? 
 

2. THE MACHINES 
We designed three different standalone Arduino [9] based        
interactive noise machines. They all used simple inputs        
such as potentiometers and touch sensors. The Touchbox        
and the Complexicator used a home-made four voice        
wave-table synth and the Noise machine used a set of          
bit-shifting algorithms to produce the soundscapes. The       
mapping of input to sound generator differed greatly. 

2.1 The touchbox 

The Touchbox offers a play session for two participants         
at a time. The role of the technology is to sense physical            
bare skin connection between the participants. The       
sensing yields analogue values in a range starting from a          
few centimetres from actual touch, via light touch to full          
contact. The values are converted into a relatively        
complex soundscape, which is played back to each        
participant through their headphones. 
 
Based on the analogue touch value, activity (change) and         
contact over time (incremental value) is derived. The        
three parameters are mapped to different dimensions in        
the soundscape (pitch and modulation on four voices).        
This creates a sense of a multi-dimensional interface for a          
body to body interaction. E.g. kissing, stroking, tapping,        
grabbing etc. give different sonic results. 
 

 
Figure 2: The touchbox consists of a wooden box with a           
meter and a light bulb. 

2.2 Algorithmic Noise Machine 

Bit-shifting can be used as an alternative way of creating          
"music". The principle yields rather unpredictable results       
where small changes in the bit-shifting algorithm can        
have a large consequence for the produced soundscape.  
 
The different parameters are changed through the four        
potentiometers. One potentiometer controls the current      
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algorithm and the other potentiometers change the       
parameters for the algorithm. Although the sounds can be         
considered crude it is quite engaging to experiment and         
play with, even for the designer, who cannot predict the          
possibilities himself. 

 
Figure 3: The noise machine has four potentiometers,        
without any instructions of how these modulate the        
sounds. 
 
2.3 The Complexicator 
The Complexicator is an experiment in mapping as many         
parameters as possible from a four-voice wavetable synth        
onto one potentiometer. A fast turn switches the        
potentiometer’s role to control different sonic parameters       
(e.g. voice, pitch, pattern and type of wavetable). A slow          
turn then changes the value of the specific parameter.         
Technically speaking there would be a concrete coupling        
at all times, but in practice, the interface was overly          
complex and hard to grasp. This gave a sense of          
powerlessness while still having a sense of having some         
“say” in the output. 
 

 
Figure 4: The Complexicator has just one potentiometer        
to change the internal four voices and their parameters. 
 

3. CONCLUSION 
The three different experiments are thought of as        
exemplary artefacts [10], [11]. Their intention is to        
extend space for exploration and curiosity. The different        
prototypes have been tested in various degrees and our         
preliminary findings point towards the following: The       
intimacy of touching other people with the Touchbox        
resonates well in such a way that the internal logic          
becomes an excuse to interact. The noise machine creates         
a sense of control and exploration. One can return to a           
previous setting by dialling the knobs back to a previous          
setting. The uncontrollable element of turning speed in        
the Complexicator gives a sense of random exploration;        
as if the box has a personality of its own. 
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ABSTRACT

In this paper we describe the ongoing research on the de-
velopment of a body movement sonification system. High
precision, high resolution wireless sensors are used to track
the body movement and record muscle excitation. We are
currently using 6 sensors. In the final version of the system
full body tracking can be achieved. The recording system
provides a web server including a simple REST API, which
streams the recorded data in JSON format. An intermedi-
ate proxy server pre-processes the data and transmits it to
the final sonification system. The sonification system is
implemented using the web audio api. We are experiment-
ing with a set of different sonification strategies and algo-
rithms. Currently we are testing the system as part of an
interactive, guided therapy, establishing additional acous-
tic feedback channels for the patient. In a second stage
of the research we are going to use the system in a more
musical and artistic way. More specifically we plan to use
the system in cooperation with a violist, where the acoustic
feedback channel will be integrated into the performance.

1. INTRODUCTION

Real time measurement of human body movement pro-
vides an excellent technical basis for a larger number of
application and research scenarios. In this paper we de-
scribe the ongoing design and development of a real time
sonification system for body movement data. Two applica-
tion contexts for this system have been defined by us:

1. body movement sonification as an additional bio feed-
back channel as part of a physio therapy in multiple
settings

2. body movement sonification as an additional chan-
nel as part of a musical performance, in our case
playing the viola by our second co author, a trained
musician and music teacher

So far, we focused on the first context, as we are still in 
the technical setup phase of our research.

Guided movements, which are body to body interactions 
between patient and therapist, are a central, important means

Copyright: c© 2019 First author et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

for the treatment of a large number of human illnesses. The
therapist is guiding the patient with her body movements
and helps him, by giving language instructions, is control-
ling the tempo of the movement, controls the intensity of
the patients movement and defines the rhythm of the move-
ment. By holding the hand or touching the arm, a helpful
supporting haptic feedback is given to the patient, who in
turn, is reacting to the interaction and thus adapts and im-
proves his body movements leading to a better recovery.

The similarity between therapy and musical performance
or dance should be rather obvious now. In both cases we
find the same pre conditions: dance consists of a body to
body interaction, musical performance consists of a body
to instrument interaction.

The integration of body movement and sound production
is an integral part of the musical and artistic expression.
Musician use body movements in multiple ways, obviously
to create the sound in conjunction with their instruments,
but also to intensify the musical effect, e.g. by synchroniz-
ing their body movements with the rhythm or the dynamic
of the performed musical piece.

Body movements are also used to communicate during
musical performance. Spoken language is often not to be
used during a musical performance, giving posture, ges-
ture, mimic and gaze a more important and prominent com-
municative function.

1.1 Bio feedback in therapy

Bio feedback training (BFB) is a powerful means to learn
and re-learn body motion patterns. It is often used with
patients suffering from neuro muscular disorders or pain
symptoms of the motion apparatus. A positive effect through
pallaestethic BFB can also be recognized for children with
innate cerebral pareses ([1]). BFB is also used for pa-
tients with strokes and facial pareses ([3]; [8]; [2]). Current
BFB systems are focusing on visual bio feedback (see [6]).
These systems require the patient to visually focus an ex-
ternal source, quite often a monitor displaying some kind
of visual stimulus. This is interfering with the patients abil-
ity to perceive their own body movements, which could be
a very important source of information during therapy. It
is currently not clear, whether audio based BFB systems
provide better results for the therapy of motion limited or
disabled patients, ([7]; [4]) And it is also unclear, how a
satisfactory sonification process for body movement data
could be implemented within the context of physio ther-
apy ([5]).
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2. THE MEASURING SYSTEM

Figure 1. The experimental setup: sensors can be placed
anywhere on the human body. In our case, we are inter-
ested in arm movements, either in a therapeutic context, in
a later stage, measuring the arm movements of a violist.

Within our system, the recording of the body movement
is conducted using wireless sensors, that will be attached
to specific body parts of the musician/patient. These sen-
sors provide high quality readings with a high temporal
resolution. The maximum sample rate of the sensors is
at 3000 Hz, giving detailed information on the muscle ex-
citation, the accelleration and the spatial alignment. The
used Noraxon software provides the functionality to syn-
chronize audio- and video streams with the recorded body
movement data. In addition, a number of simple statistical
steps can be computed by the software. It also visualizes
the measurements in a live graph and is able to create a
very simple auditory feedback, based on the definiton of
threshold values for the parameters.

Figure 2. The system architecture: data is transmitted
using a REST API. The computing proxy is preprocess-
ing the incoming data and uses the wekinator to adapt the
sonification parameters. The sonification process is imple-
mented as a web audio based system running in the client
browser (and also in SuperCollider).

In order to access the live data of a recording, the No-
raxon software provides the user with a built-in web server

that is implementing a simple REST API. The measure-
ments are streamed as raw data and are encoded as a JSON
compatible string. The blocksize of these data chunks is
variable and depends on the request interval of the con-
nected client system, in our case, the computing proxy sys-
tem.

Figure 3. The Noraxon software is recording, audio data,
video data and the body movement data in real time. Data
is displayed as a live oscillogram.

The computing proxy system parses the data blocks and
performs a set of pre-processing steps. It is implemented in
python and uses powerful libraries to extract a number of
key figures from the raw data. These include gliding aver-
age and standard deviation. It also integrates the signal and
performs other standard statistical computations. Through
these steps, the computing proxy reduces the amount of
data, that is sent to the sonification system.

3. SONIFICATION WITH THE WEB AUDIO API

The sonification system has been implemented as a web
based application using the web audio API for creating
the sound 1 . The central component of the system is a 3
oscillator subtractive synthesizer. Its internal architecture
is fixed (non modular) and follows the standard approach
taken by most of the current analogue and digital synthe-
sizers, consisting of a chain of VCO, VCF and VCA. In
addition LFOs and an EG are provided to modulate a num-
ber of parameters of the main components (e.g. frequency,
pulse width, filter cutoff frequency and filter resonance).
In order to receive the movement data from the comput-
ing proxy, a simple timer creates GET requests in regular
intervals. Depending on the selected sonifications strategy,
the movement values are then mapped to control param-
eters of the synthesizer, eventually creating the perceived
sound. For the creation of rhythmic patterns a simple web
based drum machine has been implemented. A set of four
pattern generators is used. These pattern generators func-
tion like a set of gears (see [9]), each producing a config-
urable repetitive rhythmic pattern. The gears could also be
linked, thus being synchronized. For each gear up to two
independent sounds could be selected with a pattern length
between 1 and 17 beats for a single gear revolution. The
sounds of the drum machine are produced by the described
web audio synthesizer.

1 A secondary simple sonification system has been implemented using
SuperCollider. Here parameters are transmitted using OSC.
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3.1 Adaptive Sonification

The processing proxy performs the central analytic part of
the current systems. Basically it reduces the vast amount
of sensor readings to a set of relevant control parameters.

This transformation process is also parameterized and can
thus be dynamically adapted to body movements. This is
achieved by integrating the wekinator (see [10]). The wek-
inator is connected via Open Sound Control (OSC) and is
able to learn a mapping function for given parameters.

In order to create a dynamic mapping, fixed values of
control parameters are paired with certain postures of the
human body. After presenting the system just a couple of
relevant examples, the wekinator is able the create an in-
terpolation model for this parameter.

This approach makes it relatively simple to adapt to the
specific movement abilities of a system’s user.

4. FIRST EXPERIMENTS

A set of different sonification strategies has been imple-
mented. Parameters on a number of musical levels and
sound levels are controlled by the preprocessed movement
measurements.

• pitch

• volume

• rhythm

• complexity of tonal clusters (filter parameters of noise)

• chord selection

• melody structure

• position in the stereo field

• position in a spatial field

The simplest way to sonify value changes is a direct map-
ping from movement to pitch. In our case, we experi-
mented with speed and acceleration of the arm movement.
While speed leads to smaller, less abrupt changes in pitch,
acceleration creates a sound impression, that can be com-
pared to a theremin. We also tried out to simultaneously
sonifiy different sensors with different sounds (and also
positioned them in the stereo field). While the sound be-
came more interesting in a musical sense, the bio feedback
seemed to be too complex. It became quite complicated to
map the perceived sound back to the movement control of
the arm. The second experiment tried to keep the pitch of
the sonification steady. This allowed for a better control of
the harmonic structure of the auditory feedback. Instead
the volume of the sound was mapped to the arm move-
ments. It turned out, that a better speed control of the arm
movement could be realized by the participants. On the
other hand, it became relatively complicated to get an ad-
equate feedback for fine grained arm movements. The dif-
ferences in auditory feedback were barely noticeable, even
though, the volume mapping used a logarithmic scale. In
our experiment on rhythmic structure we followed ideas

inspired by Toussaint ([9]). A rhythm machine was im-
plemented by means of geometrical descriptions. Here we
(conceptually) used gears of different sizes to create rhyth-
mic patterns of different length and speed. The arm move-
ments were mapped to these parameters, thus changing
the overall speed of the rhythm, as well its internal struc-
ture. Participants liked this kind of feedback. It gave them
a good control about the temporal course of their move-
ments. Even slight variations of movement speed were eas-
ily detected. On the other hand, variations in the movement
measurement needed to be smoothed out more. For the
next experiment we tried to provide as little musical struc-
ture as possible. Instead, multi band filtered pink, white
and brown noise was used to create a non disturbing pleas-
ant background hiss, comparable to an ocean noise on the
seaside. The filter cutoff frequencies were modulated by a
set of slowly moving LFOs, which in turn were controlled
by the arm movement data. Here the acoustic feedback
was perceived as delayed, not directly connected to the arm
movement. Nevertheless, participants kind of liked it, as it
provided a means of a slow moody change. They realized
something went wrong a little time ago, moved back to a
previous position and repeated the movement, hoping to
get no further negative acoustic feedback.

The experiment on chord selection was based on a varia-
tion of a Tonnetz by Euler. Instead of moving through the
network in a circular way, a given central chord was cho-
sen, and the arm movements were mapped to a distance
value, thus moving away from the central chord to select
more distant chords. Once the arm movement was back
on track, closer chords were chosen again. Most of the
participants liked to stay within a close range to the cen-
tral chord, thus mainly producing simple (musically rather
dull) cadences of tonica, dominante and sub-dominante.
Still some also enjoyed the more complex structure of the
distant chords. The perceived musical structure led to a
stronger distraction of the participants, as they rather tried
to get back to the central chord, than concentrating onto the
correct arm movement. In a sense, the participants used the
sonification system for a musical performance. The final
three sonification strategies have not yet been under exper-
imental testing. If accepted to the conference, we hope to
be able to present all of our results as part of a poster/demo
presentation.

5. CONCLUSIONS

In this paper we present the early stage of our research on
the development of a web audio based sonification system
for body movement data. So far, we have been able to de-
sign and implement a first version of the system. This pro-
totype is fully based on current web technology. We devel-
oped a set of sonification strategies and conducted a num-
ber of experiments to pre test our hypotheses. The results
are quite promising. Within the context of physiotherapy
we expect to achieve positive effects on the rehabilitation
of patients by integrating auditory bio feedback into the
therapy. In a second strand of research, we would like to
use the system in a more musical way. More specifically,
we would like to use the system to capture and analyse the
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arm and body movements of a violist (our second co au-
thor) and use the incoming body movement data to control
the sonification system in a musical and esthetic way. As
the violist is also teaching viola playing to younger chil-
dren, one might also use our system in a didactic setting.

6. REFERENCES

[1] R. Bloom, A. Przekop, and T. D. Sanger, “Prolonged
electromyogram biofeedback improves upper extrem-
ity function in children with cerebral palsy,” Journal of
child neurology, vol. 25, no. 12, pp. 1480–1484, 2010.

[2] G. W. Cronin and R. L. Steenerson, “The effectiveness
of neuromuscular facial retraining combined with elec-
tromyography in facial paralysis rehabilitation,” Oto-
laryngologyHead and Neck Surgery, vol. 128, no. 4,
pp. 534–538, 2003.

[3] J. Crow, N. Lincoln, F. Nouri, and W. d. Weerdt,
“The effectiveness of emg biofeedback in the treatment
of arm function after stroke,” International disability
studies, vol. 11, no. 4, pp. 155–160, 1989.

[4] C. Dohle, N. Morkisch, R. Lommack, and L. Kadow,
“Spiegeltherapie,” neuroreha, vol. 3, no. 04, pp. 184–
190, 2011.

[5] M. Dozza, L. Chiari, and F. B. Horak, “Audio-
biofeedback improves balance in patients with bilateral
vestibular loss,” Archives of physical medicine and re-
habilitation, vol. 86, no. 7, pp. 1401–1403, 2005.

[6] H.-Y. Huang, J.-J. Lin, Y. L. Guo, W. T.-J. Wang, and
Y.-J. Chen, “Emg biofeedback effectiveness to alter
muscle activity pattern and scapular kinematics in sub-
jects with and without shoulder impingement,” Journal
of electromyography and kinesiology, vol. 23, no. 1,
pp. 267–274, 2013.

[7] S. Seidel, G. Kasprian, T. Sycha, and E. Auff,
“Spiegeltherapie bei phantomschmerzen,” Wiener klin-
ische Wochenschrift, vol. 121, no. 13-14, pp. 440–444,
2009.

[8] E. Dalla Toffola, C. Tinelli, A. Lozza, M. Bejor,
C. Pavese, I. Degli Agosti, and L. Petrucci, “Choosing
the best rehabilitation treatment for bells palsy,” Eur J
Phys Rehabil Med, vol. 48, no. 4, pp. 635–642, 2012.

[9] G. T. Toussaint, The Geometry of Musical Rhythm:
What Makes a” Good” Rhythm Good? Chapman and
Hall/CRC, 2016.

[10] M. Schedel and R. Fiebrink, “A demonstration of bow
articulation recognition with wekinator and k-bow,” in
ICMC, 2011.

504

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



VOCALISTMIRROR: A SINGER SUPPORT INTERFACE FOR AVOIDING
UNDESIRABLE FACIAL EXPRESSIONS

Kin Wah Edward Lin, Tomoyasu Nakano, Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST)

Central 2, 1-1-1, Umezone, Tsukuba, Ibaraki 305-8568, Japan
{edward.lin, t.nakano, m.goto}@aist.go.jp

ABSTRACT

We present VocalistMirror, an interactive user interface
that enables a singer to avoid their undesirable facial ex-
pressions in singing video recordings. Since singers usu-
ally focus on singing expressions and do not care about
facial expressions, when watching singing videos they
recorded, they sometimes notice that some of their facial
expressions are undesirable. VocalistMirror allows a singer
to first specify their undesirable facial expressions in a
recorded video, and then sing again while seeing a real-
time warning that is shown when the facial expression of
the singer becomes similar to one of the specified unde-
sirable expressions. It also displays Karaoke-style lyrics
with piano-roll melody and visualizes acoustic features of
singing voices. iOS ARKit framework is used to quantify
the facial expression as a 52-dimensional vector, which is
then used to compute the distance from undesirable expres-
sions. Our experimental results showed the potential of the
proposed interface.

1. INTRODUCTION

Although many tools to enable singers to achieve desirable
singing expressions of their singing voices have been de-
veloped [1–4], to the best of our knowledge, no tools have
been developed to enable singers to avoid undesirable fa-
cial expressions while singing. For example, Lin et al. [5]
developed a singing pitch training interface that visualizes
singing pitch (fundamental frequency of singing voice) in
real time and gives feedback on the correctness of the pitch
while singing. Tsuzuki et al. [6] developed an interface to
create derivative choruses by mixing (mashing up) various
singing voices sung by different singers for the same song.
Such a variety of singing voices are typically available as
vocal covers on video sharing services. Ojima et al. [7] de-
veloped a real-time vocal-part arrangement system that en-
ables a user to manipulate the vocal part of existing music
audio signals. Fragments of singing voices can be manip-
ulated and played back by using a MIDI keyboard. These
interfaces and systems focused on singing voices and did
not deal with facial expressions in singing.

Copyright: c© 2019 Kin Wah Edward Lin, Tomoyasu Nakano, Masataka
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The importance of facial expressions has already been in-
vestigated in the literature. Quinto et al. [8] stated that
facial expressions of a singer are known to influence the
perception of singing expressiveness, tension, timbre, dis-
sonance, note duration, interval size, phrase structure, and
emotion. They also reported the relationship between the
singing emotion and the pre-production, production, and
post-production of facial expressions. Lyons and Tetsutani
[9] and Koh and Yadegari [10] demonstrated how facial
expressions can be used to manipulate audio signals. Goto
et al. [11] showed how singing and facial expressions of
a singer can be imitated by a humanoid robot. However,
there are no studies on applications helping singers have
desirable facial expressions while singing.

The popularity of recording short singing video clips and
uploading them to social media has increased. This can
be considered a new form of music interaction and this
trend is the most observable among young people. Its pop-
ularity is evident in the large market size of singing apps
(i.e., smartphone/tablet applications for singing) that en-
able users to create singing video recordings. For exam-
ple, TikTok 1 , Smule 2 , and Yokee 3 are popular and pro-
vide functions to add digital makeup or decorate faces and
backgrounds. Those makeup functions can be manually
used by singers at the post-production stage, but singing
apps are not able to detect undesirable facial expressions
of singers.

We therefore propose a singer support interface called Vo-
calistMirror that enables a user to record a short singing
video clip with desirable facial expressions, which could
be uploaded to social media by the singer. With the
VocalistMirror interface, the user can sing an excerpt of
a song while listening to its karaoke track and seeing
automatically-scrolling Karaoke-style lyrics with a piano-
roll melody line. Acoustic features of the user’s singing
voice such as the sung pitch (fundamental frequency), and
timing are analyzed and visualized in real time. This vi-
sualized feedback helps the user be aware of the accuracy
of the sung pitch and timing, and thus helps users improve
their singing expressions. Furthermore, the user’s singing
voice and facial expressions are automatically recorded as
a video clip and played back after singing. During the

1 TikTok by Bytedance https://itunes.apple.com/us/
app/id835599320 accessed on: 15 Feb 2019.

2 Smule - The #1 Singing App by Smule https://itunes.
apple.com/us/app/id509993510 accessed on: 15 Feb 2019.

3 Karaoke - Sing Unlimited Songs by Yokee Music https://
itunes.apple.com/us/app/id547109049 accessed on: 15 Feb
2019.
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playback of this singing video clip, VocalistMirror allows
the user to select several frames of undesirable facial ex-
pressions that the user sometimes wears. Since the user
typically does not notice those undesirable facial expres-
sions while singing, the user wants to avoid them. Vocal-
istMirror solves this problem by letting the user sing again
while automatically analyzing the user’s facial expressions
in real time and displaying a warning when one of the se-
lected undesirable facial expressions is detected. Vocal-
istMirror thus acts as a mirror enabling the user to notice
when the user wears an undesirable facial expression and
avoid it in a recorded singing video clip.

Our main contributions are three-fold: (1) we opened up
a new way of assisting singers from the viewpoint of facial
expressions, (2) we designed and implemented an interface
helping singers specify and avoid their undesirable facial
expressions in a simple intuitive way, and (3) we evaluated
the effectiveness and potential of the interface by conduct-
ing a user study.

2. SYSTEM DESIGN AND IMPLEMENTATION

We want our VocalistMirror to be a tool that is capable of
creating a short singing video clip with a duration similar
to that of the 15 to 30 seconds video clips posted on social
media such as TikTok, so that it could encourage novice-
level singers to record their own singing video clips. We
also want VocalistMirror to be easily accessible and easy-
to-use. In the following three subsections, we discuss what
platform our VocalistMirror should be deployed on, how
facial expressions are quantified, and what acoustic fea-
tures should be visualized.

2.1 Deployment Platform

Among available popular platforms such as Windows, ma-
cOS, Android, and iOS, we decided to develop and deploy
our interface on the iOS platform. It is portable and acces-
sible given the size of mobile devices such as iPhone and
iPad. It also provides strong software and hardware sup-
port for analyzing facial expressions and acoustic features.
This choice means we can use Apple’s TrueDepth camera
system [12, 13] that is available on the iOS platform and
expect the audio quality to be high enough 4 .

2.2 Quantification of Facial Expressions

The iOS platform has a software framework called
ARKit 5 that can quantify facial expressions. It uses
a front-facing TrueDepth camera on the iOS device to
provide real-time analysis of singer’s facial expressions.
ARKit quantifies each facial expression as a facial wire-
frame with 1,220 vertices. It can further analyze those
vertices to provide 52 distinct facial shapes 6 , which are
classified into 5 categories: (1) Left Eye, (2) Right Eye,

4 Mobile Audio Quality Index from JUCE https://juce.com/
maq accessed on: 15 Feb 2019.

5 ARKit https://developer.apple.com/
documentation/arkit accessed on: 15 Feb 2019.

6 ARKit Face Blendshape by Apple https://developer.
apple.com/documentation/arkit/arfaceanchor/
blendshapelocation accessed on: 15 Feb 2019.

Figure 1. Feasibility study using ARKit framework to
quantify facial expressions.

(3) Mouth and Jaw, (4) Eyebrows, Cheeks, and Nose, and
(5) Tongue. Since each of the 52 facial shapes has a value
ranging from 0 to 1, we can regard a set of values of the 52
facial shapes as a 52-dimensional facial vector that repre-
sents the facial expression in a video frame. We quantify
how similar the facial expressions in two different video
frames are by calculating the distance between the two vec-
tors of those frames.

To illustrate the feasibility of using these 52-dimensional
facial vectors to represent and detect similar facial expres-
sions, we first asked a singer to sing a 22-second song that
repeats two similar musical phrases. We also asked the
singer to try to express the same facial expression for each
of the musical phrases. We used the ARKit framework to
capture a set of facial vectors during this singing perfor-
mance. Then we calculated a self-similarity matrix of this
set of vectors. Fig. 1 shows the self-similarity matrix of
these facial vectors on the top, snapshots of singer’s fa-
cial expressions in the middle, and the corresponding fa-
cial vectors at the bottom. This figure clearly shows that
similar facial expressions of similar phrases were repeated
twice. We can therefore use the 52-dimensional facial vec-
tors obtained from the ARKit framework to detect similar
facial expressions.

The similarity between facial expressions is quantified by
calculating the exponential moving average of the L1-norm
distance. The smaller the L1-norm distance is, the more
similar they are. The real-time warning for undesirable fa-
cial expressions is displayed only when the L1-norm dis-
tance is below a threshold. We leave other distance calcu-
lations and the corresponding threshold setting for future
work.
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Figure 2. Interface and workflow of VocalistMirror.

2.3 Visualization of Acoustic Features

To sing better, singers have to intentionally control several
audio features of their singing voices, including but not
limited to, the singing pitch (fundamental frequency), tim-
ing, vibrato, tremolo, and breathing. Among these acous-
tic features, we chose the singing pitch, timing, and vi-
brato for the visualization, and we leave the others for fu-
ture work. To visualize the singing pitch and vibrato in the
right timing in real time, we need a fast and accurate fun-
damental frequency estimator. A third-party iOS AudioKit
framework 7 not only provides such an estimator [14], but
also seamlessly cooperates with the iOS platform that we
use for the ARKit framework. Since AudioKit also pro-
vides various audio effects and analysis tools, VocalistMir-
ror could use them to extend its functions in the future. For
example, we could use the facial expressions to call the
AudioKit API to create the Wah-Wah audio effect on the
singing voice. We could also use AudioKit analysis tools
to visualize the singing formants so that the phonetic qual-
ity of the singing voice could be visually examined.

3. INTERFACE DESIGN

With the above design principles in mind, we implemented
and deployed the VocalistMirror application on an 11-inch
iPad Pro 2018 with iOS 12.1.4. Since Lin [15] showed that
many singers prefer a larger screen for singing apps, we
chose iPad, rather than iPhone for our implementation. In
this section, we first describe the workflow of VocalistMir-
ror and then discuss its interface details.

3.1 Workflow of VocalistMirror

Fig. 2 shows an overview of our proposed interface. We
call the lower part of the interface a facial-expression inter-
face and the upper part of the interface an acoustic-feature

7 AudioKit https://audiokit.io/ accessed on: 15 Feb 2019.

interface.

When the VocalistMirror app starts, it is at the stage of
singing video recording, which is shown in the left of
Fig. 2. A singer is expected to sing a short excerpt of a
specified song while looking at the acoustic-feature inter-
face as a singing guide. While the singer is singing and lis-
tening to the corresponding karaoke accompaniment, the
acoustic-feature interface uses the AudioKit framework
to provide real-time visual feedback on the singing pitch
(fundamental frequency), timing, and vibrato. The singing
voice and its corresponding facial expressions are recorded
separately into two different files, one for the audio track
and the other for the video track. After the singer finishes
recording, VocalistMirror is moved to the next stage where
the singer can play back and watch the recorded video clip.

At the second stage of selecting undesirable facial ex-
pressions, which is shown in the center of Fig. 2, the
acoustic-feature interface uses the AudioKit framework to
trace the fundamental frequency of the recorded singing
voice in the audio track, so that the singer is able to see
the pitch, timing and vibrato of the recorded singing voice.
Moreover, while the facial-expression interface plays back
the recorded video track, the singer is expected to select
the singer’s undesirable facial expressions by tapping the
iPad screen. Due to the limitation of the screen size, the
singer can select only six or fewer undesirable facial ex-
pressions. The snapshot of each selected facial expression
is displayed along with its occurrence time in the video
clip. Once the singer finishes selecting undesirable facial
expressions, VocalistMirror is moved back to the stage of
singing video recording, which is shown in the right of
Fig. 2.

The singer at this time is expected to record a new and
more satisfying singing video clip by avoiding the selected
undesirable facial expressions. The facial-expression in-
terface helps the singer do so by displays a real-time warn-
ing when the singer’s current facial expression in singing
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becomes very similar to one of the selected undesirable
expressions. This warning is represented by adding a red
rectangular border to the snapshot of the most similar ex-
pression.

These two stages keep alternating until the singer selects
another song, quits the app, or most likely, is satisfied with
a recorded short singing video clip without undesirable fa-
cial expressions

3.2 Facial-Expression Interface Design

The facial-expression interface is used to record facial ex-
pressions of the singing performance and display the sim-
ilarity between the singer’s current facial expression and
each of the selected undesirable facial expressions. To
make sure that the facial expression is well captured by
the ARVideoKit framework 8 , a thin facial wireframe is
overlaid on the singer’s face whenever the singer faces the
TrueDepth camera. Therefore, when the thin facial wire-
frame disappears, the disappearance alerts the singer to
face the TrueDepth camera.

3.3 Acoustic-Feature Interface Design

Since the acoustic-feature interface is mainly used as the
singing guide, the singer is likely to concentrate on this
interface while singing. And since the TrueDepth camera
is located at the middle top of the iPad screen, we posi-
tion this interface at the upper part of the screen so that the
singer is more likely to face the camera. The display of the
piano-roll melody line as well as the karaoke-style lyrics
is implemented by using the Songle web service [16] for
the melody line and the TextAlive web service [17] for the
lyrics timing. We use SpriteKit 9 to implement the graph
drawing. The singing pitch, timing, and vibrato are visual-
ized using the arrow on the timeline cursor shown in Fig. 2.

4. EXPERIMENT

In this section, we first describe the setup of our subjec-
tive experiment. We then report and discuss experimental
results. This preliminary experiment illustrates the effec-
tiveness and potential of the proposed interface.

4.1 Experiment Setup

Each participant used VocalistMirror alone in a separated
and quiet room to create their recording of an excerpt (the
first two musical phrases) from RWC-MDB-P-2001 No.87
in the RWC Music Database (Popular Music) [18]. The
duration of the excerpt is 22 seconds. Since each partici-
pant was also told to use earphones to listen to the karaoke
accompaniment of this song, accompaniment sounds were
not recorded by the microphone the participant used and
we could record solo singing without any accompaniment.
The experiment followed the steps described below and on
average took half an hour for each participant. After the

8 ARVideoKit https://github.com/AFathi/ARVideoKit
accessed on: 15 Feb 2019.

9 SpriteKit https://developer.apple.com/
documentation/spritekit accessed on: 15 Feb 2019.

experiment, it was optional for the participant to provide
further feedback and suggestions.

4.1.1 Pre-experiment questionnaires:

Each participant first filled out an online form that asked
about their age (like 20’s, 30’s, or 40’s), gender, musi-
cal background, and experience creating their own singing
video clips.

4.1.2 Introduction and demonstration:

We then used about 10 minutes to explain and demonstrate
the intended usage of VocalistMirror. During this tutorial,
we also clarified whatever questions they raised so that
they would be comfortable using VocalistMirror alone in
a room to create a singing video clip.

4.1.3 Singing video recording:

Since we asked the participants to use VocalistMirror until
they had finished a satisfying recording, each participant
knew that there was no time limit on recording a video
clip.

4.1.4 Post-experiment questionnaires:

Once they finished their recording, they filled out another
online form alone in the room. The form was used to eval-
uate VocalistMirror on a 7-point scale of degree of appre-
ciation, with 7 being the most and 1 being the least. They
were told that they should answer the following questions
with their first impressions.

• How much do you like the exterior design of the
app? (i.e., The graphics and the user interface.)

• How much do you like the features of avoiding un-
desirable facial expressions?

• How much do you like the features of visualizing
acoustic features of your singing voice?

• How much do you think the app has helped you im-
prove your facial expressions after multiple uses?

• How much do you like the app as a whole?

4.2 Experimental Results

Eight participants (four male and four female) participated
in this experiment. Their ages ranged from the 20’s to the
40’s. Five of them had basic western music education and
had several years of musical instrument (e.g., piano) prac-
tices during their teenage period. These participants are
considered to have had no serious music background. The
other three had more advanced music education and had
serious musical instrument practice (including singing) for
at least six years. These participants are considered to have
had a serious music background. Only one participant,
who was the youngest, has used Instagram 10 to create a
short singing video clip before. We conclude that these
participants were suitable for evaluating our proposed in-
terface because their genders were evenly distributed, they

10 Instagram https://itunes.apple.com/us/app/
id389801252 accessed on: 15 Feb 2019.
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Least Most Med- Mo-
How much do you like 1 2 3 4 5 6 7 ian de
Exterior Design 2 1 2 3 4 5
Features of Avoiding 1 1 1 2 2 1 5 5,6
Features of Visualizing 4 3 1 5 4
Improving Expressions 2 2 1 2 1 4.5 2,4,6
Overall Impression 1 1 5 1 5 5

Table 1. Evaluation of the proposed interface by all eight
participants. Each number represents the number of partic-
ipants who selected the corresponding item.

Least Most Med- Mo-
How much do you like 1 2 3 4 5 6 7 ian de
Exterior Design 2 1 2 2
Features of Avoiding 1 1 1 3 2,3,5
Features of Visualizing 3 4 4
Improving Expressions 2 1 2 2
Overall Impression 1 1 1 4 3,4,5

Table 2. Evaluation of the proposed interface by three par-
ticipants who had a serious music background. Each num-
ber represents the number of participants who selected the
corresponding item.

Least Most Med- Mo-
How much do you like 1 2 3 4 5 6 7 ian de
Exterior Design 2 3 5 5
Features of Avoiding 1 1 2 1 6 6
Features of Visualizing 1 3 1 6 6
Improving Expressions 1 1 2 1 6 6
Overall Impression 4 1 5 5

Table 3. Evaluation of the proposed interface by five par-
ticipants who had no serious music background. Each
number represents the number of participants who selected
the corresponding item.

were from different generations, and their music back-
grounds were almost evenly distributed.

Table 1 shows their responses toward the post-experiment
questionnaires. Based on the median values, participants
had positive impressions (4 and above) towards Vocalist-
Mirror. The lowest median value (4) in the exterior design
suggests that we should invite a professional graphic de-
signer to improve our interface in terms of aesthetics. By
identifying the participants who mostly gave points above
or below 4, we realize there could be two distinct user
groups.

Table 2 shows the responses of the three participants who
had a serious music background. Table 3 shows the re-
sponses of the other five participants, who had no serious
music background. By comparing the responses of these
two groups of people, we realize that each group of people
has distinct and contradictory opinions of VocalistMirror.
Examples are shown below.

• Participants with no serious music background
would appreciate more on the features of avoiding
undesirable facial expressions and would more
agree that their facial expression is improved after
multiple uses. They mentioned that the alternating
stage design makes VocalistMirror easy to use
and, most importantly, encourages them to be
more aware of their undesirable facial expressions.
They felt that a process of simply selecting some
undesirable facial expressions is sometimes helpful
enough for them to avoid undesirable facial expres-
sions. However, the other group of participants
with a serious music background less agreed as
they would demand more sophisticated features for
selecting their undesirable facial expressions in the
first place. For example, they may only dislike the
mouth shape or the head tilt. Hence, they demand a
precise navigation function so they can navigate the
recorded video clip precisely to find that particular
set of frames.

• Participants with serious music background would
demand the interface design to match their music
understanding. For example, once the experienced
singers know the key of the song after hearing the
first few notes of the song, they just need the pitch
information which is related to the key of the song
(i.e., the solfeggio - do, re, me fa, so, la, si, do) in
order to sing in tune. Hence, the experienced singers
demand the interface to show the relative pitch infor-
mation. However, novice-level singers would prefer
the interface to display the absolute pitch informa-
tion (e.g., C4, D4, and so on) so that they could feel
the pitch control is just like pressing the note on the
piano keyboard.

These opinions suggest that we will need two different
versions of VocalistMirror in the future if we want to tar-
get both of the user groups. It also suggests that the current
version of VocalistMirror is more appreciated by the par-
ticipants with no serious music background.

5. CONCLUSION

We described VocalistMirror, a real-time user interface
helping a singer avoid the singer’s undesirable facial ex-
pressions. Although facial expression is an essential fea-
ture in singing, to the best of our knowledge, this is the
first study that focuses on undesirable facial expressions of
singers. VocalistMirror analyzes the singing voice taken
from a microphone input in real time and visualizes its
pitch trajectory as well as a piano-roll melody line with
Karaoke-style lyrics scrolling automatically. Moreover, it
analyzes the singer’s facial expression taken from a cam-
era in real time and displays a warning if it becomes sim-
ilar to one of undesirable facial expressions specified by
the singer. In our current implementation, VocalistMirror
uses iOS ARKit framework to quantify the facial expres-
sion as a 52-dimensional facial vector with each dimension
ranging from 0 to 1. We can tell how similar two facial

509

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



expressions are by calculating the exponential moving av-
erage of the L1-norm distance between the corresponding
two facial vectors. Experimental results showed the effec-
tiveness and potential of the proposed interface and, most
importantly, they provide a direction for further improving
our VocalistMirror interface.
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AUDIOVISUAL PERCEPTION OF AROUSAL, VALENCE, AND EFFORT IN
CONTEMPORARY CELLO PERFORMANCE
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ABSTRACT

Perceived arousal, valence, and effort were measured con-
tinuously from auditory, visual, and audiovisual cues using 
a recorded performance of a contemporary cello piece. Ef-
fort (perceived exertion of the performer) was added for 
two motivations: to investigate its potential as a measure 
and its association with arousal in audiovisual perception. 
Fifty-two subjects participated in the experiment. Results 
were analyzed using Activity Analysis and functional data 
analysis. Arousal and effort were perceived with signifi-
cant coordination between participants from auditory, vi-
sual, as well as audiovisual cues. Significant differences 
were detected between auditory and visual channels but not 
between arousal and effort. Valence, in contrast, showed 
no significant coordination between participants. Relative 
importance of the visual channel is discussed.

1. INTRODUCTION

Describing emotional response to music, the circumplex 
model presents a variety of affects as a combination of two 
dimensions, arousal and valence (see [1, 2] for a review). 
In tonal classical music, the main cues for high arousal 
are fast tempo and high intensity, while major mode, fast 
tempo, and high pitch contribute to positive valence [3]. 
Western listeners learn cultural valence cues from classic-
romantic and from popular music. These cues are often ab-
sent in contemporary music, where valence must be judged 
from acoustic attributes. Valence models are less success-
ful under such circumstances [4]. Dean and Bailes found a 
potential association between valence and spectral flatness 
in electroacoustic music [5]. However, the effect was also 
overruled by higher-level features.

Dean and Bailes also discovered loudness patterns in elec-
tronic compositions resembling those resulting from the 
player’s exertion in classical music [6]. They suggested 
that effort would be a key element in the FEELA-chain 
leading to emotional arousal (Force, Energy, Effort, Loud-
ness, Arousal). In the auditory domain, effort is associ-
ated with intensity, source complexity, and event density 
in varying degrees, as long as human musical agency is 
apparent to the listener [7]. In the visual domain, effort is
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considered a factor of expressive body movement in musi-
cal and dance performance. However, perception of effort
changes has been less explored.

In music performance, various visual cues have been iden-
tified from gestures communicating specific affects such
as anger, fear, grief, and joy [8]. General importance of
visual kinematic cues has been confirmed for higher-level
features such as performance judgment [9], expertise [10],
player identification [11], structural phrasing [12, 13], ex-
pressive intentions [14–16], and various emotional cues [17–
19]. However, basic affect perception from audiovisual
cues has received less attention until recently. Vines and
colleagues measured continuous perception of musical ten-
sion, reporting great differences between the auditory and
visual channels [12]. Vuoskoski et al. studied expressiv-
ity [20] and emotional impact [21], concluding that visual
cues were of equal or even higher importance than auditory
cues. Yet the relative importance of visual cues in real-time
perception still requires research.

The present experiment is motivated through the recent
evidence of the role of the visual channel. Effort was in-
cluded in order to explore its suitability as a measure in
contemporary repertoire and its differences with arousal in
audiovisual perception. The cello was chosen for good vis-
ibility of the playing gestures and their importance to loud-
ness control. Based on literature and on pilot experiments,
it is expected that both arousal and effort will be judged
reliably from auditory and from visual cues. The two mea-
sures are expected to be positively associated. Suitability
of valence as a measure of perceived affect in contempo-
rary repertoire is discussed.

2. EXPERIMENT

2.1 Design, stimuli, and apparatus

Three factors were varied in the experiment: measurement
(arousal, valence, and effort), sensory modality (A=auditory
only, V=visual only, and AV=audiovisual), and musical
material (segments 1-3). The material consisted of three
excerpts from an audio-video recording of the solo cello
work Pression by Helmut Lachenmann. This piece was
chosen because it lacks melodic and harmonic elements as
well as regular beats, yet it contains a rich variety of play-
ing techniques, gestures, and timbres. The video record-
ing was made using a professional camera. The performer
was filmed from a distance of ca four meters against a still,
dark, and neutral background, offering good contrast to her
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clothing. The audio track was two-channel at 48 kHz. 1

The duration of the segments varied between 2 min and 2
min 30 sec. The unimodal A and V conditions contained
only the audio and the video tracks, respectively, while the
bimodal AV condition contained both. Audio and video
were always congruent.

Subjects made continuous ratings of perceived (not expe-
rienced) affect using a slider while observing the perfor-
mance one factor combination at a time. A custom-made
software played back the excerpts on a 13-inch laptop com-
puter and collected responses at a sampling frequency of
4 Hz. Audio was presented through Direct Sound EX-
29 Extreme Isolation headphones at realistic and comfort-
able level, and video was shown in full-screen mode. Sub-
jects were instructed to rate perceived, not experienced af-
fect, and the meanings of the three measurements were ex-
plained to them before each measurement block. Arousal
was described varying between tense/relaxed or awake/tired.
Effort was defined as the musician’s exertion in order to
produce the sound. For these measures, the slider setting
was mapped to the numeric range [0,1]. Valence was de-
scribed as varying between positive/negative, pleasant/un-
pleasant, attractive/unattractive, or happy/sad. The slider
was mapped to the range [-0.5, 0.5].

2.2 Subjects and procedure

Fifty-two students participated in the experiment (ages 20-
45 years, M = 27; 16 M, 36 F). Roughly two thirds were
music majors, the rest had no significant musical experi-
ence. Participants’ musical background was recorded but
not controlled as a grouping factor. The session took ca
30 minutes. After completing the experiment, participants
reported their liking and perceived familiarity of the reper-
toire, both on a scale from one to five.

Each participant was assigned nine of the 27 factor com-
binations as follows. At first, the six permutations of seg-
ment numbers 1-3 were assigned to the modalities A, AV,
and V, producing triplets such as (A1, AV2, V3). Then, one
of these triplets was assigned to each measurement such
that the participants received each modality once within the
three segments of a single measurement, and each modal-
ity once within the three measurements of a single seg-
ment. There were 12 such sets; thus each set was received
by four or five participants. An example of the conditions
received by a single subject is given in Table 1.

This scheme produced 17 ratings per measurement-modali-
ty-segment bin (16-18 due to practicalities). There were no
common participants in bins with matching modality and
segment (for example, effort-A-1, arousal-A-1, valence-A-
1), nor in bins with matching measurement and segment
(for example, effort-A-1, effort-V-1, effort-AV-1). How-
ever, between non-matching factor combinations (such as
effort-A and valence-AV), there was up to 50% overlap
between participants. The three measurements were pre-
sented as blocks in balanced order.

1 Recording available at https://tube.switch.ch/videos/db27af24

A AV V
Arousal Seg. 1 Seg. 2 Seg. 3
Valence Seg. 2 Seg .3 Seg. 1
Effort Seg. 3 Seg. 1 Seg. 2

Table 1: One of the 12 sets of factor combinations.

2.3 Data analysis

Coordination in participants’ responses was investigated
using Activity Analysis, a novel analytical framework based
on alignment between continuous responses of different
subjects [22]. Well aligned responses are probably driven
by the stimulus and not produced randomly. Activity Anal-
ysis begins by searching individual responses for active
events in terms of enough change in a given time frame.
Activity levels are then computed as the proportion of re-
sponses that show a similar kind of event within a given
time window of synchrony. Sequenced assessment of ac-
tivity levels over the duration of the measurement produces
the activity level time series. In this study, activity levels
are computed from rating increases of at least 2.5% within
2-second time windows. This in turn is used for com-
puting the Coordination Score by testing the distribution
of activity levels against a parametric model of uncoordi-
nated random activity. The single-number C-Score varies
between 0 and 16, with C > 2 indicating significant co-
ordination on a p < 0.01 level. A Bi-Coordination Score
can be computed between two collections of ratings with
different response conditions and participants. These anal-
yses were performed in Matlab using the Activity Analysis
toolbox [22].

Functional data analysis was performed in R using the
fda.usc package [23]. For this analysis, the ratings were
converted into functional data objects and then smoothed
using nonparametric kernel estimation. The data were used
in original as well as differenced form. To investigate dif-
ferences in functional means between conditions, functional
analysis of variance was performed based on randomly cho-
sen one-dimensional projections [24]. Two-way between-
subject ANOVAs were computed for each segment with
measurement and modality as factors. 2

3. RESULTS

3.1 Arousal and Effort

Functional means of combined arousal and effort ratings
are presented in the top panels of Figures 2, 3, and 4 3 .
Peak ratings are in all segments reached in the auditory
condition. In segments one and three, peak auditory rat-
ings top visual ratings by nearly 20 percentage points and
audiovisual ratings by ca 10 pp. Crossmodal additive ef-
fects do not seem present; audiovisual ratings never exceed
the higher unimodal condition.

2 The segments were treated as separate experiments, as a comparison
of different musical materials would not be meaningful.

3 Averaging over the two measurements is justified by upcoming anal-
ysis.

512

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



1 2 3

Aro Eff Aro Eff Aro Eff

0.0

0.2

0.4

measurement

m
ea
n.
ra
ng
e

modality
A
AV
V

Figure 1: Mean ranges (±se) of the ratings curves in seg-
ments one, two, and three, as proportion of the ratings
scale.

Participants’ individual use of the rating scale was exam-
ined as the range between the 25% and 75% quantiles of
their ratings. Figure 1 presents the mean ranges across par-
ticipants. Typically, they used ca 25% of the rating scale,
and the ranges were widest in the the auditory condition.

3.1.1 Activity Analysis

Coordination Scores for all factor combinations are given
in Table 2. An example of ratings and the respective activ-
ity level time series is seen in Figure 5. In nearly all factor
combinations, ratings were significantly coordinated (C >
2), with an overall mean C = 3.79. However, only the au-
ditory modality resulted in significant C-Scores in all fac-
tor combinations. The audiovisual modality was uncoordi-
nated in two cases and the visual condition in one.

Bi-Coordination-Scores were computed to compare align-
ment between measurements and modalities (Table 3). The
auditory and visual conditions were uncoordinated with
only one exception. In contrast, auditory and audiovisual
ratings were coordinated, except for arousal in segment
one (mean Bi-C of the coordinated conditions = 3.66). Vi-
sual and audiovisual ratings were likewise coordinated, al-
beit with a lower mean Bi-C = 2.79. Arousal and effort
measurements were always coordinated within matching
modalities (mean Bi-C = 4.13).

The Activity Analysis results can be summarized as fol-
lows. Firstly, participants rated both arousal and effort
in a coordinated way from isolated as well as combined
auditory and visual cues. Secondly, there was significant
bi-coordination between arousal and effort ratings in all
modalities. Thirdly, even though there was generally no
significant bi-coordination between auditory and visual rat-
ings, both modalities were bi-coordinated with audiovisual
ratings, suggesting that audiovisual perception is signifi-
cantly driven by both auditory and visual cues.

0 20 40 60 80 100 120 140

0.
0
0.
2
0.
4
0.
6
0.
8

mean

time [s]

ra
tin
gs

A
V
AV

0 20 40 60 80 100 120 140

-0
.0
2

0.
02

mean

time [s]

d(
ra
tin
gs
,1
)

Figure 2: Original (top) and differenced (bottom) mean rat-
ings (arousal and effort combined), segment one.
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Figure 3: Original and differenced ratings, segment two.
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Figure 4: Original and differenced ratings, segment three.
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Arousal Effort
C-score C-score

Seg. 1 A: 3.36 A: 4.28
V: 4.13 V: 2.80
AV: < 2 AV: 4.40

Seg. 2 A: 3.06 A: 4.71
V: 4.37 V: <2
AV: 4.76 AV: 4.76

Seg. 3 A: 2.70 A: 2.42
V: 2.29 V: 7.38
AV: 9.08 AV: < 2

Table 2: Activity Analysis C-Scores.

Arousal Effort Aro-Eff
Bi-C-score Bi-C-score Bi-C-score

Seg. 1 A-AV: < 2 A-AV: 2.94 A: 4.13
V-AV: 2.25 V-AV: 2.25 V: 3.40
A-V: < 2 A-V: < 2 AV: 3.68

Seg. 2 A-AV: 2.77 A-AV: 2.74 A: 3.10
V-AV: 3.47 V-AV: 3.54 V: 3.19
A-V: < 2 A-V: < 2 AV: 3.67

Seg. 3 A-AV: 4.67 A-AV: 5.18 A: 5.65
V-AV: 2.90 V-AV: 2.35 V: 5.56
A-V: 2.56 A-V: < 2 AV: 4.84

Table 3: Activity Analysis Bi-C-Scores.

3.1.2 Functional analysis of variance

Functional two-way ANOVA was computed segment-wise
with measurement and modality as factors. A significant
main effect was observed for modality: the p-value, ob-
tained from 30 random projections, was p < 0.001 for all
three segments. On the contrary, the measurement effect
was not significant in any segment (p ≥ 0.43), nor was the
measurement:modality interaction (p ≥ 0.16).

Special contrasts were computed, using the Bonferroni
method, for all modality pairs. Significance levels for these
contrasts are listed in Table 4. The visual ratings always
differ significantly from both auditory and audiovisual rat-
ings. In segments one and three, the difference between au-
diovisual and auditory ratings is non-significant or margin-
ally significant. In segment two however, the audiovisual
ratings differ significantly from both auditory and visual
ratings. As seen in Figure 3, the visual channel seems to
dominate first and the auditory channel thereafter.

3.1.3 Differenced ratings

The functional ANOVA analysis was repeated for differ-
enced ratings, seen in the bottom panels of Figures 2, 3,
and 4. The goal was to investigate, whether some of the
findings in the first analysis would be due to an off-set
rather than a profile difference. A further motivation for
analysing differenced data is their reduced dependency on
previous values. The results confirm the first analysis: mo-
dality had a significant main effect (p < 0.01) but mea-
surement did not (p ≥ 0.19). Nor was there a significant

20 40 60 80 100 120 140

Time (s)

0

0.2

0.4

0.6

0.8

1

R
at

in
g 

ra
ng

e

Effort ratings of segment 3, Visual

Rating Increase of >2.5% in 2s time frames, non-overlapping

20 40 60 80 100 120 140

Time (s)

0  

0.5

1  

A
ct

iv
ity

 le
ve

l

Inc

Figure 5: Effort in segment 3, visual modality. Top
panel: individual and mean ratings (bold black line), bot-
tom panel: activity levels for rating increases.

Original AV-A AV-V A-V
Segment 1 * (p = 0.021) ** ***
Segment 2 *** *** **
Segment 3 - *** ***
Differenced AV-A AV-V A-V
Segment 1 - (p = 0.059) *** ***
Segment 2 - ** **
Segment 3 - *** ***

Table 4: Planned contrasts in functional analysis of vari-
ance for original and differenced data. Significance levels:
p < 0.001***, p < 0.01**, p < 0.05*, p > 0.05-.

interaction (p ≥ 0.48). Compared to the first analysis, the
contrasts between audiovisual and auditory ratings in seg-
ments one and two are non-significant. These differences
are therefore rather of the off-set type. This suggests that
in terms of profile, the audiovisual ratings are closer to the
auditory than the visual ratings.

In terms of distance, the (non-differenced) audiovisual
ratings are not substantially closer to the auditory ratings or
even to the channel whose ratings are higher. Rather, the
dominant channel might be the one changing more radi-
cally. In this respect, segment two at 60-80 s is particularly
interesting. There the ratings drop suddenly in all three
conditions; however, audiovisual ratings seem to be cap-
tured by the steeper decline in the auditory channel.

3.2 Valence

Valence ratings were mostly uncoordinated. Only one of
the nine factor combinations was significantly coordinated
(C=3.38 for auditory modality in segment three); for the
rest, the C-Score was insignificant (C<2). While the audi-
tory modality reached a mean C-Score not far from signif-
icant (C=1.84), the visual and audiovisual modalities were
clearly below it (C=0.68 and C=0.83, respectively). An ex-
ample of the ratings and activity levels in the visual modal-
ity is seen in Figure 6.

Figure 6 also shows great individual differences typical
of the valence measurement. At the same time as some
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Figure 6: Valence in segment 2, visual modality. Top
panel: individual and mean ratings (bold black line), bot-
tom panel: activity levels for rating increases.

participants rated the passage as maximally positive, oth-
ers gave maximally negative ratings. The resulting mean
curve hardly deviates from zero. It is therefore impossible
to make further conclusions based on the mean.

The reasons for the differences are of interest, however.
As was seen, participants covered varying ranges. There
was a positive association between participants’ liking sco-
res and mean valence levels taken across all their valence
ratings (Pearson’s r = 0.55, p < 0.001). Liking and famil-
iarity were likewise positively associated (r = 0.51, p <
0.001). However, there was no significant association be-
tween mean valence levels and familiarity (r = 0.21, p =
0.14), nor between mean valence levels and being a musi-
cian (r = 0.09, p = 0.51).

4. DISCUSSION

4.1 Audiovisual perception

Arousal and effort were generally perceived with signifi-
cant coordination between participants from auditory, vi-
sual, and audiovisual cues alike. Although both visual
and audiovisual ratings were significantly coordinated in
most of their factor combinations, only auditory ratings
reached significant coordination in all cases. Participants
also utilized a slightly wider range in the auditory ratings.
Thus, auditory cues produced somewhat better alignment
and higher variability in the rating curves than visual cues.

Significant bi-coordination was generally lacking between
the unimodal auditory and visual conditions, and functional
analysis of variance detected a significant difference be-
tween them in both original and differenced ratings. This
outcome is in line with the study by Vines and colleagues,
who observed significant differences between auditory and
visual perception of musical tension [12]. They concluded
that audiovisual ratings were dominated by the auditory
modality. Here, such evidence is less conclusive. Even
though the audiovisual rating profiles match better with the
auditory ratings, the Activity Analysis confirms that both
channels significantly drive audiovisual perception.

The theory of optimal sensory integration predicts that
bimodal perception is dominated by the modality deliver-

ing more reliable information [25–27]. The auditory chan-
nel could be labelled generally more reliable, because it
was perceived at a wider dynamic scale and thus contains
more noticeable changes. One might argue that this dif-
ference was due to less realistic visual playback through
a small screen. Literature on the effect of screen size on
perceived affect is not exhaustive; iPhone-size screens are
known to reduce immersion [28, 29]. It is indeed possi-
ble that visual perception might have been underestimated
here in comparison to a hypothetical live concert situation.
Live measurements, as a function of seating and lighting
conditions in the hall, would be necessary to estimate the
effect. Given that even with the current setup, mean vi-
sual ratings exceeded mean auditory ratings ca. 35% of the
time, the effect of video presentation should be but small.
Also various pilot experiments measuring effort, made us-
ing variable bigger screen sizes, delivered results similar
to the current experiment. Moreover, one would expect
the suppressing effect to be a negative off-set. The current
results indicate, however, that the main reason why partic-
ipants were more tuned to the auditory ratings were profile
differences.

Analysis of the profiles in terms of differenced ratings
suggests that audiovisual perception may have been cap-
tured by change. In this experiment, more change was gen-
erally perceived in the auditory channel, thus it transmit-
ted more information than the visual channel. This seems
only natural, given that the sound of musical instruments
is supposed to respond to even very fine adjustments in
playing gestures [30]. Moreover, because this study fo-
cused on the perception of basic affects, the material did
not contain additional expressive gestures typical of tra-
ditional cello performance. If added, these might signifi-
cantly increase the amount of movement, which could have
an effect on perceived arousal along with other emotional
cues. The current measurement therefore addresses a base-
line of perceived audiovisual arousal, which could be gen-
eralized to both contemporary and classical cello repertoire
containing mainly sound-producing movements. As a fur-
ther step, the effect of expressive gestures on perceived
arousal would be of interest.

As an immediate next step, visual attributes underlying
arousal and effort perception is a research interest follow-
ing this study. Intensity, and to some extent spectral cen-
troid and spectral flatness, are known auditory cues for
arousal [5,31,32]. Visual cues, movement size particularly,
were found to convey loudness but not tempo changes in
piano performance [21]. The first step is to investigate,
how much of the variation in auditory and especially vi-
sual ratings is explained by intensity. In the visual domain,
this should depend on the way loudness is controlled in an
instrument. In bowed string instruments, loudness is in-
creased through bow velocity, requiring larger and faster
movements. The mapping between movement size and in-
tensity is obvious also in the piano, but less so in wind
instruments, the organ, and the harpsichord. Would the
visual channel transmit even fewer bits of information in
these cases, and lose importance? Or would the judgment
require expertise on the instrument?
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4.2 Arousal vs effort

Arousal and effort were bi-coordinated in all factor combi-
nations, and no main effect of measurement was detected
by functional analysis of variance. It is probable that par-
ticipants judged both from the same cues, the main dif-
ference being the viewpoint. One of the goals of this study
was to investigate, whether effort and arousal are perceived
differently through auditory and visual channels. While
exertion can be relatively well estimated from visual cues
[33, 34], it was hypothesized that judging it from auditory
cues might require more inference and be more difficult.
Such differences were not observed. Non-musicians per-
ceived on average nine percentage points more effort than
musicians in the visual condition. However, the nature
and significance of this potential effect cannot be estimated
from the current data.

According to the FEELA hypothesis, the player’s exer-
tion is transmitted through intensity changes to perceived
arousal [5, 7]. This implies that effort cues must also be
arousal cues. Whether the contrary is true must depend
on the circumstances. As long as the intensity changes
are caused by the performer’s exertion, effort and arousal
perception should match well. This seems evident in the
present case. Further experiments could be designed us-
ing music where intensity changes do not originate from
effort changes, such as looming motion, or music with no
intensity changes.

4.3 Valence

The valence measurement lacked significant coordination.
This was not surprising, given the absence of culturally
learned cues. There was a significant positive association
between participants’ individual mean valence level and
their self-reported liking of the repertoire. Furthermore,
valence ratings predicted the liking scores in two segments.
Thus, subjects’ attitude may have influenced their percep-
tion of one of the two basic affect dimensions. The influ-
ence of mood on perception has previously been observed
using visual emotional stimuli [35]. Hence it is concluded
that valence was not a reliable measure of emotional re-
sponse to the repertoire in this study. However, detailed
analysis of the valence ratings may reveal moments of high
activity, even if the general coordination scores were low.
Such moments may be of interest considering covariance
with the other two measures, and will be analyzed at a later
stage.

5. CONCLUSIONS

Perception of basic affect dimensions from auditory and
visual cues was measured in cello performance. While the
auditory and visual channels were perceived differently,
ratings were generally significantly coordinated within each
modality. Arousal and effort were perceived similarly, sup-
porting the notion that in acoustic music performance, both
are associated with loudness changes.

Auditory and visual ratings of arousal and effort were dif-
ferent but both influenced audiovisual perception. It is hy-
pothesized that subjects’ attention was caught by the more

dramatically changing modality. In the present case, more
change was perceived in the auditory channel. This might
be due to contents of the visual channel; however, an ad-
ditional effect of transmission medium (screen size) can-
not be eliminated. However, if the visual component is
present in either live or recorded performance, both au-
ditory and visual channels should ideally communicate a
roughly equal amount of information in order not to sup-
press audiovisual perception. The present study concerns
basic affect perception; in literature, visual cues have been
shown to communicate higher level features, such as ex-
pressiveness or expertise, perhaps even more reliably than
auditory cues.

Valence perception was uncoordinated between partici-
pants. Individual mean valence ratings were associated
with participants’ liking of contemporary music.
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ABSTRACT

The link between musicians and dancers is generally de-
scribed as strong in many traditional musics and this holds 
also for Scandinavian Folk Music - spelmansmusik. Un-
derstanding the interaction of music and dance has poten-
tial for developing theories of performance strategies in 
artistic practice and for developing interactive systems. In 
this paper we investigate this link by having Swedish folk 
musicians perform to animations generated from motion 
capture recordings of dancers. The different stimuli focus 
on motions of selected body parts as moving white dots 
on a computer screen with the aim to understand how dif-
ferent movements can provide reliable cues for musicians. 
Sound recordings of fiddlers playing to the ”dancing dot” 
were analyzed using automatic alignment to the original 
music performance related to the dance recordings. Inter-
views were conducted with musicians and comments were 
collected in order to shed light on strategies when playing 
for dancing. Results illustrate a reliable alignment to ren-
derings showing full skeletons of dancers, and an advan-
tage of focused displays of movements in the upper back 
of the dancer.

1. INTRODUCTION

Research on interactions between participants in a music 
performance can reveal basic strategies and help to develop 
theories of how performances are shaped in specific perfor-
mance contexts. In specific here, the focus lies on the inter-
action between a musician and a dancer and how musicians 
shape performance when interpreting dance movements. 
In terms of computational applications, an understanding 
of how these interactions work is an important basis for 
the implementation of interactive systems, as for instance 
the automatic alignment of a music performance recording 
to the movements of a dancer, or – thought the other way 
around – the generation of a virtual dancer to the real-time 
performance of a musician. In terms of artistic research, 
revealing tacit strategies for how body movement can be 
interpreted musically has great potential for exploring new

Copyright: c© 2019 Olof Misgeld et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 
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artistic concepts that can be used in interaction between
between music and dancers.

In this paper, we focus on the specific performance con-
text of Swedish Folk Music, spelmansmusik and the music
and dance form polska. In this musical form, as in many
traditional musics, music and dance are usually performed
together, which creates strong links between involved per-
formers [1]. Considering the dance and music as comple-
mentary elements has been common to the study and un-
derstanding of this performance practice [2–5]. The shap-
ing of musical beat in music and in dance has been pointed
to as central for this interaction and for how different met-
rical types, styles and forms are developed. [2, 6, 7].

Research into musicians’ movement in classical Euroge-
netic [8] music documented cues and gestures in ensem-
ble and solo playing [9–11]. Studies of Scandinavian folk
music have begun to explore how embodied meter is ex-
pressed in motion patterns of dancers and musicians [5]
and in relation to musical beats [12]. It remains an open
question what role the visual contact between musicians
and dancers plays for this interaction, for instance if a mu-
sician’s focus on certain body parts of a dancer may facil-
itate a more stable interaction, or if generally the perspec-
tive on the whole body is needed. This can also be related
to ways of describing dance heritage documentation and in
folk dance didactic practices [13].

In this paper, we explore if the reduction of a dancers’
movement obtained through infrared Motion Capture tech-
nology (MoCap) still facilitates the performance by a mu-
sician when viewing this reduced movement. Although
this setup does not include the full interaction between
player and dancer the experiment will help the understand-
ing of which aspects of body movements provide reliable
cues for players, and how reliable these cues are. To this
end, performance recordings were used that had been con-
ducted [12] with an Optitrack MoCap system, with three
fiddle-playing musicians and two dancers forming six pairs
of musician and dancer, playing two pieces of a local pol-
ska tradition. For the experiments in this paper, five differ-
ent visualizations of the dancers’ body movements were
generated that visualize movements of various body parts.
The three musicians taking part in the initial performances
were asked to play the related pieces only to the generated
visual cues, without sound cues accompanying the display.
The obtained outcomes provide first results of both quali-
tative and quantitative nature of how the musicians are able
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to synchronize to the various cues. The results indicate that
when viewing a full body rendering of the dancer, the play-
ers were able to follow the dance almost perfectly. In cases
of more radical reductions of the dance movements - using
only one or two markers from the dancers - the task became
harder, resulting in increased deviations. However, cases
where players were aligned to their original performance
demonstrate that the reduced renderings still contain vari-
ous degrees of information for the player.

The remainder of this paper is structured as follows: Sec-
tion 2 provides a concise overview of the related literature,
including studies of interactions in music performance, and
in particular of interactions between dancers and musicians.
Section 3 describes the construction of the stimuli, the ex-
perimental setup, and the analysis methods. The results
are provided in Section 4 and discussed with suggestions
for further research in Section 5.

2. BACKGROUND

Various studies have documented the human ability to rec-
ognize and relate to human motions from highly reduced
representations. Research with point-lights by Johansson
[14] and Cutting et al [15] showed perception of human
walking and recognition of individual walking styles from
a small set of moving dots. Point-lights were also used by
Pollick et al [16] to study the perception of gender and af-
fect from isolated hand movements and by Petrini et al [17]
to study the effect of musical expertise on the sensitivity to
asynchrony of drummers.

Synchronization in music ensembles was studied, for in-
stance, by Hofmann et al [18], who analyzed how the tim-
ing of an individual performer influences ensemble syn-
chronization in Jazz trio performances. In different musi-
cal context, Bishop et al [10] studied the synchronization
of classical duo players (violin and piano) using only vi-
sual or only audio signals. MoCap was used by Keller et
al [11] when examining the effect of anticipatory auditory
imagery - described as the skill of planning and predicting
actions during a musical performance - on the temporal co-
ordination of body movement and sound in classical piano
duos.

Toivianinen et al [19] used MoCap to study dance move-
ments in relation to musical structure - how different met-
rical levels were manifested in different parts of human
bodies moving to music. Naveda et al [20] suggested a
model of topological gesture analysis that related dancers’
motions to musical and metrical patterns in a spatiotem-
poral representation. Scandinavian Folk dance styles have
been characterized by the vertical motion patterns of the
center of gravity (libration curve/sviktkurva) by Blom [2]
which influenced research and didactic practise of Scan-
dinavian folk dance. This synchronization between dance
and music has been further explored using MoCap in set-
tings with interacting dancers and musicians [5, 12]. To
the best of our knowledge, synchronization of instrument
playing to reduced renderings of dance movement have not
been studied before.

In the context of sound and music computing, systems
for tracking periodic movements have been developed and

implemented for sports and wellbeing [21, 22], and mo-
tion sonification systems have been developed for applica-
tions within circus, dance and opera [23]. A categorization
of musical gestures into sound-producing (by musicians)
and sound-perceiving (e.g. by dancers) was suggested by
Jensenius et al. [24]. However, such a division between
gestures can be blurred in situations where dancers may
influence the playing of a musical instrument by means of
their movement. Our study will therefore contribute to in-
vestigations of the rhythmic gestures that emerge from the
periodic movements of dancers.

3. METHOD

3.1 Material

In an earlier study [12], three musicians playing for two
dancers were recorded in an Optitrack MoCap System. The
recordings included settings with each musician playing
the same two pieces to each of the dancers dancing alone
or together in a couple. 41 markers were placed on each
dancers to facilitate a close rendering of the dancers full
body movements. Musical beats were manually annotated
from the audio of the recordings to allow comparisons with
the movement data.

For the present study recordings from this material were
selected in settings where each of the two dancers were
dancing alone to each of the three players. Each of these
settings had recordings with the same two music pieces re-
sulting in a total number of 12 recordings (2 pieces × 2
dancers × 3 players). The pieces used in the study were
two polska tunes referred to as Lorikspolskan and Polska
efter Pellar Anna related to the influential fiddler Gössa
Anders Andersson (1878-1962) from Orsa in Dalarna, Swe-
den [25]. These tunes are quite complicated in terms of
rhythmic and metrical structure, with varying beat dura-
tion, obscured beat onsets and varying rhythmic figures
[7]. Five different types of stimuli were generated from
each recording using the MoCapToolBox [26]. These stim-
uli consisted of videos showing five different renderings of
the MoCap data with markers moving as white dots on a
black background.

The five renderings were chosen to reflect two strategies
when watching the dance: focusing on the feet and steps,
or focusing on the general movement of the center of the
body. The first type of stimuli videos (labeled BT) included
one single marker placed on the spine below the neck, and
included both y-axis (vertical), and a projection of x- and z-
axis on a plane, transforming the circular movement of the
dancer into a horizontal movement on the screen. The sec-
ond video showed the same marker moving only vertically,
as this rendering only included movement data from the y-
axis (labeled BTY). The third and fourth videos showed
two markers placed on the dancers feet, close to the joint
of the little toe, in similar renderings to the first and sec-
ond stimuli. These stimuli will be labeled RLT, for those
animations including y-axis and the projection of x- and z-
axis of left and right foot, and RLTY, for those animations
including y-axis only. The fifth video showed all 41 mark-
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Figure 1. The dancer projected in the FULL stimuli.

ers of the dancer connected with thin white lines in order
to form a skeleton of the dancers body was labeled FULL
and is displayed in Figure 1. This full marker setup was
included to investigate the impact of the reduction present
in the transformation of the whole body to a set of limited
interconnected points. The stimuli were generated using a
frame rate of 30 frames per second. 1

To facilitate comparison of the audio recordings of the
players performing to the animation (referred to as sec-
ondary recordings in the remainder of the text) to the orig-
inal audio (i.e. performing with the dancing as recorded
in the context of [12]), a reference was provided to inform
players where to start playing. This was achieved by in-
cluding a small part of the sound from the original record-
ing as a cue in the beginning of the videos. The included
part consisted of two measures of the original recorded
tune. Initial clap sounds where added to the animation
videos to allow for precise synchronization of the perfor-
mance beginnings, and the investigation of the alignment
of the original and secondary recordings.

3.2 Participants

Participating as performers in the present study were mu-
sicians Sven Ahlbäck, Ellika Frisell and Olof Misgeld. All
three participating musicians have 25-45 years experience
as performers within this style, and 15-25 years as teachers
of Folk Music within higher performance education at the
Royal College of Music in Stockholm (KMH). They are
identical with the players who recorded the original per-

1 Examples of stimuli videos are provided in https://bit.ly/2E8jxte

formances [12], and they were asked to perform to the five
types of animations emerging from the four performances
of themselves playing two tunes to two dancers in the orig-
inal recordings (2 pieces × 2 dancers × 5 animation types
= 20 stimuli per player). The dancers in the original record-
ings (Ami Dregelid and Andreas Berchthold) have a high
level of experience as performers and dance pedagogues.

3.3 Experimental setup

The experimental setup had each musician performing seated
in front of a computer screen showing the animations. The
performances were recorded using two microphones, one
directed towards the violin, and one towards the feet in or-
der to obtain clear sound recordings of the foot tapping.
All session were recorded on video to capture the play-
ers’ comments between performing to the stimuli. Before
each stimulus, the player was provided with the informa-
tion which of the two polskas was used in the video they
were watching. The players were instructed to play the
same piece by trying to synchronize their playing using
the information from the stimuli. Both tunes consisted of
two repeated parts forming a complete round (AABB), and
each round was repeated two or three times. The players
were informed that they will be playing to stimulus that
emerged from a dance performance they were originally
involved in as musicians, but they were not told which
of the dancers was dancing in each stimulus. In the ex-
periment all five animation types related to one recorded
piece were presented before moving on to the next piece.
This was done in the order of starting from the four more
reduced renderings and finishing each take with the full
skeleton. No written music was used at any point as pieces
were all played from memory.

3.4 Analysis

For the analysis, the beginning of each secondary record-
ing was manually aligned to the beginning of the original
recording using the recorded clap sounds. The recordings
were then compared by listening simultaneously to the two
files, playing one file in each ear while making annotations
on how recordings diverged, noting stable or diverging sec-
tions. Where a diversion was noted sample measurements
in seconds were estimated from corresponding beats in the
two recordings.

An automatic alignment of the secondary recordings to
the original recordings was created using an audio match-
ing algorithm [27]. The outputs of the automatic align-
ment were compared to the manual annotations, with the
automatic alignment being consistent with manual annota-
tions in all cases. Based on the reliability of the automatic
alignment, alignment curves were computed for all pairs of
original and secondary sound recordings. The curves spec-
ify the temporal shift in seconds of each point in the orig-
inal recording compared to the secondary recording (see
Figure 2). The mean beat duration obtained from beat an-
notations of the original recordings enable us to relate this
temporal shift in seconds to beats. Using the alignment
curves, the recordings were divided into segments belong-
ing to one of three categories:
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Figure 2. Example of an alignment curve (BT stimulus),
showing a stable alignment after 68s (S), and changes be-
tween drift (D) and alignment to other metrical levels (P)
before. The bold horizontal lines mark measure positions,
whereas dotted horizontal lines mark the second and third
beats of the three-beat cycle, as obtained from the manual
beat annotations.

1. STABLE: segments where the alignment curve stays
within the area of ± one beat to the 0-line, without
moving monotonously to a neighboring beat anno-
tation and crossing it. Also included into this cat-
egory were segments where the alignments curves
shifted by a multiple of a measure, which occur after
a player had been drifting in tempo in a previous seg-
ment or if the player changed the form of the piece.
STABLE segments were taken as indication that the
player relates in a stable way to the dance animation.
For example, the segment between 68s and 100s in
Figure 2 was marked as STABLE, since it is shifted
by one complete measure.

2. DRIFT: segments where the alignment curve moves
monotonously across beat annotations. These phases
are seen as an indication that the player was not able
to synchronize her/his playing to the stimulus in a
stable way, which resulted in slowing or speeding
up.

3. PHASE-SHIFTED: segments where the alignment
curve stays within the area of ± one beat to a non-
measure line (dotted horizontal lines in Figure 2),
without monotonous drift to a neighboring beat an-
notation and crossing it. This case is related to shift-
ing one or two beats to the original. This was in-
terpreted as the player adhering to a different inter-
pretation of the three-beat cycle of the polska, some-
thing unlikely to occur in real performance settings.

The sessions were video recorded, and semi-structured in-
terviews were conducted with the performers between the
experiment tasks. Statements of the players of the qualita-
tive experiences will be used in addition to the quantitative
measures obtained from annotating the alignment curves.
This helps to identify the strategies that were applied by
the three performers in following the visualizations.

Stimulus type RLT RLTY BT BTY FULL
Stable (%) 49.7 46.9 72.3 73.1 98.4
Drift (%) 34.4 36.7 19.2 23.5 1.6

Table 1. Share of the segments annotated as either stable or
drifting, as percentages of the whole duration of recorded
secondary performances (about 1h22min, equally divided
among the five stimulus types).

4. RESULTS

4.1 Automatic alignments

Following the annotations of STABLE segments, and to
DRIFT and PHASE-SHIFT segments as described in Sec-
tion 3.4, the percentage of STABLE and DRIFT phases
occurring in all secondary recordings was calculated (Ta-
ble 1). High shares of STABLE phases indicate that per-
formers synchronized well to a particular stimulus type,
whereas high shares of DRIFT phases indicate that the per-
formers were not able to extract reliable tempo-related in-
formation from the stimulus type.

Stable-aligned segments cover almost the complete dura-
tion (98.4%) of recorded secondary performances for the
FULL setup. This demonstrates that when seeing the full
skeleton, the players were almost perfectly capable to align
their performance with the stimulus. This extends previ-
ous results of movement interpretation [14, 15] to the task
of performance synchronization, and provides a proof of
concept for the validity of the motion capture data. Per-
formers were able to synchronize to a lesser degree to the
markers on the neck (BT, BTY), and even less to the vi-
sualizations obtained from the feet (RLT, RLTY). Over-
all, however, performers could synchronize in a stable way
in at least 46.9% of the recordings (RLTY), which indi-
cates that all visualizations provide important information
on the dancers’ movement. The quality of the alignment in
the stable phases, computed as the average area under the
alignment curve, is quite high, with the performers syn-
chronizing with an average deviation of about 80ms, inde-
pendent from the visualization type.

For the DRIFT phases, an opposite tend emerges from
the second line of Table 1. Full body skeleton visualiza-
tions lead to almost no drift phases (1.6%), and RLT/RLTY
have the highest amount of phases in which players are not
able to synchronize to the tempo of the initial performance.
Even though statistical significance could not be reached in
the given amount of performances, the visualization of the
marker on the neck (BT, BTY) enables for a more stable
alignment than the visualization of the feet. This finding
corroborates the approach of using the center of gravity
for analysis of Nordic folk dance [2, 5].

4.2 Comments on playing with dots

After completing each set of five stimuli, musicians were
asked to compare the task of playing to the different stim-
uli videos. Players generally commented that watching and
having to follow the dance this closely was unusual as in
normal situations they would rely on interacting with the
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dancer, as one player said similar to being in a conversa-
tion with the dancer. The FULL stimuli were commented
on as easiest and most similar to a real situation, and play-
ers were also able to quickly identify which dancer were
dancing when watching the full-body skeleton.

After the FULL stimuli, the BTY stimuli were generally
commented as second-easiest. This was explained by be-
ing able to focus on only one dot moving in the vertical di-
rection. Also mentioned was the accelerating movements
to and from the beats as the dot was in constant motion.
These accelerations were also included in the BT stimuli,
but then players stated that it was easier to lose track as the
dot was moving horizontally as well.

The RLT and RLTY stimuli were commented on as more
difficult, and players reported being confused and losing
track. Players expressed a drifting out of phase when dancers
changed steps between the walking and turning sections of
the polska dance. RLT and RLTY were also commented as
more static, showing more interrupted movements, and not
consistently relating to tempo, phase and period.

These qualitative outcomes are consistent with the quan-
titative findings summarized in Table 1. In addition, play-
ers commented that it generally became easier to play to
the stimuli as they got more used to them and learned to
interpret them. One player commented he/she thought all
renderings had the potential to work after a certain amount
of practice.

4.3 Strategies when playing for dancing

Strategies when playing for dancing can include what as-
pect of the dancer’s motion the player is focusing on when
watching the dance. Players commented on this in re-
lation to the FULL video saying they were considering
the interaction between different body parts taking into ac-
count changes in inclination, acceleration and balance of
the body. One player commented on this as how the dancer
is dealing with gravitation. Hand movements were also
commented on as having a relation to the played tune: as
if the dancers were playing the melody.

When trying to recognize the two dancers from more re-
duced renderings, the players commented on individual
differences in dancing styles. They also related such dif-
ferences to dancers typically dancing on either the left or
the right side when dancing in pairs. Strategies included
identifying a certain beat in the three-beat polska cycle.
This was recurrently commented on in relation to playing
to reduced renderings, i. e. finding the second beat in a lift-
ing motion or the first beat in a more concise marked mo-
tion. Focusing on a certain beat in the animation was com-
mented on as affecting the performance, inspiring players
to emphasize a certain beat or choose a certain interpreta-
tion of asymmetric beat patterns [12].

Another strategy concerned the foot-tapping. A player
commented that he/she refrained from tapping strongly in
order to be more receptive when watching the stimuli. Nor-
mally he/she would think of the tapping as a kind of motor
for the music.

Players commented that when playing for groups in more
diverse real-life settings they take into account that steps

are not always synchronized with all beats in the music.
Players stated that they would often benefit from watching
the feet/steps, however not in isolation but with attention
to the whole dancer and the transfer of weight when mov-
ing. Subsequently the renderings of RLT and RLTY do not
compare entirely to a situation when watching the feet of a
real dancer.

5. CONCLUSIONS

The results of this experiments demonstrate that musicians
are able to interpret and synchronize to dancers movements
also from reduced renderings. Both qualitative and quan-
titative results emphasize – on the one hand – the impor-
tance of having information from the whole body, but – on
the other hand – demonstrate the large amount of informa-
tion still present in a very radical reduction, especially for
the BLT and BLTY stimuli. Previous studies of movement
interpretations from point-lights did to our knowledge not
include these kind of settings.

The question remains to what extent this is an effect of
expertise within the specific performance context, which
could be tested by extending experiments to performers
with less experience in accompanying Swedish folk dance.
The experiments provided a challenge since players rarely
play to pre-recorded dancing without the possibility to in-
teract. Visualizations with only one or two markers added
to the challenge as musicians had to interpret a very limited
information from a dancer.

The study suggests that music-dance interaction is far
from trivial to the performers in this context, and that the
required embodied knowledge should be further explored
in combined scientific and artistic research settings. Fur-
ther insights can pave the way to facilitate applications that
allow dancers to interact with pre-recorded music, or mu-
sicians with a virtual dancer. The goal of such applications
is seen in the extension of current performance possibili-
ties, not in the replacement of the interaction between mu-
sicians and dancers.
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ABSTRACT 
A Recurrent Neural Network (RNN) is trained to predict 
sound samples based on audio input augmented by con-
trol parameter information for pitch, volume, and instru-
ment identification. During the generative phase follow-
ing training, audio input is taken from the output of the 
previous time step, and the parameters are externally con-
trolled allowing the network to be played as a musical 
instrument. Building on an architecture developed in pre-
vious work, we focus on the learning and synthesis of 
transients – the temporal response of the network during 
the short time (tens of milliseconds) following the onset 
and offset of a control signal. We find that the network 
learns the particular transient characteristics of two dif-
ferent synthetic instruments, and furthermore shows some 
ability to interpolate between the characteristics of the 
instruments used in training in response to novel parame-
ter settings. We also study the behavior of the units in 
hidden layers of the RNN using various visualization 
techniques and find a variety of volume-specific response 
characteristics.   

1. INTRODUCTION
When musical wind instrument sounds are initiated by 
blowing air through or across a mouthpiece, the time it 
takes for the system to reach a stable resonant state is 
referred to as an “attack” transient. When energy ceases 
to be put in to the system, the time it takes for the instru-
ment to return to rest is a “decay” transient. The attack is 
typically complex with different frequency components 
reaching their steady states via different amplitude trajec-
tories (“envelopes”). With physical instruments, the at-
tack characteristics vary significantly across the way the 
instrument is articulated with tongue and breath, and 
across different instruments. The attack characteristics 
are an important perceptual indicator used by listeners to 
identify playing style and the instrument being played 
(Grey [1]).  

Transients are interesting from a modeling perspective 
in part because of their non-instantaneous response to the 
articulation parameters. There is no simple mapping from 
breath pressure to the sound signal the instrument radi-
ates, but there is rather a state-dependent temporal evolu-
tion of the sound that follows sudden changes in the pa-
rameters.   
   In our previous work, (Wyse [2]), we developed a re-
current neural network (RNN) for modeling musical in-

strument sound generation. RNNs were chosen because 
they are structured and often used to model sequences 
such as digital sound samples. The training was condi-
tioned on pitch, volume, and instrument ID in addition to 
the audio stream so that during generation following 
training, the parameters could be used to control synthe-
sis. However, in this previous work, only steady-state 
tones were used during training, so none of the specific 
instrument transient characteristics were learned.  
   In this paper, we train the network on two different syn-
thetic instruments that, in addition to having different 
harmonic structures, also have distinct attack and decay 
times that follow sudden changes in the control parameter 
that we use as a proxy for breath pressure, and that we 
refer to herein as “volume”.  We also explore the activa-
tions of hidden units in response to parameter changes 
during generation and find interesting patterns such as 
volume-specific response characteristics.  

2. MODELING

2.1 Architecture 

The architecture of the model is the same as that used in 
Wyse [2] and is summarized here (Figure 1). It is a 
stacked RNN composed of 4 layers of Gated Recurrent 
Units (GRU) (Cho et al. [3]) sandwiched between dense 
linear layers after the input and before the output.   

The input is a vector of 4 components at each time step 
(sample rate=16000 Hz) representing the audio sample, 
the pitch, volume, and instrument ID. Audio is mu-law 
encoded with 256 values and normalized to [0,1], pitch 
consists of the 13 chromatic notes spanning the octave 
from E4 (fundamental frequency=~330 Hz) to E5 (fun-
damental frequency=~660 Hz) and normalized to floating 
point values in [0,1], and volume was mapped exponen-
tially from a 40 dB range to [0,1]. The output of the net-
work is a vector of length 256, where each component 
represents a mu-law encoded sample value. For training, 
the audio target signal is coded one-hot, and for genera-
tion, the maximally activated unit identifies the audio 
sample produced by the network.  

Copyright: 2019 Lonce Wyse et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 Unported License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited.
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Figure 1. The network consists of 4 layers of 40 GRU 
units each. A four-dimensional vector is passed through 
a linear layer as input and the output is a one-hot encod-
ed audio sample. 

2.2 Training Data 

Training data consists of 2 instruments, each with 13 dif-
ferent pitches and 25 different volume levels. The two 
instruments each have their own harmonic structure and 
transient durations. “SynthEven” is constructed of even 
harmonics only, and “SynthOdd” with odd harmonics 
only. The waveforms can be seen in Figure 2a,c. 

a. SynthEven
waveform

b. SynthEven
envelope

c. SynthOdd
waveform

d. SynthOdd
envelope

Figure 2. Characteristics of the two synthetic instru-
ments used to train the neural network. The synthetic 
instruments have different wave forms (a,c) and differ-
ent attack and decay slopes (b,d). The transients follow 
sudden changes in the volume parameter (orange line). 

In addition, SynthEven is constructed with attack and 
decay transients with a linear slope of ±10 volume 
units/sec, while SynthOdd has an attack with slope +100 
and a decay with slope -5 volume units/sec. (Figure 2b, 
d). Note that transients all have constant slope which 
means that the duration of the transients depends on the 
steady-state volume of the tones. 

3. RESULTS

3.1 Steady-state volume 

The focus of the current work is on the transient respons-
es to sudden changes in the volume parameter. However, 
for musical playability, we still require the trained in-
struments to track the volume parameter at steady state as 
well as over smooth changes across its range.  Figure 3 
shows the output of the network for the two instruments 
in response to various input volume parameter patterns.  

Figure 3. From top to bottom: a) SynthEven, pitch=0.5 
(B♭4, ~466 Hz), response to smooth volume change 
over 400 ms. b) SynthEven, pitch=0.5, response to sud-
den volume parameter changes c) SynthOdd, pitch=0.5, 
response to sudden volume parameter changes. In all 
three scenarios the volume parameter (orange line) was 
adjusted between a minimum of 0 and a maximum of 0.7. 
The x-axis depicts sample number. 

The network is thus capable of learning to respond to 
changes in the conditioning input with a state-dependent 
response extended in time. Furthermore, since the net-
work is trained on two different instruments with differ-
ent transient characteristics, the temporal response de-
pends on a second conditioning parameter specifying the 
instrument.    

4. HIDDEN LAYER PATTERNS
Next, we take a closer look at the hidden unit activation 
patterns during synthesis to understand the network com-
putations. With only 40 nodes per layer, we can visualize 
the entire network activation patterns over time.  
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Visualizations show that almost all nodes oscillate with 
individual characteristic waveforms as illustrated in Fig-
ure 4. That waveform is similar across different condi-
tioning parameters, except that the periodicity of the 
waveforms tracks the period of the pitch specified by the 
pitch parameter. The node activations show almost none 
of the frequency selectivity we find in hair cells and neu-
rons along the hearing pathways in animal and human 
brains.  This was somewhat unexpected since a distribu-
tion of frequency-specific response patterns have been 
found in other types of learning networks that operate on 
audio data that learn “efficient” representations for di-
verse audio training data (e.g.  Lewicki [4]; Hoshen et al. 
[5]; Sailor and Patil [6]). For the scope of this paper, we 
just note the pitch-locked oscillatory pattern, but focus on 
responses to volume input. 

Figure 4. The 40 hidden unit responses in Layer 4 of a 
section of generated audio labelled S spanning approxi-
mately 400 samples. Each hidden unit displays a charac-
teristic response waveform, the shape of which changes 
in response to volume level and instrument. In contrast, 
varying the pitch parameter changes the period of the 
hidden waveform without altering its overall pattern.  

The four hidden layers in the network show distinctly 
different patterns in response to volume changes. Layer 1 
(the layer closest to the input) seen in Figure 5, consists 
of units most of which oscillate with amplitudes correlat-
ed with the volume parameter. A few have a “DC offset” 
(some positive, some negative) that also tracks the vol-
ume parameter.  However, none show volume-specific 
selectivity.in their response patterns 

Each succeeding deeper layer shows more complex 
structure. At the last hidden layer (prior to the linear layer 
connecting them to the output units), patterns of volume 
selectivity are clearly visible (Figure 6).  

Figure 5. Layer 1 (shallowest) hidden unit responses to a 
continuous increase in volume. All nodes oscillate with 
amplitude that correlates with the input parameter (as 
well as with the amplitude of the output signal). 

Figure 6. Layer 4 (deepest) hidden unit responses to a 
continuous increase in volume. Individual hidden units 
clearly show unique volume selectivity. 
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Considering only the amplitude of oscillation and not the 
DC offset, we also see in Figure 6 that node 37, for ex-
ample, is maximally responsive to low volume; nodes 39 
and 40 are responsive to mid-range volumes only, alt-
hough node 39 has an upwardly-shifted and wider range 
sensitivity than node 40. Node 15 and 23 only respond to 
high volumes. We have found no responses sensitive to 
the direction of slowly changing volume. These patterns 
are also robust across pitch.  

4.1 Transient responses to abrupt volume changes  

The responses of hidden neurons to abrupt changes in the 
volume parameter are more complex, as would be ex-
pected, since during the attack and decay transients there 
is a “mismatch” between the volume parameter and the 
volume of the output signal. The mismatch is negligible 
during steady state or the slow sweeping volume changes 
considered previously.  

Figure 7 shows the deepest hidden layer for the re-
sponse of SynthEven (i.e. trained with symmetrical attack 
and decay slopes) to a sudden onset and offset of the vol-
ume parameter. The output signal S (along the top of the 
figure) is close to the signal used to train this parameter 
pattern, although further tests showed the overall shape 
and length of the decay being somewhat inconsistent and 

fairly dependent on the parameter combination and the 
priming signal (a single random sample) used to initialize 
the synthesis process. Note that the transients in the sig-
nal output amplitude are an order of magnitude faster 
than the volume sweep used in Figure 5 and Figure 6. 

One notable feature of this map is that although the 
output signal amplitude is roughly symmetric following 
the onset and offset of the volume parameter, the re-
sponse of the units in this layer are not. Far fewer nodes 
show an immediate change in activation following the 
onset of the volume parameter than those that do to the 
offset of the parameter. Such behavior is reflected in Fig-
ure 7 where following the offset of the volume, certain 
units immediately cease to oscillate (e.g. 10, 13, 20, 25), 
while others continue to respond with the decaying am-
plitude. 

Some of the patterns of volume selectivity that we 
found during the slow volume sweep (Figure 6) are still 
visible during transients in the same units. For example, 
unit 40 responds to low volume in the output signal dur-
ing both the attack and decay transients, just as it did dur-
ing the sweep. Units 9 and 10 maintain their relative vol-
ume selectivity during the attack transient as for the 
sweep. However, unit 10 shuts off immediately with the 

 

 
Figure 7. The response of units in the deepest hidden layer to the sudden onset and offset of the volume parameter de-
marcated by the dotted orange lines, with the synthesized signal and time evolution of the volume parameter shown in 
the top row. Conditioning parameters used were as follows: instID=SynthEven, pitch=0.5, volume=0 to 0.8 to 0. 
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volume parameter, while unit 9 is active until the output 
signal almost disappears.  

In general, the attack portion of the signal is more relia-
bly generated and consistent in timing than the decay 
portion. This might be due to the asymmetry of the train-
ing regime. During training, the volume always changes 
from 0 to the target volume level for the attack, and from 
the target volume level to 0 prior to the decay. This 
means that for the portion of the signal following the step 
change, the attacks portion of the signal was trained con-
current with 25 different volume levels, while the decay 
portion occurred while the volume was at 0 for all exam-
ples, no matter what the steady-state volume prior to the 
initiation of the decay. A more effective training scheme 
might be to train on step-ups from non-zero values for 
attacks, and more importantly, to train on smaller steps 
down (not all the way to zero) for decays.  

5. CONCLUSIONS 
Wyse [2] developed an RNN that learns to generate sig-
nals for different synthetic and natural instruments (Engel 
et al. [7]) conditioning on pitch and volume so that after 
training, the models could be played under controls simi-
lar to musical instruments. We showed that training ex-
amples could be sparse in pitch, and trained only on 
steady state signals, yet the model responded quickly and 
accurately to pitch parameter values and sequences it had 
never seen during training.  In the current work, we have 
shown that the same model can also capture attack and 
decay transients where the response to the conditioning 
input is extended over time.  

Transients are proving more difficult to capture than 
pitch  or steady-state volume in this small model. They 
are less robust, more sensitive to priming signals (used to 
initialize the hidden state) and noise, and do not seem to 
generalize as easily as pitch or steady-state volume to 
parameter values and sequences not see during training.  
Future work will be necessary to increase the robustness 
of these results and to apply the network to natural musi-
cal instrument data.  

We also explored the activation patterns of nodes in 
hidden layers in response to volume changes and found 
more selectivity in response to volume levels than was 
apparent for pitch. This provides a deeper understanding 
of how the network computes its sound-modeling task, 
which will help guide the further development of this 
type of network for learning interactive musical sound 
synthesis models.  
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ABSTRACT

This paper presents a convolutional neural network (CNN) 
able to predict the perceived dissonance of piano chords. 
Ratings of dissonance for short audio excerpts were com-
bined from two different datasets and groups of listeners. 
The CNN uses two branches in a directed acyclic graph 
(DAG). The first branch receives input from a pitch esti-
mation algorithm, restructured into a pitch chroma. The 
second branch analyses interactions between close partials, 
known to affect our perception of dissonance and rough-
ness. The analysis is pitch invariant in both branches, fa-
cilitated by convolution across log-frequency and octave-
wide max-pooling. Ensemble learning was used to im-
prove the accuracy of the predictions. The coefficient of 
determination (R2) between rating and predictions are close 
to 0.7 in a cross-validation test of the combined dataset. 
The system significantly outperforms recent computational 
models. An ablation study tested the impact of the pitch 
chroma and partial analysis branches separately, conclud-
ing that the deep layered learning approach with a pitch 
chroma was driving the high performance.

1. INTRODUCTION

The concept of dissonance has a long history. However, 
the experimental study of dissonance dates back only to the 
middle of the 20th century. Both its definition and causes 
are still subject to discussion. In early studies [1], conso-
nance is defined as a synonym for beautiful or euphonious. 
Sethares [2]) proposed a more general definition of dis-
sonant intervals: they sound rough, unpleasant, tense and 
unresolved.

According to Terhardt [3], musical consonance consists 
both of sensory consonance and harmony. Similar to this 
explanation, Parncutt [4] considers the existence of two 
forms of consonance, one being a result of psychoacous-
tical factors (sensory consonance) and the other one relat-
ing to the musical experience and the cultural environment 
(musical or cultural consonance). Dissonance can thus be 
divided into sensory dissonance and musical dissonance. 
Musical dissonance depends on our expectation and musi-
cal culture, which makes it difficult to evaluate [5]. In [6],

Copyright: c© 2019 Juliette Dubois et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 Unported License, which 

permits unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited.

several acoustic factors are isolated and the influence of
each one is evaluated separately.

Dissonance is closely related to another sensory concept,
roughness. Roughness applies both for music and natural
sounds, and occurs when two frequencies played together
produce a beating. According to Vassilakis and Kendall
(2010) [7], sensory dissonance is highly correlated to rough-
ness.

Various sensory dissonance models were proposed since
the middle of the 20th century. Based on Helmoltz’ theory,
Plomp and Levelt [1] conducted an experiment using pure
sine waves intervals. The result of this study is a set of dis-
sonance curves for a range of frequencies and for different
frequency differences. Sethares [8] gives a parametrization
of these curves, resulting in a computational model of dis-
sonance in several cases: for two or several sine waves of
different amplitudes, for one complex tone, for two notes
from the same timbre.

Vassilakis developed a more precise model which esti-
mates the contribution depending on the partial amplitudes
and the amplitude fluctuation [9]. This computational model,
including a specific signal processing method for extract-
ing the partials, is available online [10].

These models are closely connected, and revolve around
the same core concept of bandwidth and proximity of par-
tial frequencies. Other approaches have also been sug-
gested: see Zwicker and Fastl [11], or Kameoka and Kuriya-
gawa [12]

Schön [13] conducted an experiment in which listeners
rated the dissonance of a range of chords played on a pi-
ano. Dyads (chords with two notes) and triads (chords with
three notes) were played and listeners were asked to rate
the dissonance for each chord. The experiment showed
that dissonance is easy to rate with a rather high agreement
and thus could be considered as a relevant feature for de-
scribing music from a perceptual point of view [14]. The
rating data from [13] together with the data from [15] were
used in the current model.

Perceptual features of music, such as perceived disso-
nance, speed, pulse clarity, and performed dynamics have
received an increasing interest in recent years. They have
been studied both as a group ( [14,16,17]) and through ded-
icated models ( [18–20]). The trend has been towards data
driven architectures, foregoing the feature extraction step.
Another trend is that of ”deep layered learning” models in
MIR, as defined by Elowsson [21]. Such models use an in-
termediate target to extract a representation accounting for
the inherent organization of music. The strategy has been

530

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



applied for, e.g., beat tracking [22] and instrument recog-
nition [23] in the past. In this study, we show how pitch
estimates from a previous machine learning model can be
reshaped and fed as input for predicting dissonance.

1.1 Overview of the article

In Section 2, we describe the two datasets and the process
for merging them. Section 3 is focused on the input repre-
sentation, detailing how it was extracted for each of the two
branches of the CNN. In Section 4, the design of the CNN
is described, as well as the methodology used for ensemble
learning and the parameter search. Section 5 presents the
evaluations methodology and the results. It also includes
a small ablation study and a comparison with a previous
model of dissonance. Section 6 offers conclusions and a
discussion of the results.

2. DATASETS

A total of 390 chords were gathered, coming from two dif-
ferent experiments [13, 15]. In these two experiments, the
listeners were asked to rate the dissonance of recorded pi-
ano chords. A definition of dissonance was given to the
listeners. In [15], the consonance was defined as “the mu-
sical pleasantness or attractiveness of a sound”. In partic-
ular, “if a sound is relatively unpleasant or unattractive, it
is referred to as dissonant”. In [13], the following defini-
tion was given: “dissonant intervals are often described as
rough, unpleasant, tense and unresolved”. Both definitions
referred to the unpleasantness of a sound. However, the de-
scription from [13] was more precise and already includes
the fact that only intervals were studied. The definitions
were close enough to give reason to believe that the same
feature was evaluated.

2.1 First dataset

The first dataset (D1) comes from the experiment conducted
in [13]. It contains 92 samples of 0.5 second each, created
with a sampled piano in Ableton Live. Two kinds of chords
were played, consisting of either two notes (dyads) or three
notes (triads). The dyads were either centered around mid-
dle C or one fifth above, ranging from unison to a major
tenth. The same process was used for the triads. In total,
the dataset contained 34 dyads and 58 triads.

Thirty-two listeners were asked to evaluate the sound from
“not dissonant at all” to “completely dissonant”, using a
web interface. The listeners’ musical background varied
but were mostly on an amateur level with an average prac-
tice time of 4 hours per week. The inter-rater reliability as
estimated by Cronbach’s alpha was 0.95.

2.2 Second dataset

The second dataset (D2) contains 298 sound examples [15].
Each sound example was recorded from a piano and has a
length of approximately 2 seconds. In this dataset, there
are 12 dyads, 66 triads and 220 tetrads (chords with four
notes). The frequencies were adjusted so that the mean of
the fundamental frequencies was middle C (263 Hz). The

pitches follow a just intonation ratio, differing from the
standard equal-tempered tuning used in D1. Thirty musi-
cally trained and untrained listeners from Vienna and Sin-
gapore rated all the examples. The inter-rater reliability as
estimated by the average intraclass correlation coefficient
(ICC) ranged from 0.96 to 0.99. The ratings were averaged
across all listeners.

2.3 Merged dataset

We used the average listener rating of dissonance of each
chord as a target for our experiment. InD1, the dissonance
ranged from 0 to 40, 40 being the most dissonant. In D2,
the dissonance ranged from 1 to 4, 1 being the most disso-
nant. Therefore, the ratings of the latter dataset were first
inverted by multiplication with -1. The listener ratings (A)
were then normalized according to

Anormalized =
A−min(A)

max(A)−min(A) . (1)

.
After normalization, the most consonant chord had a rat-

ing of 0 and the most dissonant chord had a rating of 1.
The input data were also normalized. (See Section 3).

3. NETWORK INPUT

Two input representations were extracted from the audio
files: the constant-Q transform (CQT) spectrum and a pitch
chroma. These representations aim to catch different as-
pects of the audio file. The representation from the CQT
can capture spectral aspects of the audio, such as the dis-
tance between partials, whereas the pitch chroma repre-
sents the audio at a higher level corresponding (ideally) to
the actual notes that were played.

3.1 Pitch chroma

A pitch chroma was extracted from a Pitchogram represen-
tation, as illustrated in Fig. 1. To extract the pitch chroma,
the implementation from [24] was applied to the audio files
for first extracting a Pitchogram representation. This rep-
resentation has a resolution of 1 cent/bin across pitch and
a frame length of 5.8 ms. The Pitchogram was thresholded
at 2 to remove lower noisy traces of pitch. Then, a Hanning
window of width 141 was used to filter across pitch. In our
initial model, we then extracted activations across pitch at
semitone-spaced intervals (12 bins/octave). This gave un-
satisfying results, presumably due to the out-of-sync spac-
ing with the just intonation ratios chords in D2. There-
fore, pitch activations were instead extracted in intervals
of 25 cents (48 bins/octave), ranging between MIDI pitch
25 and 103. The mean activation across time for each pitch
bin was then computed, using activations from time frames
20-70. The output of this filtering will be referred to as the
pitch vector.

A pitch chroma vector, ranging an octave, was computed
from the pitch vector by taking the average activation wrapped
across octaves. Three chroma vectors were stacked across
pitch as shown in Fig. 1. The top 6 semitones and bot-
tom 6 semitones were then removed. This stacked pitch
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Figure 1: The log-frequency spectrum, computed pitch
vector, and pitch chroma for three chords from dataset D2.
The chords are a dyad, a triad, and a tetrad. As shown, the
pitch tracking preprocessing accurately identify the funda-
mental frequencies. The three stacked pitch chroma oc-
taves are indicated with red rectangles.

chroma vector of size [1 × 96] will be referred to as the
pitch chroma in this paper.

3.2 Normalization of the inputs

For each music example i the pitch chroma and the CQT
were then normalized, using the same formula as in Sec-
tion 2.3:

Ai,normalized =
Ai −min(Ai)

max(Ai)−min(Ai)
. (2)

3.3 CQT vector

To extract a spectral input representation, the recordings
were processed with the built-in MATLAB function cqt,
which uses nonstationary Gabor frames (see [25], [26]).
This produced a spectrogram representation with logarith-
mically spaced frequency bins. We used 60 bins per oc-
tave, and the range of the CQT is six octaves, 80 Hz - 5.1
kHz. The mean magnitude across time was then computed
for each frequency bin, using only the first half of each au-
dio file (the second half of the audio file has a lesser con-
tribution from higher harmonics). The last preprocessing
stage was to compute the log magnitude of this mean:

CQTmean = 20 log10(CQT ). (3)

The resulting vector contains 360 values.

4. NETWORK DESIGN

4.1 Architecture

The architecture of the network is shown in Fig. 2.

Dense layer, 8 neurons

Figure 2: Architecture of the neural network

As shown, the CNN is a directed acyclic graph divided
into two branches, where one branch processes the input
from the CQT and the other branch processes the pitch
chroma representation.

The first layer in the CQT-branch was a convolutional
layer of size [20 × 3]. The kernel was designed to have
a width that covers at least two close partial peaks in the
spectrum. The aim of the layer is to capture the interac-
tions between peaks that are adjacent across frequency, as
this should convey roughness as outlined in Section 1.

The subsequent convolutional layer also had [3] filters,
but each filter had a width of one, therefore only extending
across depth. A max-pooling filter was then applied across
frequency to capture the most relevant partial interaction
in different bands. The max-pooling filter with a width 60
and no stride was then applied.

The branch processing the pitch chroma also had two
convolutional layers. The first layer operating across pitch
had a size of [49 × 7]. Since the edges were not padded
during processing, the processing shrinks the pitch chroma
to a width of 48, corresponding to pitches within the same
octave. This was followed by a layer of width 1 that ex-
tended across depth. A max-pooling filter of width 48 (the
full range) was then applied to each filter output. Up until
this processing stage, the chroma branch of the CNN has
operated in a pitch class equivariant way – the same oper-
ation has been applied to all pitch classes, with the pitch
class displacement intact across chroma (hence equivari-
ance and not invariance). Through the pooling operation
across chroma, the pitch class equivariance is transformed
into pitch class invariance. However, since the activations
after pooling will relate only to the intervals of concurrent
tones, the system is best defined as having a chord class in-
variant architecture. After max-pooling, the branches are
concatenated (see Fig 2) and passed to a dense layer with
8 neurons. The output layer consisted of a single neuron.

The activation functions after the CQT and the dense layer
were rectified linear units (ReLUs), and the activation func-
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tions in the whole chroma branch were leaky ReLUs:

f(x) =

{
x x ≥ 0
0.2 x x < 0

(4)

The network was trained for 40 epochs, using the RMS
propagation optimizer and the mean square error as a loss
function.

4.2 Ensemble learning

We used ensemble learning, training multiple instances of
each network and averaging their predictions. A total of
five models were employed in the ensemble, all using the
same architecture but with varying random initialization
of their parameters. The random initialization of neural
networks will decorrelate the errors of the various mod-
els [27]. The average prediction from the different models
can then be expected to provide better estimates than when
randomly choosing one of them [28]. A similar strategy
has been used before for training a model to predict per-
ceived performed dynamics in music [20].

4.3 Parameter search

A wide range of possible settings was tried with a parame-
ter sweep. For each setting, a model was trained and eval-
uated with 5-fold cross-validation.

The explored parameters, with tested parameter varia-
tions in parenthesis, were: the size of the kernel for the
filter operating on the CQT (20 - 10 - 30), the number of fil-
ters for the first convolutional layer operating on the CQT
and pitch chroma (6 - 7 - 8 for the CQT and 2 - 3 - 4 for the
pitch chroma), the pooling size for the CQT branch, and
the number of neurons in the dense layer (7 - 8 - 9). The
pooling size of 60 was chosen, which corresponds to the
range of an octave.

We also tried to include an additional feature inserted at
the dense layer, which indicated the dataset of each chord
example (1 or 2). This feature did not improve the perfor-
mance of the network, and thus it was not kept.

5. RESULTS

5.1 Train and Test conditions

As there were only few data available, the system could
easily overfit. To compensate for this lack of data, cross-
validation was implemented, and the two datasets were
also combined. These two techniques aim at adding va-
riety in the learning set.

Thus, different methods were used to evaluate the perfor-
mance of the network:

• A – Cross-validation on both datasets combined.

• B1 – Cross-validation within dataset D1.

• B2 – Cross-validation within dataset D2.

• C – Train on dataset D2 and test on dataset D1.

We used 10-fold cross-validation forA, B1 andB2, split-
ting the datasets into ten folds (nine folds for training and
one fold for validation).

For the evaluation C, the system was trained with the
dataset D2 and evaluated on the dataset D1. Given that the
two datasets have rather different characteristics (timbre,
tuning, and number of notes in the chords) this evaluation
condition is more challenging. Since the dataset D1 con-
sists of so few examples, the opposite evaluation condition
(train on D1, evaluate on D2) was not explored.

The metric used to compare the prediction and the rated
dissonance was the coefficient of determination, R2, com-
puted as the squared Pearson correlation coefficient, in-
cluding an intercept.

Confidence intervals (95 %) were computed, based on the
variation in results between different test runs. The 5 test
runs were then sampled with replacement 10000 times and
the distribution of mean correlations calculated.

5.2 Main Results

The coefficient of determination R2 across the different
test conditions (A, B1, B2, and C) are shown in Table 1.

Test condition Average R2 95 % CI
A 0.631 0.622 - 0.634
B1 0.612 0.590 - 0.634
B2 0.644 0.621 - 0.665
C 0.583 0.561 - 0.600

Table 1: Coefficient of determination R2 for the different
test conditions, including 95% confidence intervals com-
puted across the different test runs.

The predicted dissonance with respect to the target value
for each music example is plotted in Fig. 3. Each point in
this figure corresponds to the value of dissonance for one
music example. The x-coordinate of the point is the target
value of dissonance and the y-coordinate is the prediction
of dissonance. For each test condition, the predictions of
five different test runs (respectively called prediction 1 - 5
in the figure) are shown.

The cross-fold validation for each dataset gives compa-
rably good results. The test on D2 gives better results,
which could be explained by the number of sample in each
dataset: D2 has four times more sample than D1.

The cross-fold validation when combining both datasets
yields better results than cross-fold validation for every
single dataset. When combining both datasets, the network
has a few more examples to train on. This also adds a lot a
variety in the training sets, given all the differences listed
before. The size of D2 added with D1 is not very different
than the size of D2, but the performance in A is signifi-
cantly better than in B2. This may indicate that by adding
variety in the training set, the network learns much better.

The test C1 is the only test in which the network learns
on only one dataset, and this configuration gives the worse
performance. Presumably, the network overfits on D2 and
cannot generalize well enough in order to predict better the
values from D1.
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Figure 3: Predictions in relation to ground truth annota-
tions for the different test conditions

Test Condition Average R2 95 % CI
Network using only the pitch chroma
A 0.618 0.610 - 0.624
B1 0.641 0.629 - 0.649
B2 0.628 0.620 - 0.633
C 0.607 0.589 - 0.625

Network using only the CQT vector
A 0.417 0.409 - 0.426
B1 0.304 0.281 - 0.327
B2 0.460 0.439 - 0.484
C 0.180 0.139 - 0.221

Table 2: Coefficient of determination R2 for the network
with only one input: CQT or pitch chroma, including
95% confidence intervals computed across the different
test runs.

5.3 Contribution from each input source and branch

In order to evaluate the importance of the pitch chroma
and CQT vector for performance, we also ran the full ex-
periment using only the pitch chroma in a single branch or
only the CQT vector in a single branch. Other than this,
the same settings were used during training, and the same
metric used for testing. The results are shown in Table 2.

Using pitch chroma as the only input consistently gave
better results than when only using the spectral input from
the CQT. Furthermore, the pitch chroma had better results
than the combined main model (reaching outside of the
95 % CIs) for test conditions B1 and C. The CQT vec-
tor had particularly low results for test condition C. This
condition tests the ability of the architecture to generalize
since the system is trained on one dataset and tested on
another with, presumably, different characteristics pertain-
ing to, e.g., timbre. The results confirms that the deep-
layered learning approach to MIR [21], in this paper using
transfer learning of equivariant feature maps, can yield sig-
nificantly better results than end-to-end learning for small
datasets.

5.4 Comparison with a Computational Model

In this section, comparison of the performances of the sys-
tem with a state of the art model is presented. The most
recent model was proposed by Vassilakis [9] and does not
use machine learning. It was already implemented as the
function mirroughness in the MIR toolbox [29], which
is the implementation we used for the comparison.

With this function, a dissonance value is given for each
unit of time, which was not directly comparable with the
single value given by the listeners. Considering that a hu-
man listener would not take the length of the recording into
account, we chose to take the mean of the five highest val-
ues.

With this method, a dissonance value was computed for
each music example. The squared correlation coefficient
was then computed between this dissonance and the target
dissonance. The results are shown in Table 3.
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TheR2 score obtained here is lower than the performances
obtained in the article presenting the model [9]. This could
be explained by the fact that the computational model was
tested and adapted to synthetic sine waves, whereas the au-
dio files in this experiment came from a sampled piano.
The timbre of the piano presumably increases the complex-
ity of the sound and reduce the accuracy of the model.

Dataset R2

D1 0.17
D2 0.34

Table 3: Coefficient of determination R2 for the computa-
tional model for each dataset

6. CONCLUSION AND DISCUSSION

A model using a convolutional neural network was devel-
oped for predicting the dissonance in recordings of piano
chords. The model achieved better results than previous
computational models, even though there were few sam-
ples in the datasets.

The two datasets differ in at least four ways:

• The chords were played with two different piano mod-
els, producing differences in, e.g., timbre.

• One dataset was performed with equal-tempered chords,
and one with just intonation ratio. The model, there-
fore, had to handle micro-tuning deviations and how
they affect dissonance.

• One main difference is the polyphony level of the
chords: D1 has no tetrads whereas these constitute
more than two-thirds of D2.

• The two datasets were rated by two different groups
of listeners. Therefore, it can be expected that ran-
dom variations between preferences in the two groups
gave annotations that varied in complex ways.

We conclude that the tests validate the potential of inter-
mediate targets accounting for the inherent organization of
music. The ”deep layered learning” approach [21] using
only the pitch chroma branch gave significantly better re-
sults than when using only the spectral CQT vector branch.
In particular, a comparison between the results for test con-
dition B2 and C underlines the pitch chroma-only model’s
high generalization capability. The R2 only fell slightly
(0.628 – 0.607 = 0.021) when testing on an unseen dataset
instead of using cross-validation. For the main model with
both branches, the results fell more between these test con-
ditions (0.644 – 0.583 = 0.061).

During development, we tested a few different architec-
tures, with fewer learnable parameters in total, but those
architectures gave lower results. It seems like the archi-
tecture allowed for a fairly high amount of learnable pa-
rameters in relation to the low number of ground truth data
points.

In future work, a wider range of architectures could be
tried, reflecting insights gained from the small ablation study.
The pitch chroma branch can be designed as the only branch,
exploring improvements related to, e.g., pitch resolution,
depth, and pooling. A related study [30] has showed that
it possible to compute several chroma within the network
instead of as a preprocessing step, each chroma focusing
on different octaves. That study also indicated that average
pooling across octaves for key-class invariance can give
better results than max-pooling. It could be useful to ana-
lyze the weights in the kernel on the trained network. This
could make it easier to understand the characteristics se-
lected by the network. The network could also be trained
with a much bigger dataset, using several repetitions of the
same chord class or using chords from higher and lower
octaves.
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ABSTRACT

This work aims at bridging the gap between two completely 
distinct research fields: digital communications and Music 
Information Retrieval. While works in the MIR commu-
nity have long used algorithms borrowed from speech sig-
nal processing, text recognition or image processing, to our 
knowledge very scarce work based on digital communica-
tions algorithms has been produced. This paper specifi-
cally targets the use of the Belief Propagation algorithm 
for the task of Automatic Chord Estimation. This algo-
rithm is of widespread use in iterative decoders for error 
correcting codes and we show that it offers improved per-
formances in ACE by genuinely incorporating the ability 
to take constraints between distant parts of the song into 
account. It certainly represents a promising alternative to 
traditional MIR graphical models approaches, in particular 
Hidden Markov Models.

1. INTRODUCTION

This paper focuses on Automatic Chord Estimation (ACE), 
that is estimating a series of chords from an audio file. 
Among the oldest tasks ever tackled by MIR, it is essen-
tially an inference problem which consists in estimating 
the chords of a song (hidden variable) given the audio file 
from which observations are computed (chromas). While 
initially relying on hand-crafted features, ACE algorithms 
have progressively incorporated language models and deep 
learning in recent times [1]. But even with these advances, 
the performances of existing approaches stagnate, differing 
only slightly from one another [2–4].

An important limitation of existing work is that in most 
models, analysis is typically limited to short timescale. This 
overlooks long-term structural dependency between music 
events and does not reflect the rich underlying relational 
structure. For instance, the chord progression is both re-
lated to the high-level semantic structure organization (e.g. 
in a song, all choruses are likely to have a similar chord 
progression [5]), and to a lower-level metrical structure 
organization (e.g. chord changes are likely to happen on 
downbeats [6]). A fundamental question that remains open
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is how to model this complex hierarchical relational struc-
ture.

The MIR community has explored a handful of approaches
to encode long-term structure with short-term analysis. To
our knowledge, one of the first to mention harmonic mod-
eling using graphical model is [7], which uses HMM. An-
other possible scheme is to rely on recurrences in a song
to label all music segments of the same type with the exact
same chord progression, replacing all identically labeled
tatums by their mean chroma [5]. This approach lacks
flexibility however since it ignores possible variations be-
tween several occurrences of the same structural segment
in a piece of music. A more flexible strategy uses Markov
Logic Networks [8] in order to model long-term depen-
dencies between chords, but it is limited by a slow infer-
ence process, making it difficult to process long pieces and
model complex dependencies. More recently Recursive
Neural Networks [9] have been considered since they can,
in principle, model arbitrarily complex long-term tempo-
ral dependencies. However, they have exhibited difficul-
ties to make the model learn long-term dependencies from
data [10] and they do not explicitly use the structure but
fuzzy information specified by the network. Finally in [11]
the strategy elaborated bears some resemblance to ours,
namely a graph is designed so that each chord has a short
and a long term context. However, the graph construction
and the estimation of the chord sequence is not carried
out in the same way: where the author use Expectation-
Maximisation, we propose a distinct approach, based on
the Belief Propagation message-passing algorithm.

These previously mentioned limitations represent an in-
centive to explore new approaches inspired by other com-
munities, e.g., statistical physics or digital communication,
where information is represented by complex graph mod-
els and marginalization also represents a difficult challenge
[12]. Indeed when computing marginals of probability dis-
tributions with a huge number of degrees of freedom, brute
force search has an exponential complexity. Numerous al-
gorithms have thus been devised in the last twenty years
or so to tackle this issue. Amid those, Belief Propagation
(BP) algorithms (also called cluster mean-field algorithms
in statistical physics) have emerged as an efficient way to
compute marginal probabilities by i) performing iterative
updates of local probability distribution (the so-called ”be-
liefs”) based on a sort of local survey of opinions — or
gossip — and ii) travelling along the Bayesian graph of
constraints to update all beliefs in turns.

In this work we propose to go beyond the current limita-
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Figure 1. Flowchart of our system. Italic represents the the
input of the system, and each box corresponds to a part of
the signal processing that is detailed in the corresponding
section.

tions of ACE by relying on an approach inspired by iter-
ative decoders for error-correcting codes. We take advan-
tage of the BP algorithm to model and incorporate song
structure information in the chord estimation process. One
of the main benefits of the BP algorithm indeed is that it
can embody constraints between any state, whatever their
proximity on the timeline. Hence that various long-term
correlations can be incorporated in the inference process
and make it more robust. In this respect, BP has already
been considered as a mean to compute the marginal prob-
ability of the state variables in each analysis frame in the
case of beat tracking [13] but only correlations between
consecutive events were considered. In the present work,
we aim at exploring how to encode long-term structure us-
ing BP algorithm.

The paper is structured as follows. In Section 2, we pro-
vide a brief description of the proposed system and the Be-
lief Propagation algorithm. In Section 3, we present the ad-
vantages of using downbeats and the structure to enhance
performance. Section 4 presents the dataset, Section 5 pro-
poses a brief study on noise robustness, Section 6 shows
the results of the experiment and a discussion. Section
7 discuss some methodology biases. Finally, conclusions
and future work are presented in Section 8.

2. BELIEF PROPAGATION FOR AUTOMATIC
CHORD ESTIMATION

As in the majority of computational models for ACE [14],
the system we consider has a two-step architecture com-
posed of a feature extraction step (in our case, handcrafted
chroma features) followed by a classification step. This
latter step consists in inferring hidden states, i.e., putting
labels on chords from a chord dictionary by using infor-
mation from the observations.

The system flowchart is shown in Figure 1. Elements in
italic are the system inputs obtained from the ground truth.
Given spectral information (chroma) and a model we can
estimate the probability of a given chord from a set of ob-
servation vectors. We further feed the conditional prob-

ability of a chord given other chords into the estimation
process. Based on these inputs a decoding algorithm com-
putes the most probable sequence of chords, during the pat-
tern matching step. In this paper we compare a BP decoder
with a Viterbi algorithm that uses Hidden Markov Models
(HMM).

2.1 Observation and transition probabilities

The observation probabilities are computed from the chroma
vectors in the same way as in [6]: each element in the ob-
servation vector is the cosine similarity between the chroma
and a theoretical template. We compute tatum-synchronous
observations, where tatum (the smallest time interval be-
tween two successive notes [15]) are quarter notes here.
First they are computed with ground truth beats, and then
they are estimated (see Section 4.3).

Transition matrices are an important ingredient of the pat-
tern matching step: they allow us to take into account in-
formation from other chords, which in turns improves the
inference process. As proposed in [16], we use the percep-
tual transition matrix elaborated in [17]. Results with the
”cycle of fifths” transition matrix proposed in [16] are also
provided for completeness in Section 6.

2.2 HMM vs BP

As the main objective of this work concentrates on the pat-
tern matching step, we devote this section to highlighting
the main differences between the HMM with Viterbi infer-
ence and the BP algorithms. We show in particular that
we can rewrite the HMM algorithm as a particular case of
the BP algorithm. Then we examine how we can incorpo-
rate structural information to take full advantage of the BP
algorithm.

2.2.1 Viterbi with HMM

A HMM is a statistical model that relates the probability
vector of a hidden state to observation and transition prob-
abilities. Let xi be the chord to be inferred at position i.
The algorithm is described by the following parameters:
πi is the probability that xi is the initial state, aij is the
transition probability from xi to xj and bi(O) is the prob-
ability that observation O is emitted for chord xi. In our
case, the hidden states xi are the chords that we want to
infer (xi ∈ [[1, ND]], where ND is the size of the chord
dictionary), the observations are the chroma and aij and
bi(O) are the transition matrix and the model to compute
the observations.

State x0 is initialized as the column vector ( 1
ND

)ND,1 ;
there is no a priori distribution of the probabilities. Then
Viterbi inference is carried out as follows:

∀i, Si = argmax
k
{bi(Ok)× ai−1,k} (1)

2.2.2 Belief Propagation

BP is designed to infer hidden states given observations
and transition probabilities between them [18]. Yet the
BP algorithm is above all an iterative, message-passing
algorithm that leverages the topology of the underlying
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Bayesian graph to improve estimates. While the Viterbi in-
ference with HMM is done linearly, BP can use any topol-
ogy, including cycles. Modeling with an HMM is inspired
by the chronology of events in the song and infers a given
state using information from the previous state on the time-
line. In this respect, HMM draws more upon directed Bayesian
networks. On the contrary, BP can use context to constraint
a given chord to any other part of the song.

Let xi be the chord to be inferred at node i. The BP algo-
rithm relies on the adjacency matrix of the Bayesian graph,
the observation vectors φi(xi) and a constraint ψi,j(xi, xj)
between nodes i and j that renders existing correlations.
HMM transitions matrices are thus a particular case of tran-
sition matrices between neighbouring nodes.

2.2.3 Sum-Product vs Max-Sum versions

Two flavours exist of the BP algorithm, with specific ben-
efits and drawbacks. The Sum-Product algorithm works as
follows: for every node j associated with chord xi to be in-
ferred, the incoming message mi→j(xj) is computed from
node i using the following ”survey” equation,

mi→j(xj) =
∑

xi

φi(xi)ψi,j(xi, xj)
∏

p∈N(i),p6=j
mp→i(xj),

(2)
where N(i) is the neighborhood of node i on the graph.
A given message is thus the product of a local observation
probability, a constraint and messages coming from the rest
of the graph that in effect convey a poll on ”what the best
estimate of state xj should be”. As the process is iterative
— since every node is considered in turn until convergence
is reached — this equation can be seen as progressively
aggregating more and more of local beliefs as messages
propagate through the graph. The messages are normalized
at each iteration so that they sum to one.

When convergence is reached, we calculate each chord
probability (the so-called beliefs) by using

bi(xi) = φi(xi)
∏

j∈N(i)

mj→i(xi). (3)

and infer the hidden states with

xi = argmax
k
{bi(xk)}. (4)

Figure 2 shows an example of a message-passing step
from node 3 to node 2:

m3→2(xj) =
∑

xi

φ3(xi)ψ3,2(xi, xj)
∏

p∈{4,5}
mp→3(xj)

(5)

=
∑

xi

φ3(xi)ψ3,2(xi, xj)m4→3(xj)m5→3(xj)

(6)

The Max-Sum version computes messages according to

mi→j(xj) = max
xi

φi(xi)ψi,j(xi, xj)
∏

p∈N(i),p6=j
mp→i(xj)

(7)

y1 y3y2

y4

y5
m3→2

m4→3

m5→3

Figure 2. An example of message-passing iteration for the
BP algorithm.

It is an interesting, less CPU intensive alternative when
one is not interested in the exact marginal probabilities,
but only in classification (see [19]), which is our case here.
Our results on noise robustness also show that the max-
product version provides lower error rates.

2.2.4 HMM viewed as a BP algorithm

HMM can be viewed as a very simple BP algorithm where
the Bayesian graph is a simple-path, unweighted directed
graph going from initial state y0 = S0 = ( 1

ND
)ND,1 to the

end of the song, and where messages that are propagated
are simply the beliefs, that is,

∀j > i mi→j(c) = φj(c)× ψi,j(yi−1, c) (8)
= Oc × ai−1,c. (9)

with the most probable states yj being computed at each
step by

yj = Sj = argmax
k
{mj−1,j(k)}. (10)

2.3 Benefits and drawbacks of the BP algorithm

The BP algorithm can easily take into account non-local
correlations by using any appropriate (i, j) edge with specif-
ically tailored constraints.

The method we proposed above may suffer flaws, how-
ever. If the graph has a small girth, which might depend on
the song content and structure, the algorithm may converge
to an incorrect solution, or even not converge at all.This in
particular occurs if the set of constraints along a cycle cre-
ates conflicting constraints, so that message propagation
may lead to beliefs oscillating between two or more chords
at each node in the loop.

...
yi

yj

yk

ψi,j ψj,k

...

ψi,k

Figure 3. Example of a 3-cycle where the algorithm expe-
riences difficulties converging or does not converge at all.

Populating the Bayesian graph with ψi,j constraints can
lead to short cycles (at the bar scale) or very large ones
(at the large-scale structure level). Short cycles undergo
convergence issues (as explained above) but may also con-
verge fairly quickly. On the contrary, large cycles are stable
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but consume a lot of iterations to feedback the information,
hence they take more time to converge.

A criterion has to be defined to stop the iteration:

∀(i, j) max
k
|mn+1

i→j (k)−mn
i→j(k)| ≤ ε (11)

We arbitrarily set ε = 10−12 and a maximum number of
updates of 200 beyond which message convergence is con-
sidered to have failed.

3. DOWNBEATS AND STRUCTURE: TWO WAYS
TO ENHANCE ACE PERFORMANCES

To take full advantage of the BP algorithm, the next step is
to feed the basic linear graph with structural information,
namely the downbeats and the structure.

As shown in [8], information contained in the structure
of a song improves the performance of ACE. It is inciden-
tally quite intuitive that, when listening to a song and hav-
ing roughly identified the structure of the song, it is not
uncommon to predict the next chords that will be played.
BP can leverage this information, creating connections be-
tween parts of the song that are very similar, e.g., connect-
ing the first beat of each chorus with the corresponding
beat in every other chorus.

Utilizing downbeats proceeds along the same line, yet at
the bar scale. As expected by the encouraging results ob-
tained when using downbeats in tonality estimation in [20],
using this information in this work has produced encourag-
ing results as well.

3.1 Using downbeats

Inside a bar chords are not independent of each other: songs
where chord change every beat are rare and it is not seldom
that each chord is repeated twice in a bar. In practice, we
connect all the beats of the same bar with a probability ψ′

to be identical. This assumes that almost all chords in the
same bar are identical, yet the flexibility of the BP guaran-
tees that the turn-over chords at the end of a bar will not
be misinterpreted. From a Bayesian graph perspective, in-
cluding the downbeats positions allows feeding each node
with more mutual information: instead of receiving infor-
mation from its neighbours only, it receives information
from all the other nodes in the bar. The corresponding
graph with both downbeats and structural information in-
cluded is shown Figure 4.

Assuming we retain the aforementioned transition ma-
trix ψ between subsequent bars (shown in red in Figure 4),
there is still one parameter to be determined, i.e., the tran-
sition matrix ψ′ between nodes of the same bar (shown in
blue in Figure 4). We assume that ψ′ is defined primar-
ily by self transitions, i.e., the probability that the chords
are identical, while other probabilities are uniformly dis-
tributed:

ψ′(i, j) =





α if i = j
(1− α)
ND − 1

else
(12)

To set α, distinct values have been tested ranging from
1
ND

to 1. Values lower than 1
ND

were not tested: they

would imply that self transition are disadvantaged, which
would contradict the assumption that chords are mostly
identical in a bar. This would also increase conflicting con-
straints along some graph cycles and make convergence
more difficult. Surprisingly the best results were obtained
for a self transition of α = 0.05: one could have expected
indeed that higher values would give better results since
they bind events in a bar in a stronger way, and chords of
the same bar would have higher probabilities to be identi-
cal.

All in all this adds a lot of messages to be computed but
still the number of messages updates is lower than in the
simple chain BP algorithm: short 3- or 4-cycles are cre-
ated that converge quite quickly. The weakness of this is
that it could also preclude convergence if there is contra-
diction between observations and incoming messages: we
thus assume that a low value for α produces good results
(see Section 2.3 for more details on short cycles).

3.2 Using the song structure and long-term
correlations

Incorporating the structure allows for feeding far more in-
formation into each node: now they also receive informa-
tion from all the nodes that share the same ”position” in the
song. For example, the first node of the first verse is con-
nected to the first node of all other verses (see Figure 4).
Determining the transition matrix ψ” between events that
are connected by long-term correlations through the song
structure follows the same guidelines as for downbeats: we
take the same matrix defined by self transitions while other
probabilities are uniformly distributed.

For downbeats we tried several values ranging from 1
ND

to 1 and we obtained the best results for α = 0.05. This
process adds a lot of edges to the graph and a lot more mes-
sages thus need to be calculated. As opposed to downbeats,
incorporating the structure creates large cycles which also
need a lot of updates to converge.

The global graph is represented in Figure 4. Populating
the graph with both the structure and the downbeats yields
the best results: the quick convergence due to short cycles
(downbeats) makes up for large cycles that slow down con-
verge. In only 3 songs of the database convergence was not
reached.

3.3 Leveraging similarities

An alternative idea is to change the previous α inψ′ andψ”
according to the correlations between any pair of chroma.
Indeed, instead of having a tunable parameter that is the
same for the whole graph, the similarity constraint varies
depending on the similarity between nodes. We compute
the self-similarity matrix M(i, j) (see [21]) and calculate
the messages according to

ψ′(i, j) =





M(i, j) if i = j
(1−M(i, j))

ND − 1
else

(13)

ψ”(i, j) = ψ′(i, j) (14)
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S1 S2 S3 S4 S5 S6 S7 S8

ψ
... ...

ψ ψ
ψ′ ψ′ψ′ ψ′ ψ′ ψ′

ψ′

ψ′

ψ′

ψ′

ψ′

ψ′

downbeat

bar bar

downbeat

S1 S2 S3 S4 S5 S6 S7 S8

ψ
...

ψ ψ
ψ′ ψ′ψ′ ψ′ ψ′ ψ′

ψ′

ψ′

ψ′

ψ′

ψ′

ψ′

downbeat

bar bar

downbeat

1st verse 2nd verse

ψ”

Figure 4. How the structure and the downbeats influence the topology of the Bayesian graph: constraints between chords of
a bar are shown in blue ; those between chords of the same structural element are in magenta ; finally, transitions probability
between bars are in red.

This strategy yields results with the same quality as with
the previous model, yet with longer computation time.

Similarity can also spark new ways to populate the graph.
Instead of relying on the ground truth downbeats and struc-
ture, we introduce another method based uniquely on sim-
ilarity. The point is to build a fully connected graph, where
each edge is weighted by the degree of similarity between
the chroma it connects. Each chord is thus estimated using
information from all the other chords of the song, and not
just those that share structural position. However, the com-
putation time is quite large as for a graph of sizeN tatums,
this method requires to compute N(N − 1) messages.

To keep computation time reasonably low we introduce
two parameters:

• α is a similarity threshold. If similarity is lower than
α, we discard the edge between the corresponding
nodes.

• β is the maximum number of edges connected to a
given node.

α ∈ 0.9, 0.95, 0.98 and β ∈ 5, 10, 20 yielded very poor
performances. Future works will include investigating this
issue.

4. REAL WORLD DATASET

4.1 Performance estimation

Various methods exist to evaluate the performances of a
retrieval task. ACE can be seen as a classification task
which requires i) a criterion to tell if the method has re-
produced the ground truth to an acceptable degree and ii)
classes onto which the different observation can be classi-
fied (the so-called dictionary). We invite the reader to refer
to [22] for more information on the formalization of Music
Information Retrieval.

As in most studies about chord estimation, we consider
only the 24 major and minor chords [1]. Chords in the
ground truth that are not in the dictionary are projected to

major or minor chords (as in [23]), so that the recall can be
computed.

We evaluate the performances of the system with the python
library mir eval [23]. The performance is measured by the
Weighted Chord Symbol Recall (WCSR) defined in [24].

4.2 Database

The various inference algorithms are tested on the Beatles
subset of the Isophonics data set. Following [16], some
songs are not considered, due to the uncertainty on their
structure or the errors in the ground truth provided by Iso-
phonics. These songs are listed in the following list:

• Lack of downbeats file: Get Back, Glass Onion, Rev-
olution 9

• Incorrect annotations: Lovely Rita

• Complicated Metric: Baby’s In Black; You’ve Got
To Hide Your Love Away; Norwegian Wood; She’s
leaving Home; Long, Long, Long; Oh! Darling; Dig
A Pony; Dig It; A taste Of Honey; Lucy In The Sky
With Diamonds; Being For The Benefit Of Mr. Kite;
Strawberry Fields Forever; All You Need Is Love;
Happiness Is A Warm Guy; I Want You (She’s So
Heavy); Two Of Us; I Me Mine.

We considered 157 songs in our data set. For each song
the wav audio file, the annotated chords and their respec-
tive starting and ending time are available.

4.3 Estimated vs ground truth information

To estimate the robustness of our algorithm against vari-
ations in the beats and the downbeats, we compute the
performance of the system using ground truth beats and
downbeats but also using estimated beats and downbeats.
These estimated beats and downbeats are processed with
state of the art Python library madmom [25]. The algo-
rithms contained in this library use Recursive Neural Net-
works and Deep Bayesian Networks. The only drawback

541

Proceedings of the 16th Sound & Music Computing Conference
ISBN 978-84-09-08518-7 ISSN 2518-3672



of this library is that the downbeats can be estimated only
with some rhythmic signatures (only those that are over
4). The 3/4 and 4/4 signatures seem to work well on our
database, but relying on this library for more ”exotic” mu-
sical content is difficult (for example, Irish traditional mu-
sic contains a lot of jig in 6/8 or slides in 12/8).

5. NOISE ROBUSTNESS

Algorithms in digital communications are usually rated through
their robustness to noise. Likewise here, the idea is to
evaluate the efficiency of the various inference methods
on ”noise-corrupted” chroma. The flow-chart of the corre-
sponding system is represented in Figure 5. We work with

midi score

audio signal

computation
of the chromas

computation
of the observations

structure
+

downbeats

graph generation

BP algorithm

transitions matrix

beliefs

classification

tactus

noise addition
standard deviation

of the noise

chroma
models

error rate

Figure 5. Flowchart of the test system for estimating the
robustness to noise.

a simple midi-track made up of 8 verses containing 4 bars
in 4/4 of Em, C, G and D, repeated 4 times each (one dis-
tinct chord per bar), resulting in a total of 128 chords. The
midi partition is then converted at 60 BPM to CD quality
audio using the grand piano virtual instrument of Able-
ton Live. Chroma are then extracted using the Python Li-
brary Librosa [26]. First the harmonic part is extracted
with the function harmonic(y=y,margin=5) (see [27]) and
then CQT-chromas are computed with the function fea-
ture.chroma cqt. Finally, an average chroma for each beat
is computed.

Gaussian Noise with a standard deviation of σ is then
added to the chroma vectors and the observations vectors
are computed as in [28] from the corrupted chroma. For
each algorithm and each σ, a set of 100 corrupted chroma
vectors is generated and the average chord estimation error
rate is recorded. The results are presented in Figure 6. We
see that the max-product BP clearly beats the sum-product
flavour.

All in all, we argue that adding noise to the chroma allows
for blending the whole complexity of music into the per-
formance estimation process: chroma vectors are indeed
sensitive to arrangements, e.g., percussive events that may

randomize the distribution of chroma components. In ad-
dition, we have shown that adding long-term constraints
improves the overall robustness of the inference process
over such perturbations.

6. RESULTS AND DISCUSSION

Chroma and observation probabilities are computed with
Matlab while subsequent steps are implemented in Julia [29].

The results over real world datasets are presented in Ta-
ble 1. Observations are the same for each row. HMM
refers to the Viterbi algorithm (see 2.2), while BP refers
to the Belief Propagation decoder using the perceptual ma-
trix. Rows 3, 4 and 5 take downbeats or structure informa-
tion or both into account (see Figure 4), respectively. Row
6 also includes the ”cycle of fifths” transition matrix, while
row 7 includes similarities as explained in Section 3.3.

Results with the perceptual transitions matrix and those
with the cycle of fifth transitions matrix are very close. An
unpaired t-test gives a probability p=0.98 for the null hy-
pothesis at 95%: the groups are not statistically different.
In addition, the same occurs for ”BP both” and ”BP both
(correlation)” (p=0.54229).

System Ground truth Estimated
HMM (Viterbi) 71.31 % 70.45 %
BP (perceptual) 71.36% 70.03 %

BP with downbeats 73.76% 71.9%
BP with structure 72.53% -

BP both 75.32% 73.65%
BP both (cycle of fifths) 75.35% -

BP both (correlation) 75.09% -
State of the Art 86.80 %

Table 1. Performance of the various algorithms using ground
truth beats and downbeats. The ground truth column shows the
results obtained with ground truth beats, downbeats and struc-
tures whereas the Estimated column shows those obtained with
estimated information. The state of the art system is the sys-
tem achieving the best performances for MIREX 2018 on the
Isophonics dataset with the Maj/min dictionary (FK2 system, by
Florian Krebs, Filip Korzeniowski, Sebastian Bck).

These interesting results have to be nuanced however.
While in some songs the recognition rate may reach 95%,
other yield result lower than 50%. Two main reasons have
been identified. First, the restriction of the dictionary (non
major/minor chords that have not been well mapped to the
major-minor equivalent) leads to computational errors but
the chords proposed by the BP decoder are musically ac-
ceptable. Second, instead of identifying each chord on all
its duration, the algorithm tends to oscillate between two
states that are related to the ground truth chord. The crucial
importance of the conditional probabilities between states
is exemplified here: whenever the self-transition probabil-
ity is increased, the previous issue vanishes but then short
chord transitions will not be detected. On the contrary,
whenever the self transition is lowered, short chord transi-
tions are well detected but long time chords undergo poor
detection.
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Figure 6. Chord estimation error rate of the various algorithms vs noise amplitude.

It should also be noted that with estimated beats and down-
beats, results are worse than those using ground truth but
BP still stays ahead.

7. METHODOLOGY DISCUSSION

The measure of the performance of a system is usually
done by the recall of the ground truth. But the ground truth
itself depends on the people that elaborate it. In [30], it was
attempted to elaborate a system that would take the subjec-
tivity of the annotators into account. This practice should
be given more attention in the following years. In [3] the
authors attempted to compare the results of their systems
with ground truth but also with two independent annota-
tors. Their results show that WCSR is not the best crite-
rion to measure the performance of a system and that above
a certain threshold, an apparently acceptable WCSR does
not make sense any more if it is larger than that of the an-
notator.

In addition, as pointed out by [31], the fact that the dictio-
nary is limited to the 24 major and minor chords can cause
some further errors. The aim of this work is not to enhance
the performance of the whole system but only the pattern
matching part: HMM and the various BP algorithms are
compared against the same dictionary and the same fea-
tures. Only a few systems use large dictionaries.

8. CONCLUSION AND FUTURE WORK

We proposed a new approach to the inference step in ACE
that outperforms the HMM one. While the current trend
is to develop deep-learning based system, our method does
not require training, hence does not imply large annotated
databases. The architecture of our system only uses struc-
ture information and downbeats from the ground truth.

Although we do not make use of this feature in the present
work, it is worth mentioning that the very general formu-
lation of the BP algorithm makes it possible to feed any
N-point correlation function into the iteration process, i.e.,
one that would describe higher-level correlations between

tuples of chords, not just pairs. This opens up the way to
taking complex musical context into account.

Future works about this project may include studying the
influence of the graph girth on the stability of the itera-
tion process and on the computation time. Relying on the
Generalized Belief Propagation algorithm [32] might be a
way to improve the robustness of the system by suppress-
ing oscillating behaviors. Finally, it would be promising
to investigate further how using similarities between ob-
served chroma could help improving the efficiency of the
algorithm.
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ABSTRACT

Playing techniques such as ornamentations and articula-
tion effects constitute important aspects of music perfor-
mance. However, their computational analysis is still at
an early stage due to a lack of instrument diversity, estab-
lished methodologies and informative data. Focusing on
the Chinese bamboo flute, we introduce a two-stage glis-
sando detection system based on hidden Markov models
(HMMs) with Gaussian mixtures. A rule-based segmen-
tation process extracts glissando candidates that are con-
secutive note changes in the same direction. Glissandi are
then identified by two HMMs. The study uses a newly cre-
ated dataset of Chinese bamboo flute recordings, including
both isolated glissandi and real-world pieces. The results,
based on both frame- and segment-based evaluation for as-
cending and descending glissandi respectively, confirm the
feasibility of the proposed method for glissando detection.
Better detection performance of ascending glissandi over
descending ones is obtained due to their more regular pat-
terns. Inaccurate pitch estimation forms a main obstacle
for successful fully-automated glissando detection. The
dataset and method can be used for performance analysis.

1. INTRODUCTION

Computational analysis of expressive patterns in music sig-
nals plays an important role in music information research.
For instrumental music, these expressive patterns are fre-
quently the result of playing techniques. Automated analy-
sis of playing techniques can benefit automatic music tran-
scription [1], computer-aided music pedagogy [2], instru-
ment classification [3, 4], and performance analysis [5].
However, computational analysis of playing techniques is
still in its early stages, lacking instrument diversity, estab-
lished methodologies, and informative data.

Most existing work on computational analysis of playing
techniques focuses on Western instruments such as gui-
tar [6–8], violin [9–11], piano [12], and drums [13, 14].
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Playing techniques in non-Western instruments, while sim-
ilarly important, are often overlooked. Take for example,
one of the world’s most ancient instruments, the Chinese
bamboo flute (also known as the Dizi or Zhudi, thereafter
referred to as CBF): many listeners are most often cap-
tivated by its unique timbre, which belies the twenty or
more playing techniques invoked when performing on the
instrument. To our knowledge, only Ayers [15, 16] has
done some analysis of CBF playing techniques through
synthesis. This work focused only on trills, tremolos and
flutter-tongue. But many other techniques remain to be ex-
plored. For the case of other non-Western instruments, lim-
ited computational work can be found [5, 17].

For playing technique detection, methods adopted in the
literature are typically frame-wise classifiers based on high
dimensional feature inputs [6,18], with little explanation of
why the methods work. Support vector machines (SVMs)
are the most frequently used class of methods. A series of
electric bass guitar playing techniques was classified into
plucking or expressive styles using SVMs in [6]; [10] ap-
plied it to distinguish five fundamental guitar playing tech-
niques. A multimodal input using SVMs was used for
analysing piano pedalling techniques in [12]. Su et al. [11]
proposed new features as input to an SVM based on sparse
modeling of magnitude and phase-derived spectra before
classifying violin playing techniques. Other work used dy-
namic time warping [19], COSFIRE filters [20], spectro-
gram templates [21], and filter diagnoalisation method [22]
for analysis of playing techniques.

Datasets used in playing technique research consist of
mainly playing techniques performed in isolation. Isolated
techniques can vary greatly from the same techniques used
in live performance. For ecological validity, we argue that
playing techniques should be collected in context. A chal-
lenge of obtaining playing technique examples in real-world
settings is that some techniques may be rare. Thus, it may
be hard to find pieces covering a wide range of playing
techniques and with sufficient repeated instances of these
techniques to obtain a variety of samples for a specific
technique.

To address these limitations, we use the CBF as our in-
strument of choice and glissando, a rarely explored au-
dio gesture in the literature, as our starting point, aim-
ing to build a systematic methodology for automatically
analysing playing techniques. Glissando, here refers to a
rapid slide up or down the musical scale [23], which is not
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Figure 1. Spectrogram of two ascending and two descend-
ing glissando examples in Chinese bamboo flute music.

comparable to the one defined as a continuous slide from
one note to another in [24]. Fig. 1 shows a spectrogram
of a series of two ascending and two descending CBF glis-
sandi. As can be seen, they exhibit a readily recognisable
pattern, resembling rapid scale segments. Glissando de-
tection in CBF playing is not straightforward: CBF glis-
sandi are less regular than the stair-like glissando patterns
in piano and guitar playing [18]. For the same glissando
type, variations exist in the ways they are executed be-
tween different players, different pieces, and even differ-
ent parts of the same piece. The main characteristic of
glissando is the consecutive note change, which we claim
can be captured by latent states of a hidden Markov model
(HMM) [25, 26]. HMMs enable the decoding of note evo-
lution while smoothing outlier variations within performed
glissandi.

In this paper, we make a first attempt to the computational
analysis of CBF glissandi. A new dataset including both
isolated glissandi and real-world pieces is created and is
being prepared for public release. Based on the analysis of
ground truth statistics, we propose a two-stage detection
system. A rule-based segmentation process first extracts
glissando candidates that are consecutive note changes in
the same direction. Different from traditional binary clas-
sification, the false positives obtained in the segmentation
stage, which exhibit similar pitch evolution and duration as
the ground truth, are used to train a non-glissando HMM
(NG-HMM). A glissando HMM (G-HMM) is trained us-
ing all ground truth glissandi in the training set. Glissandi
are then identified by two HMMs at test time.

2. DATASET

2.1 Dataset Information

The glissando analysis dataset, CBF-GlissDB, comprises
recordings by ten expert CBF players from the China Con-
servatory of Music. All data is recorded in a professional
recording studio using a Zoom H6 recorder at 44.1kHz/24-
bits. Each player performs both isolated glissandi cover-
ing all notes on the CBF and one full-length piece—Busy
Delivering Harvest �扬鞭催马运粮忙� or Morning �早

晨�. Players are grouped by flute type (C and G, the most
representative types for Southern and Northern styles, re-
spectively) and each player uses their own flute. Details of

recording length and number of glissandi in each group are
shown in Table. 1.

Players Flute
Isolated glissandi Whole-piece recordings

Length
(mins)

#glissandi
[↑, ↓] Piece, style

Length
(mins)

#glissandi
[↑, ↓]

1-3 C 2.4 [58,47] Morning, Southern 16.0 [24,0]

4-10 G 5.0 [117,112]
Busy Delivering

Harvest, Northern
28.0 [23,106]

Table 1. Dataset information.

In order to assess the performance of the proposed glis-
sando detection system independent of the performance of
pitch estimation methods, pitch ground truth for all record-
ings is created. The fundamental frequency of each record-
ing is first estimated using the pYIN algorithm [27] due to
the strictly monophonic property of the recordings. All er-
rors are then manually corrected by the first author using
Sonic Visualiser 1 . Both isolated and performed glissandi
are annotated and verified by the players on the score. The
final annotation is created by the first author after consult-
ing with the players.

2.2 Dataset Statistics

To verify the intuition of the difference between isolated
and performed glissandi, characteristic statistics of the gro-
und truth are calculated. Fig. 2 shows two-dimensional
histograms for four types of glissandi in CBF-GlissDB: as-
cending and descending isolated glissandi; and ascending
and descending performed glissandi. As can be seen, per-
formed glissandi have shorter durations than isolated glis-
sandi, especially for descending glissandi, performed ones
have almost half duration as isolated ones. Further analysis
of note durations within each glissandi shows little differ-
ence among isolated glissandi while ascending performed
glissandi have larger variation than descending performed
ones. This may be attributed to the performers’ tendency
to lengthen the start or end note in an ascending performed
glissando.

3. METHOD

To automatically detect glissando from real-world CBF re-
cordings, we propose a two-stage detection system based
on rule-based segmentation (Sec. 3.1) and HMM-based iden-
tification (Sec. 3.2).

3.1 Rule-based Segmentation

To obtain glissando candidates from the whole-piece record-
ings, we introduce a rule-based segmentation component
using pitch with a 20ms hop size as input, as demonstrated
in Fig. 3. The pitch is first smoothed to exclude noisy vari-
ations and quantised to the nearest notes in 12-tone equal
temperament scale, resulting in 16 notes in the CBF tonal

1 https://www.sonicvisualiser.org
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(a) 175 ascending-isolated glissandi
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(b) 159 descending-isolated glissandi
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(c) 47 ascending-performed glissandi
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Figure 2. Duration and note number histograms for four
glissando types.

range: G4-A6 for the C flute, and D5-E7 for the G flute
(we assume that flute types are known for the current sys-
tem). Frames with pitch less than 250Hz and waveform
amplitude less than -20dB are marked as silence. The sign
of note change is extracted to represent note change di-
rection. Consecutive note changes in the same direction
are then extracted as glissando candidates, which are fur-
ther pruned by constraints on note numbers (at least 4 for
both ascending and descending glissandi) and duration (at
least 0.2s for ascending glissandi and 0.15s for descending
glissandi based on the consultations with the professional
players).

3.2 HMM-based Identification

3.2.1 Feature Extraction

Since all glissando candidates (extracted in the previous
stage) share similar pitch evolution characteristics, the in-
put to the HMMs must possess sufficient discriminative
power to distinguish glissandi from non-glissandi. Con-
sidering the pitch discreteness and long duration of glis-
sandi, we use a feature set consisting of both short-term
(average pitch change, average intensity, average intensity
change) and long-term (note number, note duration, note
range) features [28, 29]. All features are statistics (mean
and standard deviation) of pitch and intensity with varia-
tions on window and hop sizes. Hop size variations range
from 10ms to 20ms at intervals of 2ms, while window sizes
depend on the glissando direction.

(i) Short-term features:

To capture pitch and intensity change, the short-term
window varies from 100 to 200ms at intervals of
20ms for the following three features.

– Average pitch change:

∆pi =
1

w

w∑

k=1

[
pi(k)− pi−1(k)

]
, (1)

Figure 3. Diagram of rule-based segmentation
(AG=ascending glissando; DG=descending glissando).

where pi(k) is the k-th pitch value within the win-
dow centered at the i-th time frame, and w is the
window length.

– Average intensity (amplitude in dB scale) [7]:

Ii =
1

w

w∑

k=1

[
20 · log10Ai(k)

]
, (2)

where Ai(k) is the amplitude of the k-th sample
within the window centered at the i-th time frame,
and Ii is average intensity of this window.

– Average intensity change: ∆Ii = Ii − Ii−1.

(ii) Long-term features:

To capture the discreteness of pitch evolution, note-
level features with long windows are calculated. The
window sizes vary from 200 to 400ms at intervals of
50ms for descending glissandi with shorter duration,
and from 200 to 600ms at the same intervals for as-
cending glissandi which have longer duration. The
calculation process for one ascending glissando ex-
ample is shown in Fig. 4. With a 400ms window slid-
ing forward, the number of notes N is 8 (one more
than the number of peaks, highlighted by the red cir-
cles) and note range (note change between start and
end notes) R equals 7. Note durations D, which re-
fer to the intervals between two note change peaks,
are {80,40,60,40,40,60}ms.

3.2.2 HMM-based Identification

As shown in Fig. 5, two HMMs with Gaussian mixture
emissions are trained on the training set, with k-means ini-
tialisation and iterative parametrisation by the Expectation-
Maximization algorithm [30]. During the training process,
model parameters—the number of HMM latent states, num-
ber of Gaussian mixture components, and window-hop sizes
—are varied and the model with the best performance on
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Figure 4. Long-term feature calculation process based on
one example of an ascending glissando.

the validation set is chosen as the final one for testing. The
emission used is a Gaussian mixture distribution [30]:

p(xi|π,µ,Σ) =

M∑

m=1

πmN (xi|µm,Σm), (3)

where xi is the observed feature vector of the i-th frame;
πm, µm and Σm are the prior, mean and covariance of the
m-th mixture component; and π,µ,Σ are the model pa-
rameters, each of which is an M -dimensional vector cor-
responding to πm, µm, and Σm.

The CBF-GlissDB is subdivided into three subsets, namely,
training (all isolated glissandi and 6 whole pieces), valida-
tion (2 whole pieces), and test (2 whole pieces). The seg-
mentation stage is applied to whole-piece recordings in all
three subsets, but to different ends. For the training set,
segmentation serves the purpose of obtaining false posi-
tives that are then used to train a NG-HMM. In the valida-
tion and test stages, the extracted segments serve as candi-
dates to be assigned glissando (G) or non-glissando (NG)
labels by comparing the log-likelihood calculated by the
two HMMs. Since the HMMs are applied directly to the
candidate segments, the absolute position of glissandi in
the pieces does not influence the result. The ten whole-
piece recordings are randomly allocated to the training,
validation, and test sets in a 6:2:2 ratio at the beginning of
experiment. A five-fold cross-validation is then conducted.

4. EVALUATION

To investigate the influence of automatic pitch estimation
on glissando detection, evaluation of both a semi-automated
system (using the pitch ground truth as input) and a fully-
automated system (using pitch automatically estimated by
pYIN [27] as input) is carried out. Because glissando length
ranges approximately from 200 to 1100ms, for each sys-
tem, frame-based and segment-based evaluations are im-
plemented. The frame size used in frame-based evalua-
tion is 20ms. Segment-based evaluation compares detected
glissandi and ground truth in short-time, non-overlapping
segments [31]. A segment length of 100ms is adopted.
True positives are segments which have overlaps with both

Figure 5. System diagram for glissando detection
(G=glissando; NG=non-glissando).

ground truth and detected glissandi; false positives seg-
ments overlaps only with detected glissandi; and, false neg-
atives intersect with ground truth only.

4.1 Semi-automated System Evaluation

Table 2 gives the precision, recall, and F-measure results
for both ascending and descending glissandi in the semi-
automated detection system. As can be seen, the segmen-
tation stage performs a conservative selection of candidate
segments with high recall and low precision. The large
number of false positives obtained for NG-HMM training
benefits the data balance in our system. The better identi-
fication performance of ascending glissandi over descend-
ing ones can be attributed to their more regular patterns.
As can be seen, the identification F-measure increased by
approximately 60% as compared to the segmentation F-
measure, which verifies our intuition that consecutive pitch
evolution can be captured by HMMs.

Stage
Glissando
direction

Frame-based (%) Segment-based (%)
P R F P R F

Rule-based
segmentation

Ascending 3.1 93.4 5.9 3.1 92.8 6.0
Descending 4.9 83.1 9.0 5.1 86.9 9.9

HMM-based
Identification

Ascending 73.4 75.4 73.4 72.0 74.0 72.0
Descending 65.4 67.6 63.2 64.4 70.2 64.2

Table 2. Evaluation results of the semi-automated
glissando detection system based on annotated pitch
(P=precision, R=recall, F=F-measure).

4.2 Fully-automated System Evaluation

After verifying the proposed glissando detection method
independently, we then use the automatically estimated pit-
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ch to evaluate the fully-automated glissando detection sys-
tem. Due to the influence of breathing, some parts in the
CBF recordings have high intensity but no detected pitch.
Thus silence cannot be determined only by pitch presence,
and we define silence bits as parts having both no pitch
and intensity below -20dB. Correctly detected frames are
the voiced parts with pitch intervals less than half a semi-
tone between the ground truth and the detected pitch. Pitch
estimation accuracy refers to the percentage of correctly
detected frames over all voiced frames. Table 3 shows
the estimated pitch result of both whole-piece recordings
and ground truth glissando segments within these pieces.
The poorer pitch estimation performance on glissando seg-
ments shows that pYIN works less well on rapid pitch evo-
lution progressions.

Type
Whole pieces Glissando segments

Southern Northern Ascending Descending

Accuracy (%) 80.2 79.5 72.0 74.8

Table 3. Pitch estimation accuracy for whole-piece record-
ings and glissando segments.

The fully-automated glissando detection results are shown
in Table 4. Considering the pitch evaluation shown above,
it is reasonable to expect worse performance when using
automatically estimated pitch as input. Pitch is a main
discriminative feature in the proposed glissando detection
system. The presence of undetected pitches or octave er-
rors within glissandi hinders G-HMM to capture the con-
secutive note evolution. Thus false positives, which exhibit
similar pitch evaluation as the ground truth glissandi and
have higher pitch estimation accuracy, may be assigned
with G labels. This is verified by the better identification
performance on descending glissandi over ascending ones
with lower pitch estimation result.

Stage
Glissando
direction

Frame-based (%) Segment-based (%)
P R F P R F

Rule-based
segmentation

Ascending 2.1 84.8 4.1 2.1 86.2 4.4
Descending 3.3 67.3 5.9 3.6 75.0 7.1

HMM-based
identification

Ascending 36.4 63.2 44.6 36.8 63.4 45.0
Descending 58.2 48.4 50.4 58.0 51.8 52.6

Table 4. Evaluation results of the fully-automated glis-
sando detection system based on estimated pitch.

5. CONCLUSIONS

In this paper, we have described a first attempt at compu-
tational analysis of CBF glissandi. HMMs are introduced
to decode the consecutive note evolution within glissandi
and a two-stage detection system is proposed. Using in-
puts based only on the statistics of two low-level features—
pitch and intensity, frame- and segment-based F-measures
of 73.4% and 72.0% for ascending glissandi, and 63.2%

and 64.2% for descending glissandi, are obtained in a semi-
automated detection system, which confirms the feasibility
of our method for glissando detection. The poorer perfor-
mance of the fully-automated system may be attributed to
the inaccuracy of pitch estimation since pitch is the main
discriminative feature.

Future work will seek to implement other state-of-art pitch
estimation methods (for example, CREPE [32]) to improve
pitch detection accuracy prior to glissando detection. More
informative features for glissando description may be ex-
plored. Alternative methods for glissando identification
will be investigated, such as template-based detection, the
spiral scattering transform [33], and deep learning, the lat-
ter including data augmentation of the collected audio sam-
ples. Plans are underway for expansion of the dataset. The
analysis will also be expanded to other CBF playing tech-
niques, with the aim to develop a systematic methodology
for CBF playing technique detection.
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ABSTRACT

In this paper, we build upon a recently proposed deep
convolutional neural network architecture for automatic
chord recognition (ACR). We focus on extending the com-
monly used major/minor vocabulary (24 classes) to an ex-
tended chord vocabulary of seven chord types with a to-
tal of 84 classes. In our experiments, we compare joint
and separate classification of the chord type and chord root
pitch class using one or two separate models, respectively.
We perform a large-scale evaluation using various com-
binations of training and test sets of different timbre com-
plexity. Our results show that ACR with an extended chord
vocabulary achieves high f-scores of 0.97 for isolated chord
recordings and 0.66 for mixed contemporary popular mu-
sic recordings. While the joint ACR modeling leads to the
best results for isolated instrument recordings, the sepa-
rate modeling strategy performs best for complex music
recordings. Alongside with this paper, we publish a novel
dataset for extended-vocabulary chord recognition which
consists of synthetically generated isolated recordings of
various musical instruments.

1. INTRODUCTION

Automatic chord recognition (ACR) has been actively re-
searched in the field of Music Information Retrieval (MIR)
during the last 20 years. ACR algorithms are an essen-
tial part of many music applications such as music tran-
scription systems for automatic lead-sheet generation, mu-
sic education and learning applications, as well as music
similarity and recommendation algorithms. In music prac-
tice, chord sequences can be played as different chord voic-
ings (selection and order of chord tones) on a large variety
of musical instruments, each with its own unique sound
characteristic. Therefore, the biggest challenge in ACR is
to extract the predominant harmonic changes in a music
signal while being robust against different instrument tim-
bres. Furthermore, tuning deviations of music recordings
as well as inherent ambiguities between different chords
can complicate the task even more [1]. In general, ACR is

Copyright: c© 2019 Christon-Ragavan Nadar et al. This

is an open-access article distributed under the terms of the
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author and source are credited.

approached as a two-step problem. First, the acoustic mod-
eling step deals with the prediction of chord labels from
short-term audio signal frames. Secondly, during the tem-
poral modeling step, post-processing algorithms are ap-
plied to merge frame-level predictions to longer segment-
level chord annotations.

As the first main contribution of this paper, we investigate
the under-explored task of recognizing seventh chords as
an extension to commonly used major and minor chords.
Most previous publications focus on recognizing the 24
possible major and minor chords. In the
extended-vocabulary ACR scenario, we investigate 7 dif-
ferent chord types including four seventh chord types and
the power-chord, which leads to a total of 84 classes.
Throughout this paper, we solely focus on improving the
acoustic modeling for ACR and do not apply any temporal
modeling algorithms. As a second contribution, we com-
pare joint and separate modeling of the chord root pitch
class and the chord type as two possible strategies for ACR
which are described in Section 3.2. Finally, we publish a
novel dataset alongside with this paper that includes syn-
thetically generated chord sequences of the investigated 7
different chord types played with different chord voicings
on various keyboard and guitar instruments. 1

2. RELATED WORK

Early algorithms for acoustic modeling in ACR use tem-
plate matching in chromagram representations, which en-
code the local saliency of different pitch classes in audio
signals [1, 2]. Here, musical knowledge about the inter-
val structures in different chord types is used to design
chord templates for template matching algorithms. We re-
fer the reader to [3] for a systematic overview over tradi-
tional techniques for feature extraction and pattern match-
ing in ACR systems and the importance of pre-processing
and post-processing steps.

In contrast, fully data-driven approaches based on deep
neural network architectures have been lately shown to out-
perform hand-crafted feature representations. For instance,
Convolutional Neural Networks (CNN) [4], Recurrent Neu-
ral Networks (RNN) [5, 6], and Feed-Forward Neural Net-
works (DNN) [7] are used as the acoustic modeling part.
Most CNN-based approaches follow the VGG-style archi-
tecture [8] with a sequence of 2D convolutional layers and

1 The dataset can be accessed at https://www.idmt.
fraunhofer.de/en/business_units/m2d/research.
html.
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max pooling layers for a gradual down-sampling in the
time-frequency space. Common time-frequency represen-
tations such as Short-time Fourier Transform (STFT) [9],
Constant-Q transform (CQT) [4] or its multi-channel ex-
tension Harmonic CQT [10] are used as two-dimensional
input to the CNN models.

As we focus on the acoustic modeling in ACR algorithms,
we only briefly review temporal modeling techniques here.
The first approaches for temporal modeling in ACR sys-
tems have used techniques from automatic speech recog-
nition such as Hidden Markov models (HMMs) [11, 12].
Recently, Korzeniowski & Widmer use RNN-based chord
language and duration models as post-processing after a
CNN-based acoustic model [13]. Wu & Li combine a bi-
directional Long Short-Term Memory (LSTM) network for
sequence modeling and Conditional Random Field (CRF)
to infer the final chord label sequence [10].

In real-life music recordings, the occurrence of different
chord types is heavily imbalanced. While major and mi-
nor chords make up the bulk of annotated chords in avail-
able chord recognition datasets, other chord types such as
seventh chords are heavily underrepresented. Hence, it
becomes hard to train ACR systems to detect such chord
types. If ACR algorithms should for instance be used to
analyze jazz-related music styles, it becomes mandatory
to extend the chord vocabulary by seventh chords. Only
a few publications such as [10, 14–16] focus on extended-
vocabulary chord recognition and go beyond the common
24 class major/minor chord vocabulary. In order to facili-
tate training models for the extended-vocabulary ACR, we
created and published a novel dataset for large-scale chord
recognition which will be detailed in Section 4.2.

3. SYSTEM OVERVIEW

3.1 Input Features

Audio signals with a sample rate of 44.1 kHz are con-
verted into Short-time Fourier Transform (STFT) magni-
tude spectrograms using a blocksize of 8192 (186 ms), a
hopsize of 4410 (100 ms), and a Hann window. The phase
is discarded. Using a triangular filterbank, the spectrogram
is mapped to a logarithmically-spaced frequency axis with
133 frequency bins and a resolution of 24 bins per octave
as in [9]. Logarithmic magnitude compression is used to
increase the invariance to dynamic fluctuations in the mu-
sic signal. Spectral patches are extracted with a blocksize
of 15 (1500 ms) and a hopsize of 4 (400 ms) and fed as
two-dimensional input to the CNN model.

3.2 Modeling Strategies & Network Architecture

Figure 1 shows the CNN model architecture, which we
adopted from [9]. As shown in Figure 2, we compare two
modeling strategies for ACR: In the first strategy (S1), we
aim to directly classify the chord label and use a single-
output model. Depending on the chord vocabulary size,
the final dense layer has either 24 units for classifying ma-
jor & minor chords or 84 units for classifying all 7 chord
types listed in Table 1 given all possible 12 chord root pitch
classes. In the second strategy (S2), we predict the chord

Abbreviation Chord Type (# Chord Tones)
5 “Power-chord” (2)
maj Major chord (3)
min Minor chord (3)
maj7 Major-seventh chord (4)
min7 Minor-seventh chord (4)
dom7 Dominant-seventh chord (4)
m7b5 Half-diminished seventh chord (4)

Table 1. Investigated chord types with the corresponding
number of chord tones.

ConvBlock (32,	 3x3)

ConvBlock (32 ,	3x3)

ConvBlock (32 ,	3x3)

MaxPool (1,2)

GlobalAveragePooling

Dense (24	 or 84)

Cmaj (0.002)
...

Bm7b5	 (0.85)

Conv2D

BatchNormalization

ReLU

ConvBlock (128,	 9x12)

Dropout

ConvBlock (32 ,	3x3)

ConvBlock (64 ,	3x3)

MaxPool (1,2)

ConvBlock (64 ,	3x3)

ConvBlock (25,	 1x1)

Figure 1. Architecture of the applied CNN. Number of
filters and the kernel size are given in brackets for each
ConvBlock. The softmax activation function is used in the
final dense layer.

CNN	Model Chord Label	
(24	 or 84	classes)

CNN	Model

S1

S2

Chord Type	
(2	 or 7	classes)

Chord Root	Pitch	 Class
(12	 classes)

Figure 2. Illustration of two modeling strategies S1 and S2
for joint and separate chord type & root pitch class estima-
tion.

root pitch class (12 classes) and chord type (2 or 7 classes)
using two separate models. In both scenarios, the final
dense layers have a softmax activation function and after
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Dataset # Files Duration
(h)

# Chord
Segments

Bs Beatles 1152 53.1 86868
Qn Queen 180 11.2 20610
RW Robbie Williams 234 19.1 25569
RWC RWC 900 61.0 110331
Os Osmalsky 7200 3.8 7200
Combi7 Combined Dataset 1863 112.2 193194
ISGuitar IDMT SMT GUITAR 48 32.1 684
ISChords IDMT SMT CHORDS 16 4.1 7398
ISInhouse IDMT Inhouse Dataset 111 4.9 9159

Table 2. Overview of all chord recognition datasets with
the respective number of audio files, the total duration in
hours, as well as the number of chord segments.

each convolutional layer batch normalization [17] and a
rectified linear unit (ReLU) activation function is applied.
During training, we use the categorical cross-entropy loss,
500 training epochs with early stopping, the Adam opti-
mizer [18] with a learning rate of 0.003, and a batch size of
256. The input features were normalized to zero-mean and
unit-variance for the whole training set. The normalization
values were later applied to the test data. All experiments
were conducted using the Keras framework with Tensor-
flow as backend. 2

4. DATASETS

4.1 Existing Datasets

The datasets used in this paper are summarized in Table 2.
In addition to the total number of files, Table 2 provides the
total dataset duration and total number of chord segments.
In order to enlarge the dataset, we use pitch-shifting with
total shifts of up to 4 semitones upwards and downwards
as data augmentation technique. Hence, each original file
results in 9 augmented files including the original record-
ing. The datasets Beatles (Bs) [19], Queen (Qn) [19], Rob-
bie Williams (RW) [20], RWC (100 songs from the RWC
Popular Music Database [21]), and Osmalsky (Os) [22]
have been used in the chord recognition literature previ-
ously. While the first four datasets include mixed music
recordings with multiple instruments, the Os as well as the
ISGuitar dataset (excerpts from the
IDMT SMT GUITAR database published in [23]) consist
of isolated recordings of different instruments playing
chords. We created and published a novel dataset for chord
recognition research (IDMT SMT CHORDS, abbreviated as
ISChords in this paper), which will be detailed in the
following section 4.2. The ISInhouse dataset is an in-
house dataset covering various pop and rock music record-
ings, which cannot be published due to copyright
constraints. In order to evaluate our model on music mix-
tures for the task of extended-vocabulary ACR, we aggre-
gated an additional dataset (Combi7) using files which in-
clude seventh chord annotations from the datasets
Bs, Qn, RWC, RW, and Os.

2 Keras: keras.io, Tensorflow: www.tensorflow.org

Dataset maj min maj7 min7 5 dom7 m7b5
Bs 67.95 20.49 2.17 3.00 0.04 6.12 0.22
Qn 63.81 22.52 1.28 4.47 1.28 6.56 0.09
RW 69.64 28.30 0.36 0.50 0.89 0.32 -
RWC 48.09 26.57 5.94 13.25 - 5.87 0.28
Os 60.00 40.00 - - - - -
Combi7 53.24 25.20 4.65 9.75 0.19 6.71 0.27
ISGuitar 67.89 16.51 4.59 3.67 - 5.50 1.83
ISChords 17.11 17.11 14.31 14.31 8.55 14.31 14.31
ISInhouse 62.85 37.15 - - - - -

Table 3. Chord type distribution per dataset in percent (%).

Cmaj7

C

E
G

B

Em

 Cmaj

Eb

Gb

Bb
Ab

C

Ebm

Cm7b5

Abdom7

(a) (b)

Figure 3. Illustration of ambiguities between chords due
to shared chord tones between the chord types m7[5, min,
and dom7 (a), and maj7, maj, and min (b). Figure inspired
by [1].

4.2 Synthetic Dataset for Extended-Vocabulary Chord
Recognition

Currently used chord recognition datasets are only partially
suitable for training and evaluation on seventh chord types.
Therefore, we created and published the novel
IDMT SMT CHORDS dataset 3 . We initially created two
MIDI files which cover all seven chord types listed in
Table 1. Here we focused on chord voicings, which are
commonly used on keyboard instruments and guitars. The
piano MIDI file includes all chord types in all possible root
note positions and inversions. The guitar MIDI file is based
on barré chord voicings with the root note located on the
low E, A, and D strings. We used several software instru-
ments from Ableton Live 4 and Garage Band 5 to synthe-
size these MIDI files with various instruments such as pi-
ano, synthesizer pad, as well as acoustic and electric guitar.

5. EVALUATION

In the experiment described in this section, we focus on
two types of ACR challenges: First, as discussed in [1],
the assignment of a chord label is often ambiguous as dif-
ferent chord types partly share chord tones. Figure 3 illus-
trates these ambiguities for two chord types which share
multiple chord tones. For instance, as shown on the left
side, a half-diminished seventh chord (e. g., Cm7[5) can
potentially be confused with different pitch classes like the

3 The download link for the audio and MIDI files will be published in
the camera-ready version of the paper.

4 https://www.ableton.com/en/live/
5 https://www.apple.com/mac/garageband/
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C C# D D# E F F# G G# A A# B
Predicted

C
C#

D
D#

E
F

F#
G

G#
A

A#
B

Tr
ue

84% 0% 2% 1% 1% 4% 0% 2% 2% 1% 1% 0%

1% 84% 0% 2% 1% 2% 4% 0% 3% 2% 1% 1%

1% 1% 86% 0% 1% 1% 2% 3% 0% 2% 2% 1%

2% 1% 1% 86% 0% 1% 1% 1% 3% 0% 2% 1%

2% 3% 2% 1% 82% 0% 2% 1% 2% 3% 0% 3%

2% 2% 3% 1% 0% 85% 0% 1% 2% 1% 3% 0%

0% 3% 2% 3% 1% 1% 84% 0% 2% 1% 1% 3%

4% 0% 4% 2% 2% 2% 1% 81% 0% 1% 2% 1%

1% 3% 0% 3% 1% 2% 1% 0% 85% 0% 1% 1%

2% 2% 4% 0% 2% 1% 3% 1% 1% 82% 0% 2%

2% 1% 2% 3% 0% 4% 1% 2% 2% 0% 83% 0%

0% 2% 1% 2% 2% 0% 3% 1% 3% 1% 1% 83%

Figure 4. Confusion matrix for chord root pitch class clas-
sification on isolated chord recordings (ISChords, ex-
periment E3, strategy S2).

minor chord built upon its minor third (E[m) or with the
dominant seventh chord built by introducing (A[) as a root
note (A[dom7).

Secondly, the datasets introduced in Section 4 have dif-
ferent acoustic characteristics. While some of the songs
in the Bs and Qn datasets were recorded in the 1970s,
other datasets such as RW and ISInhouse contain con-
temporary popular music recordings with a modern sound.
Also, the datasets are of different timbre complexity rang-
ing from simple isolated chords to complex audio mix-
tures. It was observed in related MIR tasks such as mu-
sic transcription [24] that data-driven models trained for
transcribing isolated notes do not generalize well to more
complex acoustic mixtures. Here, we aim to investigate
whether such findings can be replicated for ACR.

Table 4 summarizes 11 experiments, which are designed
to analyze the chord type ambiguity on isolated chord re-
cordings (E1 - E3, see Section 5.1), the generalization of
ACR models to mixture recordings (E4 - E6, see
Section 5.2), as well as two real-life ACR application sce-
narios (E7 - E11, see Section 5.3). In addition, we tested
the state-of-the-art ACR algorithm proposed in [9] as our
reference system (REF) for the major/minor chord vocab-
ulary (24 classes). The implementation from the madmom
[25] python library was used and its performance is docu-
mented in the last column of Table 4.

In all experiments, audio recordings are split into train-
ing and test set on a dataset-level or on a file-level. When
a dataset is used for training and test we perform a two-
fold random cross-validation. We use the weighted average
class f-score throughout this paper as evaluation measure.
The f-scores F24 and F84 are used to indicate if the evalu-
ation was performed on 24 chord classes (major/minor vo-
cabulary) or 84 classes (extended-vocabulary ACR). The
“no chord” class is neglected in all experiments. In the
following subsections, three groups of experiments will be
detailed whose results are summarized in Table 4.

maj min maj7 min7 5 dom7 m7b5
Predicted

m
aj

m
in

m
aj
7

m
in
7

5
do

m
7

m
7b

5
Tr
ue

90% 0% 6% 0% 4% 0% 0%

0% 81% 8% 7% 3% 0% 0%

3% 4% 89% 0% 3% 0% 0%

0% 1% 0% 98% 1% 0% 0%

15% 0% 0% 0% 85% 0% 0%

2% 1% 4% 2% 0% 87% 5%

0% 0% 1% 3% 1% 0% 95%

Figure 5. Confusion matrix for 7 chord types in
extended-vocabulary ACR on isolated chord recordings
(ISChords, experiment E3, strategy S2).
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m
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86% 4% 2% 2% 0% 6% 0%

10% 75% 2% 10% 0% 3% 0%

48% 6% 31% 10% 0% 3% 1%

14% 15% 1% 64% 0% 6% 0%

13% 3% 0% 1% 79% 4% 0%

49% 5% 1% 3% 0% 42% 0%

13% 37% 0% 5% 0% 41% 3%

Figure 6. Confusion matrix for 7 chord types in extended-
vocabulary ACR on mixed chord recordings (Combi7 +
ISChords, experiment E6, strategy S2).

5.1 Chord Type Ambiguity on Isolated Chord
Recordings

In experiments E1, E2, and E3 (first section of Table 4),
we train and evaluate ACR models on isolated chord record-
ings (ISChords) to study the effect of chord tone ambi-
guity in extended-vocabulary ACR. As explained in
Section 4.2, the contained chords are based on two sys-
tematically generated MIDI files with chord voicings from
keyboard and non-keyboard instruments. In our experi-
ments, we evaluate the influence of the chord voicing types
as well as of the modeling approach (compare Section 3.2).

For the major/minor chord vocabulary (24 classes), we
obtain high f-scores F24 between 0.81 and 0.99 using the
strategy S1. In the two experiments E1 & E2, we per-
form a chord voicing “cross-test” by exclusively assign-
ing piano chord voicings to the training set and test on
non-piano chord voicings and vice versa. Intuitively, we
observe lower f-scores (compared to E3) since the mod-
els are confronted with a different timbre (instrument) and
previously unseen chord voicings at test time. Contrary
to the 24 classes major/minor scenario, we observe that
for the 84 classes scenario (extended-vocabulary ACR),
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# Training Set Test Set Strategy S1 Strategy S2 Reference
System
(REF)

F24 F84 F24 F84 F24

Chord Type Ambiguity on Isolated Chord Recordings (Section 5.1)
E1 ISChords (non-guitar) ISChords (guitar) 0.92 0.58 0.90 0.76 0.74
E2 ISChords (guitar) ISChords (non-guitar) 0.81 0.49 0.54 0.56 0.71
E3 ISChords ISChords 0.99 0.97 0.90 0.82 0.75
Generalization of ACR Models towards Complex Recordings (Section 5.2)
E4 ISChords Combi7 0.40 0.36 0.18 0.28 0.83
E5 Combi7 Combi7 0.83 0.63 0.84 0.64 0.83
E6 ISChords + Combi7 ISChords + Combi7 0.84 0.65 0.84 0.66 0.81
Real-Life ACR Application Scenarios (Section 5.3)
E7 ISChords ISInhouse 0.56 - 0.27 - 0.76
E8 ISChords ISGuitar 0.90 - 0.70 - 0.91
E9 Bs + Qn + RW + RWC + Os

+ISChords
ISInhouse 0.71 - 0.74 - 0.76

E10 Bs + Qn + RW + RWC + Os +
+ISChords

ISGuitar 0.90 - 0.91 - 0.91

E11 Bs + Qn + RW + RWC + Os
+ISChords

Bs + Qn + RW + RWC + Os
+ISChords

0.81 - 0.84 - 0.78

Table 4. This table lists all ACR experiments grouped into three sections described in Section 5.1, Section 5.2, and
Section 5.3. For each experiment, the second and third column introduce the applied training set and test set. For both
modeling strategies S1 and S2 introduced in Section 3.2, f-scores F24 and F84 are provided for the 24 classes major/minor
chord vocabulary and the 84 classes extended-vocabulary with the 7 chord types as listed in Table 1. For each experiment,
the best scores for each of the vocabulary are highlighted using bold font. The last column shows the f-score using the
reference system (REF) on the test set.

strategy S2 clearly outperforms S1. We assume that the
network capacity is large enough to learn distinct spectral
patterns for classifying among 24 chord labels. For the
extended-vocabulary scenario however, the amount of 84
classes is presumably too high to be learnt by one model
using strategy S1. Instead, splitting the classification task
into two easier sub-tasks (with not more than 12 classes
each) using strategy S2 seems slightly beneficial here. In-
terestingly, in experiment E3, where all chord voicings are
mixed, strategy S1 outperforms strategy S2 in both the 24
and 84 classes scenarios. When testing with state of the art
model (REF) in E3 we see that REF does not perform as
well since it is likely trained on complex audio mixtures.

Figure 4 shows the confusion matrix for the classification
of the chord root pitch class for the 84 class scenario for
experiment E3. It can be observed that the model shows a
good performance for all classes between 82 % and 86 %.
Similarly, as can be seen in Figure 5, the model easily
learns to distinguish between different chord shapes for
isolated chord recordings (ISChords dataset). However,
Figure 6 shows the more complicated test case of mixed
audio recordings (Combi7 + ISChords datasets). The
most prominent misclassifications between the maj7 to-
wards the maj, the dom7 towards the maj, as well as the
m7[5 towards the min and the dom7 all confirm the chord
tone ambiguities discussed in Section 5.

5.2 Generalization of ACR Models towards Complex
Recordings

In experiments E4 to E6 (second section of Table 4), we in-
vestigate (similar to [24]) whether and to what extent ACR
models trained on isolated instrument recordings gener-
alize towards complex music recordings in the Bs, Qn,
and RWC datasets. Also, we test whether adding the pro-
posed ISChords dataset can help to improve the perfor-
mance on extended-vocabulary ACR. As expected, a poor
f-score of F24 = 0.4 in E4 shows that the investigated
CNN-based ACR model does not generalize well from a
simple training scenarios (ISChords) towards a complex
test scenario (Combi7). The clearly higher f-scores of
F24 = 0.84 and F84 = 0.66 show that this kind of data-
driven classification models need to be trained on data of
similar timbre complexity as in the test scenario. We only
observe a small improvement of 0.02 (from E5 to E6) for
the 84 classes scenario in f-score when training with both
datasets (E6). The reference algorithm REF performs sim-
ilar to S2 in E5 and slightly worse than S1 and S2 with a
difference of 0.03 in E6.

5.3 Real-Life ACR Application Scenarios

In the experiments E7 to E11 (third section of Table 4), we
address realistic requirements for ACR systems to be de-
ployed in real-life applications. In a music education sce-
nario, musical instruments usually can be directly recorded
and analyzed without background sounds. Therefore, we
test the chord recognition performance on isolated poly-
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phonic electric guitar recordings (ISGuitar), which in-
clude both chords and arpeggios. In a music annotation
scenario, we evaluate ACR models on a set of 111 contem-
porary pop and rock music recordings of various instru-
mentations
(ISInhouse). Similarly to E4, we can observe in exper-
iment E7 that ACR models trained only on isolated chord
recordings do not perform well on complex mixtures
(ISInhouse). However, such models show a good per-
formance (S1, F24 = 0.9, S2, F24 = 0.7) when being ap-
plied to isolated guitar recordings (E8). In both test cases,
the performance can be clearly improved by adding more
datasets to the training set, which reflect a larger variety
of music recordings (compare experiments E9 and E10).
In both experiments E9 and E10, the reference algorithm
REF performs almost similar except for E11 where S2
achieves a slightly better f-score.

6. CONCLUSIONS

In this paper, we used a state-of-the-art Deep Convolu-
tional Neural Network for ACR. In addition to publish-
ing a novel dataset of isolated chord recordings, we pro-
pose an alternative modeling strategy using two models for
the separate classification of the chord type and the chord
root pitch class. In our experiments, we first evaluate this
strategy for the controlled test case of isolated instrument
recordings. Most of the chord type misclassifications are
due to shared chord tones. The results indicate that ACR
even with extended-vocabulary is feasible (f-scores above
0.9), but the performance depends on whether the chord
voicings and instrument timbre used in the test set have
been learnt by the model before.

In a second set of experiments, we were able to replicate
the finding from automatic music transcription that data-
driven ACR models need to be trained on data of the same
complexity as the expected test data. Models trained on
isolated instrument recordings performed poorly on mixed
audio data. Finally, we evaluated the CNN model on two
separate datasets, which acted as a proxy for deploying an
ACR model into real-life production systems for the two
use cases music education and music annotation. Here, we
achieved high f-scores of 0.91 for isolated guitar record-
ings and 0.74 for mixed contemporary popular music re-
cordings showing the usefulness for real-life MIR applica-
tions.
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ABSTRACT

The use of recurrent neural networks for modeling and
generating music has been shown to be quite effective for
compact, textual transcriptions of traditional music from
Ireland and the UK. We explore how well these models
perform for textual transcriptions of traditional music from
Scandinavia. This type of music has characteristics that
are similar to and different from that of Irish music, e.g.,
mode, rhythm, and structure. We investigate the effects of
different architectures and training regimens, and evaluate
the resulting models using three methods: a comparison
of statistics between real and generated transcriptions, an
appraisal of generated transcriptions via a semi-structured
interview with an expert in Swedish folk music, and an ex-
ercise conducted with students of Scandinavian folk music.
We find that some of our models can generate new tran-
scriptions sharing characteristics with Scandinavian folk
music, but which often lack the simplicity of real transcrip-
tions. One of our models has been implemented online at
http://www.folkrnn.org for anyone to try.

1. INTRODUCTION

Recent work [1] applies long short-term memory (LSTM)
neural networks [2] to model and generate textual tran-
scriptions of traditional music from Ireland and the UK.
The data used in that work consists of over 23,000 tune
transcriptions crowd-sourced online. 1 Each transcription
is expressed using a compact textual notation called ABC. 2

The resulting transcription models have been used and eval-
uated in a variety of ways, from creating material for pub-
lic concerts [3] and a professionally produced album [4], to
numerical analyses of the millions of parameters in the net-
work [5, 6], to an accessible online implementation. 3 The
success of machine learning in reproducing idiosyncrasies
of Irish traditional music transcriptions comes in large part
from the expressive capacity of the LSTM network, the

1 http://thesession.org
2 http://abcnotation.com/wiki/abc:standard:v2.1
3 http://www.folkrnn.org

Copyright: c© 2019 Eric Hallström et al. This is an open-access article distributed 
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the original author and source are credited.

compact data representation designed around ABC nota-
tion, and a large amount of training data. Will such a model
also perform well given another kind of traditional mu-
sic expressed in a similarly compact way? What happens
when the amount of training data is an order of magnitude
less than for the Irish transcription models?

In this paper, we present our work applying deep recur-
rent modeling methods to Scandinavian folk music. We
explore both LSTM and Gated Recurrent Unit (GRU) net-
works [7], trained with and without dropout [8]. We ac-
quire our data from a crowd-sourced repository of Scan-
dinavian folk music, which gives 4,083 transcriptions ex-
pressed as ABC notation. Though this data is expressed
the same way as the Irish transcriptions used in [1], there
are subtle differences between the styles that require a dif-
ferent approach, e.g., key changes in tunes. This results
in a larger vocabulary for the Scandinavian transcription
models, compared with the Irish ones (224 vs. 137 to-
kens) [1]. We also explore using pretraining with the Irish
transcription dataset, with further training using only Scan-
dinavian transcriptions. To evaluate the resulting models,
we compare low-level statistics of the generated transcrip-
tions with the training data, conduct a semi-structured in-
terview with an expert on Swedish folk music, and perform
an exercise with students of Scandinavian folk music.

We begin by briefly reviewing recurrent neural networks,
including LSTM and GRU networks. We then describe
the data we use, how we have process it to create training
data, and how we train our models. We then present our
evaluation of the models, and discuss the results and our
future work.

2. RECURRENT NEURAL NETWORKS

A Recurrent Neural Network (RNN) [9] is a type of artifi-
cial neural network that uses directed cycles in its compu-
tations, inspired by the cyclical connections between neu-
rons in the brain [10]. These recurrent connections allow
the RNN to use its output in a sequence, while the in-
ternal states of the network act as memory. We test two
different flavors of RNN: Long Short-Term Memory Net-
works (LSTM), and Gated Recurrent Units (GRU). The fi-
nal layer of these networks is a softmax layer, which is
produces a conditional probability distribution over a vo-
cabulary given the previous observations. It is from this
distribution one samples to generate a sequence.
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2.1 Long Short-Term Memory (LSTM)

The LSTM is an RNN architecture designed to overcome
problems in training conventional RNNs [2]. Each LSTM
layer is defined by four “gates” transforming an input xt at
time step t and a previous state ht−1 as follows [11]:

it = σ (Wixt +Uiht−1 + bi) (1)
ft = σ (Wfxt +Ufht−1 + bf ) (2)
ot = σ (Woxt +Uoht−1 + bo) (3)
ct = it � tanh (Wuxt +Uuht−1 + bu)

+ ft � ct−1 (4)

where σ() denotes the element-wise logistic sigmoid func-
tion, and � denotes the element-wise multiplication oper-
ator. The LSTM layer updates its hidden state by

ht = ot � tanh(ct). (5)

The hidden state of an LSTM layer is the input to the next
deeper layer.

2.2 Gated Recurrent Unit (GRU)

A GRU layer is similar to that of the LSTM, but each layer
uses only two gates and so is much simpler to compute
[7]. Each GRU layer transforms an input xt and a previous
state ht−1 as follows:

rt = σ(Wrxt +Urht−1 + br) (6)
zt = σ(Wzxt +Uzht−1 + bz). (7)

The GRU layer updates its state by

ht = (1− zt)� tanh(Whxt +Uh(rt � ht−1))

+ zt � ht−1. (8)

Compared with the LSTM, each GRU layer has fewer pa-
rameters.

3. MODELING SCANDINAVIAN FOLK MUSIC

3.1 Data

FOLKWIKI 4 is a wiki-style site dedicated to Scandinavian
folk music that allows users to submit tune transcriptions
to a growing database, each expressed using ABC nota-
tion. We collect transcriptions from FOLKWIKI by using a
web scraper, 5 recursively gathering them using the “key”
category. 6 This produces 4083 unique transcriptions. An
example transcription is shown in the following:

%%abc-charset utf-8

X:1
T:Visa
T:ur Svenska Folkmelodier

utgivna av C.E. Södling
B:http://www.smus.se/...(Edited by authors)
O:Småland

4 http://www.folkwiki.se
5 http://www.scrapy.org
6 http://www.folkwiki.se/Tonarter/Tonarter

N:Se även +
M:3/4
L:1/8
R:Visa
Z:Nils L
K:Am
EE A2 cc | ee B2 d2 | cB (Ac) BA | ˆG2 E4 ::
w:ung-er-sven med ett hur-tigt mod han

sving-ar sig * u-ti la-get
EE A2 B2 | cd e2 d2 | cB Ac BˆG | A2 A4 :|
w:fem-ton al-nar grö-na band det bär han

u-ti sin skjort-kra-ge

We process these transcriptions in the following way:

1. Remove all comments and and non-musical data

2. If the tune has multiple voices, separate them as if
they are individual tunes

3. Parse the head of the tune and keep the length (L:),
meter (M:), and key fields (K:)

4. Parse the body of the tune

5. Clean up and substitute a few resulting tokens to
keep similarity over the data set (i.e “K:DMajor” is
substituted by “K:DMaj” etc.)

We keep all the following tokens in the tunes body:

• Changes in key (K:), meter (M:) or note length (L:)

• Any note as described in the ABC-Standard
(e.g., e, =a or any valid note)

• Duplets (2, triplets (3, quadruplets (4, etc.

• Note length (Any integer after a note =a 4)

• Rest sign (z)

• Bars and repeat bars (:| |:)

• Grouping of simultaneous notes ([ and ])

After processing, the transcription above appears as:

[L:1/8]
[M:3/4]
[K:AMin]
E E A 2 c c | e e B 2 d 2 | c B A c B A |
ˆG 2 E 4 :| |: E E A 2 B 2 | c d e 2 d 2 |
c B A c B ˆG | A 2 A 4 :|

Each symbol separated by a space corresponds to one to-
ken in the model vocabulary. Notice that almost all meta-
data fields are removed, as well as lyrics. Reprise bars
such as :: or :|: have been substituted by :| |: to
minimize the vocabulary size so the models become less
complex. The output produced by our text processing is a
file with all transcriptions separated by a newline. We do
not keep any transcriptions with fewer than 50 tokens or
more than 1000 tokens. We also do not attempt to correct
human errors in transcription (e.g., miscounted bars). The
resulting dataset is available in a repository. 7 The parser
we created to do the above is available at the project repos-
itory. 8 The total number of unique tokens in the Folkwiki
dataset is 155.

7 https://github.com/victorwegeborn/folk-rnn/tree/master/data/9 nov
8 http://www.github.com/ztime/polska
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3.2 Pretraining models

The training of deep models typically begins with a ran-
dom initialization of its weights, but it can also begin with
weights found from previous training. In the latter sense,
one can think of it as making the network first aware of
syntactical relationships in the domain in which it is work-
ing, and then tuning the network on a subset to specialize
it. We experiment with training models first using the con-
catenation of the FolkWiki dataset with the Irish transcrip-
tion dataset that we process in the same way, 9 and then
tuning the model with just the FolkWiki dataset.

3.3 Dropout

A danger with machine learning in general is the tendency
to overfit to training data. One method to prevent overfit-
ting of a network is to use a mechanism called dropout [8].
Dropout works by masking the output of a layer in the net-
work with a random distributed binary vector during train-
ing. The dropout probability pi is the parameter of the
model that decides what output of the layer is propagated.
When we use dropout, we set pi = 0.5.

3.4 Model architecture and training

We use two different neural networks based on the LSTM
and GRU units, with three different variations:

• LSTM with 50% dropout trained on FolkWiki (LF50)

• GRU with 50% dropout trained on FolkWiki (GF50)

• LSTM with 50% dropout pretrained on FolkWiki
and TheSession, then only FolkWiki (LS+F50 )

• GRU with 50% dropout pretrained on FolkWiki and
TheSession, then only FolkWiki (GS+F50 )

• LSTM without dropout pretrained on FolkWiki and
TheSession, then only FolkWiki (LS+F )

• GRU without dropout pretrained on FolkWiki and
TheSession, then only FolkWiki (GS+F )

Because of the number of unique tokens for a model de-
pends on its training data, we adjusted the number of hid-
den units in layers to be about 4 times the vocabulary size
[6]. We trained two models on only FolkWiki using 600
hidden nodes in each layer, whilst the models trained on
both session-data and FolkWiki used 800 hidden nodes
(the vocabulary size of the concatenation of the two datasets
is 224). During the pretraining phase we use a batch size
of 64, and for the final training we use a batch size of 32.
We use a learning rate η = 0.003 with a decay of 0.97 after
every 20 epochs (the same as used in [1]). All models have
gradient clipping set to 5.

Figure 1 shows the mean transcription validation negative
log-likelihood loss for each model. We train all models
for 40 epochs on FolkWiki. The pretraining of the LSTM
model on the FolkWiki and TheSession data is done for 50
epochs, but the pretraining of the GRU model on FolkWiki
and TheSession data is done for 20 epochs.

9 See footnote 7.

Figure 1. The mean transcription validation loss for the
LSTM models (top) and the GRU models (bottom) when
training on the FolkWiki dataset.

4. EVALUATION

We now evaluate the six different models we have trained.
We use three different approaches to evaluation. First, we
compare the descriptive statistics of the generated and real
transcriptions. Second, we select output generated by the
models for evaluation by an expert on Swedish traditional
music. Finally, we perform an exercise with students of
Scandinavian folk music.

4.1 Statistical analysis

We have each model generate 4000 transcriptions at ran-
dom, and then look at how these compare with the 4083
transcriptions in the training dataset. Figure 2 compares
FolkWiki with the transcriptions generated byLF50 andGF50
in terms of occurrences of keys, meter and number of to-
kens. We see a strong bias of GF50 towards generating the
D minor token, and away from the D major token, while
LF50 has a slight bias towards generating the tokens of D
minor and G major, and away from D major. When it
comes to the meter tokens, LF50 appears to be in agreement
with FolkWiki, while GF50 is biased to most often produce
3/4. When it comes to the lengths of the transcriptions, LF50
generates slightly shorter transcriptions than those in Folk-
Wiki, while GF50 generates transcriptions that are longer.

Figure 3 compares FolkWiki with the transcriptions gen-
erated byLS+F50 andGS+F50 . We seeLS+F50 is biased toward
producing the D minor token and away from the D major
and A minor tokens, while GS+F50 too often generates the
A major, D minor and G major tokens. As with the meters,
these models either favor the 3/4 or the 4/4 tokens. In terms
of number of tokens in the transcriptions, GS+F50 generates
longer ones than LS+F50 , but both tend to produce longer
transcriptions than in the FolkWiki dataset.

4.2 Semi-structured interview with Swedish expert

In order to learn about some defining characteristics of
Swedish folk music, and to gauge the plausibility of ma-
terial generated by our models, we interviewed Olof Mis-
geld, a lecturer in Music Theory and lecturer of folk violin
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Figure 2. Comparison between FolkWiki and the LF50 and
GF50 models. Percent of transcriptions in terms of keys
(top), meters (middle), and number of tokens (bottom).

at the Royal College of Music (KMH) in Stockholm, Swe-
den. We told Misgeld about our research and why we were
interested in interviewing him.

In preparation for the interview we created three differ-
ent collections of transcriptions, each containing 500: 400
transcriptions generated by a model, and 100 real tran-
scriptions from FolkWiki, randomly selected and ordered.
The generated transcriptions of one collection come from
LS+F50 because its statistics most closely resemble the train-
ing data. In the second collection we chose to use tran-
scriptions generated by LS+F to see if not using dropout
affects quality. Finally, for the third collection we chose
transcriptions generated by GF50 because its statistics look
the most poor with respect to FolkWiki.

Misgeld first assessed collection LS+F50 . We described
the transcriptions “computer generated”, without mention-
ing that some of them were from FolkWiki. We asked him
to freely browse through the collection and provide obser-
vations. After a few observations we asked him to find a
transcription that is really good (in your opinion) and de-
scribe why, and to find a transcription that is really poor (in
your opinion) and describe why, After more observations
we told him that some of the transcriptions are from the
training data (real tunes), and asked if he can locate them.
We performed the same procedure with the other two col-
lections. After this, we asked Misgeld to freely compare
the three collections.

Misgeld identified distinct styles in the transcriptions gen-
erated by LF+S

50 . Some comments include “maybe Släng-

Figure 3. Comparison between FolkWiki and the LS+F50

and GS+F50 models. Percent of transcriptions in terms of
keys (top), meters (middle), and number of tokens (bot-
tom).

polska because of the 16th notes”, “like triplet Polska, very
occupied with G”. When asked to find an example of a re-
ally good and a really bad transcription, both choices come
from the generated material. Two of these are shown in
Figs. 4 and 5.

For transcriptions generated byLF+S , Misgeld comments
that many generated tunes are “strange”, in one form or
another, e.g., “strange jump”, “strange note”, “strange [in
general]”, and “strange rhythm”. At the same time he felt
transcriptions by this model were the most convincing. Our
later analysis of the transcriptions generated by this model
reveals it to be plagiarizing, which could explain Misgeld’s
observation.

For the collection generated by GF50, Misgeld notes the
transcriptions seem longer and more varied in structure.
While he only gave specific comments on four transcrip-
tions, two of which were generated, he notes that the gener-
ated transcriptions contain unusual chromaticism, no clo-
sure in rhythm, too many notes in a bar, and strange rhyth-
mic patterns.

When asked for observations about all three models, and
about the exercise, Misgeld said that “it’s interesting, ...it
makes you curious how these models work.”, “The gen-
erated tunes appear to have too many ideas”, “no strong
motif”, “not enough repetition and variation”, and “funny
endings”. He later explained that traditional tunes often
have simple and clear ideas, which assists the oral trans-
mission of the tradition.
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Figure 4. A tune generated by LS+F50 for which the expert commented, “Seems real, natural ending, repeated with a 4+6
structure”.

4
3

Figure 5. A tune generated by LS+F50 for which the expert commented, “Fragmented, unexpected. Not real.”

4.3 Exercise with folk music students

One of the authors (Sturm) was invited to give a work-
shop about AI and music to interested students of a folk
music school in Bollnäs, Sweden. During one hour of
the workshop, two groups of students were given differ-
ent transcriptions and told to label each one as real or fake.
Among the ten transcriptions given to each group, six were
randomly generated by LS+F50 , and four were randomly se-
lected from the FolkWiki dataset. Points were awarded to
each group based on the following: 2 points for each real
transcription identified as real; 1 point for each fake tran-
scription identified as fake; -1 point for each real transcrip-
tion misidentified as fake; and -2 points for each fake tran-
scription misidentified as real. The musicians were told
they could also play the melodies as part of the evaluation.

One group decided to label everything as fake, and so re-
ceived a total of 2 points. The other group was more delib-
erate, identified all real transcriptions as real, but misiden-
tified three fake transcriptions as real, and so received a
total of 5 points. Figure 6 shows the three transcriptions
misidentified as real, which also illustrate some of the id-
iosyncrasies and weaknesses of the model. Transcription
A has a pickup to the first bar which is not accounted for,
but such a thing also occurs in the training data. That tran-
scription A is so short added to the uncertainty of the stu-
dents, as well as the lack of strong relationship between
the two parts. Transcription B has a similar weak connec-
tion between the parts, but the first part is persuasive. The

students noticed the second part becomes somewhat stuck
on E minor, but they felt it could be due to someone try-
ing to be clever. The students felt transcription C could
be fake, but also felt the relationship between its two parts
was good.

Figure 7 shows the three fake transcriptions the students
identified correctly. The students noted nothing was espe-
cially wrong in these transcriptions. They called transcrip-
tion E ‘quirky’, but noted the ending of both parts does
not make sense. They also noted that the second part of
transcription F feels stuck.

5. DISCUSSION

By comparing some of the descriptive statistics of collec-
tions of transcriptions, real and generated, we can see that
the models have learned some aspects of the transcriptions
of Scandinavian music. We find that the LSTM models
provide a better fit to the data than GRU models, with the
latter creating on average longer transcriptions. Our semi-
structured interview with an expert of Swedish folk music
shows many more details about the success and failure of
our models. The expert identified several characteristics of
the generated transcriptions, e.g., that they seem to be un-
focused, to have too many ideas, but that some can be quite
plausible. Transcriptions produced by the LSTM model
trained without dropout were the most convincing, but this
is likely due to the fact that the model was plagiarizing
large amounts of the training data. The expert also noted
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Figure 6. Three transcriptions generated by LS+F50 that students assessed as being real.

that the transcriptions generated by the GRU model were
more modern and “adventurous” than the others, but not as
plausible. Conducting an exercise with students of Scan-
dinavian folk music provided other observations about the
transcriptions, and how one may think about a melody be-
ing good or not. One observation was that some of the gen-
erated transcriptions do not end on the tonic. This could be
due to the fact that in creating our dataset we separated
multivoice transcriptions into multiple single-voice tran-
scriptions, In such a case, the harmonizing voice becomes
a melody which often ends on the third.

6. CONCLUSIONS

We have shown that deep recurrent networks can generate
music transcriptions that share characteristics with those
of Scandinavian folk music. Even though our dataset is
about one-sixth the size of the dataset used to train previous
models of Irish traditional music [1], we have shown that

the two datasets can be combined to pretrain a network,
and then fine tune the network on the smaller Scandinavian
music dataset to generate convincing transcriptions.
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ABSTRACT

We present a model to express preferences on rhythmic 
structure, based on probabilistic context-free grammars, 
and a procedure that learns the grammars probabilities from 
a dataset of scores or quantized MIDI files. The model 
formally defines rules related to rhythmic subdivisions and 
durations that are in general given in an informal language. 
Rules preference is then specified with probability values. 
One targeted application is the aggregation of rules proba-
bilities to qualify an entire rhythm, for tasks like automatic 
music generation and music transcription. The paper also 
reports an application of this approach on two datasets.

1. INTRODUCTION

In the context of music notation, rhythm is commonly mod-
eled as a recursive subdivision of a temporal space orga-
nized in measures, beats and sub-beats. This naturally 
gives rise to a representation based on hierarchical struc-
tures (aka Rhythm Trees [1]). Moreover, this subdivision 
involves, at each level, choices based on the context (in 
particular the current metre) and on a long-established tra-
dition of best practices. They can be expressed as rules 
such as the notation convention “beam the notes in or-
der to highlight the beat position” [2]. Those rules (there 
are countless) express preferences on rhythm with differ-
ent purposes (e.g. reduce complexity, improve readability, 
etc.), but remains at an informal level and their application 
is crafted in both the core of engraving software, and the 
expertise of their human users.

In the present paper we propose a formal framework to 
express these rules in a computational context that enables 
an automatic determination of rhythm structures. Our model 
is based on Probabilistic Context Free Grammars (PCFG), 
where production rules and attached weight values spec-
ify rhythmic subdivisions in a way that is both formal and 
close to the musical intuition. Parse trees, representing 
the grammars’ computations, also represent Rhythm Trees 
(hence score structure).

A PCFG acts as a model replacing informal notation rules. 
One could manually define such a model, but one can also 
learn this model, as soon as we dispose of a large enough, 
high quality training set (of parse trees).

Copyright: c© 2019 Francesco Foscarin et al. This is 

an open-access article distributed under the terms of the 
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Figure 1. PCFG training from sequences of musical events.

An immediate thought is to base the learning step on the
many corpora of existing (quantized) MIDI files or even
digital scores. This gives rise however to an important is-
sue: these datasets provide sequences of quantized events,
but there is no direct mean to obtain the hierarchical struc-
tures (rhythm trees) that are necessary for learning a gram-
mar. In the case of MIDI input, the rhythmic representa-
tion is simply missing (MIDI input). XML-based format
such as MusicXML or MEI seem more suitable. However
their hierarchical structure is not directly used for encod-
ing rhythmic trees which makes their extraction unreliable.
Moreover, there exists many ways to encode with these for-
mats a same input, and this gives rise to ambiguities when
it comes to identify a normalized rhythm representation.

In order to overcome this limitation, we propose to pro-
duce automatically training sets from collection of quan-
tized input. Since there exists many possible rhythm trees
that can be built from a single dataset entry, we need a deci-
sion guidelines to determine a unique candidate tree. Our
decision method is based on the assumption that the the
best rhythmic representation is the one that maximize the
notation readability. This assumption is supported by the
analysis of music notation conventions, and corresponds to
the intuition that the purpose of a notation language is to
obtain a concise, accurate and readable representation of
the noted content. The main goal of the present paper is to
develop an algorithm for training set production based on
this assumption, and to validate it on a set of representative
datasets.

The production algorithm relies on the definition of a tree
minimization criteria, and explores the space of solutions
trees that correctly represent a sequence input in order to
find the minimal one with respect to this criteria. Given
a dataset of sequences, we then apply the algorithm to
produce the corresponding training set of minimal rhythm
trees, and then carry out maximum likelihood estimation
in order to obtain the PCFG (Figure 1).

Finally, we validate our method by running our training
algorithm on a set of representative corpus, checking that
the obtained PCFG is consistent with best music notation
practices. Our results confirm that the best tree decision
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method based on tree minimization is a reliable compu-
tational method to produce PCFG that would, otherwise,
have to be manually defined.

We believe that our methodology is important for several
reasons. First, PCFGs are quite useful for music transcrip-
tion. In a companion paper [3] we describe an algorithm
that takes as input a non-quantized sequence of musical
events (e.g., a human performance of some music work,
with micro-rhythmic deviations) and relies on a PCFGs
to produce a music score. Note, that a PCFG is, in this
regard, more powerful than the tree-minimization method
mentioned above that only operates on quantized inputs.
Another common application for PCFGs is music genera-
tion [4]. More generally, disposing of a language model is
useful to measure in which extent this model is a reliable
representation of the actual language used in a corpus. In
concrete terms, it can be used for instance to evaluate the
quality of an existing notation, or to detect outliers in a
corpus (e.g., scores of MIDI files that present an unusual
rhythm). In general, we consider that this constitutes a
quite useful analytic tool to make sense of sequential inputs
that can be structured, quantified, explored and compared.

Lastly, the necessity of having a good grammar is fun-
damental to all the applications cited above. The tech-
nique presented in this paper allows to automatically build
a grammar from a large dataset of scores or MIDI files,
avoiding the manual building, a process that is very time
consuming and is error prone.

To summarize, the paper: (1) uses PCFGs as a formaliza-
tion of rhythm notation rules (Section 3), (2) learns PCFGs
from datasets of music events sequences, producing train-
ing sets thanks to a complexity minimization criteria, (Sec-
tion 4) and (3) validates that the resulting PCFGs trained
on a dataset indeed accurately capture the best practices es-
tablished in music notation (Section 5). We begin by Sec-
tion 2 that briefly reviews some of the current works that
use trees and grammar to work with rhythm and conclude
with Section 6.

2. STATE OF THE ART

Many works in the literature rely on linear models (e.g., n-
grams) that apply to the sequential flow of music events [5].

Another category, more suited to represent the hierar-
chical structure of rhythm notation, are models based on
trees and grammars. Starting from the Generative The-
ory of Tonal Music by Lerdahl & Jackendoff [6], those
models have been successfully explored for rhythmic nota-
tion processing and evaluation [1,7,8], meter detection [9],
melodic search [10] and music analysis [11–14].

In [10], probabilistic tree automata (PTA) learning tech-
niques are used for symbolic melody recognition. More
precisely, given one melody M represented as a melodic
tree (a structure similar to our parse trees), a PTA AM is
computed, so that, when given another melody M , AM
will return the probability that M is a cover (or a varia-
tion, or a plagia) of M . Therefore, although the objectives
of [10] differ from ours, a dataset of melodic trees was
needed in this work. However, this dataset is small, and

can be constructed manually since, by definition, only 1
melody is needed in order to train 1 automaton.

In [15,16], a notation of rhythm languages defined by for-
mal context-free grammars is proposed in order to fix the
kinds of rhythmic notation to consider using declarative
rules. In [3], we propose techniques based on weighted
context-free grammars for automatic rhythm transcription,
but the grammar is assumed given and no details are given
about the procedure to construct it. In this paper we start
from the same settings but we focus on the grammar cre-
ation, using results for context-free-grammars presented
in [17] to obtain a model that can be trained on a dataset.

3. MODEL SPECIFICATION

Probabilistic Context-Free Grammars (PCFGs) extend CF
grammars with rule probabilities. Computations of PCFGs
are conveniently represented as hierarchical structures called
parse trees. As observed in several papers, such tree struc-
ture are natural representations of common Western nota-
tion for rhythms, as they reflect structural nested decom-
position of measures into beats.

3.1 Context Free Grammars for Rhythm

A PCFG is a tuple G = 〈Q, qinit, R〉 where (i) Q is a
finite set of non-terminal symbols (nt), denoted q0, q1. . . ,
(ii) qinit ∈ Q is a starting non-terminal, and (iii) R is a
finite set of weighted production rules of one of the two
following types, where w is a weight value in [0, 1]:

(k−div) q0 −−→w q1 . . . qk with q0, . . . , qk ∈ Q and k > 1,

(leaf) q0 −−→w n with q0 ∈ Q and n ∈ N,

such that for all q0 ∈ Q,
∑

q0−→w α∈R
w = 1 (where α stands

for q1, . . . , qk ∈ Q or n ∈ N). The nt q0 is called the head
of both above rules.
A production rule (k−div) describes the division of a time
interval into parts of same length, e.g. the division of a
quarter note into 2 eight notes (for k = 2) or into a triplet
(for k = 3). The recursive application of (k−div) rules
represents nested divisions. A (leaf) rule expresses that
the time interval I reached in nt q0 contains n events, all
aligned at the left bound of I . When n > 1, it means
that we have n − 1 grace notes, of theoretical duration 0,
followed by one note spanning over I . When n = 0, I
is called a continuation, and its function is similar to that
of a tie or a dot in music notation. Continuations are a
fundamental concept in our model, since they practically
allow us to split a note in multiple parts that span multiple
terminal symbols.
The weight of nested divisions and event alignments is the
product of the weights of all the rules involved.

Example 1. Let us consider the PCFG in Table 1. Apply-
ing the rule ρ1 to [0, 1[ results in two sub-intervals [0, 12 [
and [ 12 , 1[, and both of them can be processed with any rule
with head q 1

2
. Assume that we apply ρ11 to the first sub-

interval and ρ3 to the second one, which is then divided
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into [ 12 ,
3
4 [ and [ 34 , 1[. Then, we apply respectively ρ16 and

ρ17 to the latter two sub-sub-intervals of length 1
4 . The

above rule applications result in the division of the ini-
tial interval [0, 1[ into a partition made of [0, 12 [, [

1
2 ,

3
4 [ and

[ 34 , 1[. The first part contains a single event, at time 0, the
second is a continuation (of the first event), and the last part
contains a single event, at time 3

4 . Hence the above com-
putation describes the rhythm represented in Figure 2.b.

Following our focus on rhythmic notation, the rules of
type (leaf) only care about numbers of musical events, and
contain no information about the events themselves, like
pitch values, or the nature of events (note or chord). For
a representation of melodies, one could replace the natural
numbers in (leaf) rules by terminal symbols in some al-
phabet appropriate to the representation of musical events.

3.2 Parse Trees

We formalize the computations of a PCFG G = 〈Q, qinit, R〉
with the notion of parse tree, which is a tree t labeled with
rules of R, such that: every inner node of t is labeled by
a (k−div) rule, every leaf of t is labeled by (leaf) rules,
and if an inner node η is labeled by ρ = q0 −−→w q1 . . . qk,
then it has exactly k subtrees t1,. . . , tk whose respective
roots have heads q1, . . . qk. The subtree of t with root η
is then denoted by ρ(t1, . . . , tk). The weight weight(t)
of a parse tree t is the product of the weights of all the
transitions labeling its nodes. It is defined recursively by
weight

(
ρ(t1, . . . , tk)

)
= w ×∏k

i=1 weight(ti) when ρ is
q0 −−→w q1 . . . qk and weight(ρ0) = w for ρ0 = q0 −−→w n.

Example 2. The parse tree corresponding to the computa-
tion described in Example 1 is depicted in Figure 2.a.

3.3 Timelines and Parse Tree Serialization

We consider in the following time-points expressed in frac-
tion of 1 measure (a rational value). A timeline ` = 〈I, σ〉
is the representation of a sequence of events made of a left-
open time interval I = [p, p′[ called carrier of ` and a se-
quence σ of time-points inside I . We assume that σ is in-
creasing but not strictly increasing (i.e. it may contain rep-
etitions). Also, the first event in σ may be distinct from the
left bound p of I . In this case (and also when σ is empty), it
means that ` starts with a continuation. The concatenation
of two timelines `1 = 〈[p1, p′1[, σ1〉 and `2 = 〈[p2, p′2[, σ2〉
such that p2 = p′1 is a timeline ` = 〈[p1, p′2[, σ〉 where σ is
the concatenation of σ1 with σ2.

We associate to every parse tree t of a PCFG G and time
interval I a timeline denoted ‖t‖I and defined by:
‖ρ0‖[p,p′[ = 〈[p, p′[, (p, . . . , p︸ ︷︷ ︸

n

)〉 for ρ0 = q0
w−→ n, and

‖ρ(t1, . . . , tk)‖I is the concatenation of the timelines ‖t1‖I1 ,
. . . , ‖tk‖Ik , for ρ = q0 −−→w q1 . . . qk, and where I1, . . . , Ik
is a partition of I into k sub-intervals of equal duration.

Example 3. The parse tree t = ρ1
(
ρ11, ρ3(ρ16, ρ17)

)
of

Figure 2.a is associated, for the time interval [0, 1[, the
timeline represented in Figure 2.b, computed as follows

Figure 2. A parse tree (a), the respective music notation
given a metric of 1

4 (b) and timeline given an interval [0, 1[
(c). The leaf representing a cont is highlighted in yellow.
Note that due to the cont , the timeline has 2 events, even
if the parse tree has 3 leaves.

(the operator + denotes timeline concatenation):

‖t‖[0,1[ = ‖ρ11‖[0, 12 [ + ‖ρ3(ρ16, ρ17)‖[ 12 ,1[
= ‖ρ11‖[0, 12 [ + ‖ρ16‖[ 12 , 34 [ + ‖ρ17‖[ 34 ,1[
= 〈[0, 12 [, (0)〉 + 〈[ 12 , 34 [, ( )〉 + 〈[ 34 , 1[, ( 34 )〉
= 〈[0, 1[, (0, 34 )〉.

We say that a parse tree t yields a timeline ` = 〈I, σ〉
iff ‖t‖I = `. Therefore every parse tree t of a PCFG G
yields an organization ‖tk‖I of events in time and also a
grouping structure for these events. In other terms, t is a
consistent representation of music events with respect to
the notation defined by G, and given a time signature, a
music score can be constructed from it (Figure 2). We call
this process score production. Differently from the serial-
ization process, the continuations remain in the final result
of the score production.

A parse tree can be used to represent an entire score or
part of it. In this paper we represent each measure of a
score with a different parse tree, i.e. the timeline produced
by the serialization of a parse tree will represent a single
measure. To summarize, we use parse trees as a model for
both rhythmic structure and rhythmic notation.

4. MODEL TRAINING

We consider the problem of computing weight values in
the rules of a PCFG from a dataset made of timelines.
Approaches based on maximum likelihood estimator [17]
permit to obtain such weights from a training set made of
parse trees. Therefore, in order to apply such approaches
(in Section 4.2), we need to convert datasets of timelines
into training sets containing parse trees (Section 4.1).

4.1 Training Set Construction from a Score Corpus

As mentioned in the introduction we produce a training set
of parse trees from a dataset of monophonic sequences ex-
tracted from a corpus of scores. This applies to a wide
range of input scores, from (quantized) MIDI files to XML
scores. In the latter case, one could potentially benefit from
the grouping elements (beaming and tuplets) in the music
notation, but this information calls for high-quality corpora
where the notation complies to the best practices. Our ap-
proach holds independently from such assumptions.
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Figure 3. Three different trees for the same timeline. The
terminal rules corresponding to a a continuation are high-
lighted in yellow.

From each score (or MIDI file) in the corpus, each part in
the score, each voice in the part, and each measure in the
voice, we extract a timeline (of carrier [0, 1[) from the list
of event durations. We use this datasetD of extracted time-
lines as input to build parse trees. The resulting set of parse
trees is the training set T used for learning a grammar.

Let us assume given an acyclic grammar G = 〈Q, qinit, R〉
whose weight are initially unknown (we call such G un-
weighted).

We produce for each timeline ` ∈ D one parse tree t of G
such that ‖t‖[0,1[ = `, called the representative of ` in the
training set. Since there exists several possible parse trees,
we need a criteria to choose a unique representative.

We choose the tree t with a minimum number of leaves.
This choice makes sense both from a computational and
from a musical point of view. In fact, we prefer that the
scores produced by G not to be crowded with useless notes
and ties. Later in Section 5.3 we will show that the re-
sults obtained with the above criteria are coherent with
some common recommendations for rhythm notation. It
means that the trained PCFG will be suited to represent

both rhythm and rhythm notation wrt such recommenda-
tions.

The following function rep returns for a nt q ∈ Q and a
timeline ` = 〈I, σ〉, a parse tree t of G, with root headed
by q, yielding `, and with a minimal number of leaves. In
the definition of rep, the min of a set T of trees is the tree
with a minimum number of leaves. This min is undefined
when T is empty or contains at least two trees with a min-
imum number of leaves.

If σ is empty or all points of σ coincide with the left
bound of I , then

rep(q0, `) = ρ0 (1)

where ρ0 = q0 → |σ|, if ρ0 ∈ R, or else rep(q0, `) is
undefined. For the other cases of σ,

rep(q, `) =

min
ρ=q→(q1,··· ,qk)

(
ρ
(
rep(q1, `1), . . . , rep(qk, `k)

))
(2)

where `1, . . . , `k is the partition of ` into k timelines of
equal duration.

Example 4. Let us present some steps of the computation
of rep for the grammar in Table 1 (forgetting the weight
values), and the timeline ` = 〈[0, 1[, (0, 34 )〉 of Figure 2.

rep(q1, `) = min





ρ1
(
rep(q 1

2
, `2,1), rep(q 1

2
, `2,2)

)
,

ρ2
(
rep(q 1

3
, `3,1), rep(q 1

3
, `3,2),

rep(q 1
3
, `3,3)

)

where

`2,1 = 〈[0, 12 [, (0)〉, `2,2 = 〈[ 12 , 1[, ( 34 )〉,
`3,1 = 〈[0, 13 [, (0)〉, `3,2 = 〈[ 13 , 23 [, ( )〉,
`3,3 = 〈[ 23 , 1[, ( 34 )〉.

Following (1), rep(q 1
2
, `2,1) = ρ11, rep(q 1

3
, `3,1) = ρ14,

and rep(q 1
3
, `3,2) = ρ13. For rep(q 1

2
, `2,2) and rep(q 1

3
, `3,3),

more computation steps are needed.

The function rep can be implemented efficiently with Dy-
namic Programming through a tabulation procedure simi-
lar to the CYK parsing algorithm [18].

The representative of a 1-measure timeline ` in the dataset
D is rep(qinit, `). It may be undefined, either because there
is no parse tree t of G yielding `, or, on the contrary, be-
cause there are more than one such parse trees of G with a
minimum number of leaves. In the first case, G is too small
to represent D and should be completed. The second case
is discussed in Section 4.2.

This simple definition of rep is correct because the func-
tion which associate to a tree its number of leaves is mono-
tonic, i.e. if ti has more leaves than t′i, then ρ(t1, . . . , ti, . . . , tk)
has more leaves than ρ(t1, . . . , t′i, . . . , tk). It follows that
we can build a best representative t for a timeline ` (wrt
this criteria) from best representative for sub-timelines of `
(which are sub-trees of t).
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Figure 4. Two trees yielding the same timeline and corresp.
notation in time signature 3

4 or 6
8 . Both have a minimal

number of leaves 6 and we cannot choose a representative
between them.

4.2 Computation of Grammar’s Weights

Let T be our training set of parse trees. We then compute
the weight values for the rules G with a Maximum Likeli-
hood Estimator [17]. For a rule ρ = q0 → α, where α
is either q1, . . . , qk or n ∈ N, let CT (ρ) be the number of
occurrences of ρ in the trees of T . The weight value for

the rule ρ is then defined as CT (ρ)∑

q0→β∈R
CT (q0 → β)

.

One can check that the grammar G′ defined from G with
these weight values is a PCFG, according to the definition
in Section 3.1 (see [17]).

Given a timeline ` ∈ D, it may happen that its representa-
tive is undefined because there is more than one parse tree
yielding ` with minimum number of leaves, see the exam-
ple in Figure 4. In this case, it is not possible to choose a
unique representative, and we will initially discard such `.
However, those timelines may contains useful information,
and we propose the following two step procedure:

1. compute the training set T like in in Section 4.1, using
only the timelines of D with a defined (unique) represen-
tative, and define weight values for G from T as above,
resulting in a PCFG G′.

2. for every timeline ` ∈ D discarded at step 1, compute
a representative t which is a parse tree of G′ build with a
modification of the function of Section 4.1 where the min
wrt the number of leaves of t is replaced by the max of
weight(t). Compute new weight values with these repre-
sentatives, resulting in a new PCFG G′′.

5. IMPLEMENTATION

In this section we first propose two different families of un-
weighted acyclic grammars acting as input to the construc-
tion of Section 4, then we present the result of the grammar
learning algorithm from some score corpora along with
some consideration from a musical perspective.

ρ1 : q1
0.6−−→ 〈q 1

2
, q 1

2
〉, ρ2 : q1

0.2−−→ 〈q 1
3
, q 1

3
, q 1

3
〉

ρ3 : q 1
2

0.1−−→ 〈q 1
4
, q 1

4
〉, ρ4 : q 1

2

0.7−−→ 〈q 1
6
, q 1

6
, q 1

6
〉

ρ5 : q 1
3

0.6−−→ 〈q 1
6
, q 1

6
〉, ρ6 : q 1

3

0.3−−→ 〈q 1
9
, q 1

9
, q 1

9
〉

ρ7 : q1
0.05−−→ 0, ρ8 : q1

0.1−−→ 1, ρ9 : q1
0.05−−→ 2

ρ10 : q 1
2

0−→ 0, ρ11 : q 1
2

0.1−−→ 1, ρ12 : q 1
2

0.1−−→ 2

ρ13 : q 1
3

0.05−−→ 0, ρ14 : q 1
3

0.05−−→ 1, ρ15 : q 1
3

0.0−−→ 2

ρ16 : q 1
4

0.1−−→ 0, ρ17 : q 1
4

0.8−−→ 1, ρ18 : q 1
4

0.1−−→ 2

ρ19 : q 1
6

0.3−−→ 0, ρ20 : q 1
6

0.7−−→ 1, ρ21 : q 1
6

0−→ 2

ρ22 : q 1
9

0.5−−→ 0, ρ23 : q 1
9

0.3−−→ 1, ρ24 : q 1
9

0.2−−→ 2

Table 1. An example of grammar with Kmax = 3,
Dmax = 2 and gnmax = 2. Rules 1 to 9 are k−div rules
and from 10 to 24 they are leaf rules.

5.1 Use-Cases of Unweighted Grammar

In theory, the learned grammar (the one given to the learn-
ing step, composed of rules without weights) must be as
complete as possible. However, for practical reasons and
in particular the size of a grammar that would represent all
possible rules, we need to adopt some restrictions. In our
implementation, we chose to:

1. allow k−div rules only with k prime number, up to
a prime number Kmax. Other k − split can be ob-
tained by sequential splits by the prime-number fac-
tors of k, e.g. to represent a 6-tuplet, we split by 2
and 3.

2. allow sequential rule application up to a maximum
depth Dmax, e.g. with Dmax = 2 we can split an
interval in k sub-interval, recursively split each one
of them and then stop the recursion.

3. allow only gnmax events in a interval, i.e. gnmax−1
grace-notes and one general-note.

The following are examples of practical PCFGs that re-
spect these choices.

Example 5. A first possibility (see Table 1) is to define
on rules that do not distinguish intervals of equal size in a
measure, whatever their position . Thus, [0, 12 [ and [ 12 , 1[
are represented by the same non terminal q 1

2
. Each non

terminal symbol represents a time interval of a specific du-
ration, and the terminals productions specify how many
events are contained in that interval (aligned to the left
boundary). Given the grammar of Table 1 an informal no-
tational rule for a 6

8 metric like: “prefer to divide in 2 parts
at measure level and subsequently in 3 parts” will trans-
late in our framework in weight(ρ1) ≥ weight(ρ2) and
weight(ρ4) ≥ weight(ρ3).

The grammar above is reduced in size, but does not allow
for fine-grained distinction of rules based on the position
of an interval in a measure, e.g., starting on a strong beat
or not. Another possibility is given below.
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Example 6. Another possibility is to use a larger set of
non-terminal symbols that can distinguish intervals both on
the level of recursion and on the horizontal position. For
instance, the first half of a measure can be treated differ-
ently from the second half, or grace notes (in (leaf) rules)
can be allowed for the first note of a tuplet and forbidden
for the others. It allows to formally represent rules such as:
“Prefer to have longer notes on stronger beats” (given that
the time intervals that correspond to “stronger beats” are
known), by assigning a higher probability to a leaf rule in
those intervals and a higher probability of a k−div rule to
the other intervals at the same level.

5.2 Score Corpora and Datasets

We trained the two grammars presented in the above sec-
tion with the 1-measure timelines extracted from two cor-
pora of scores: Music21 corpus 1 and Enhanced Wikifonia
Leadsheet Dataset (EWLD) dataset [19]. We could com-
pute grammars for the whole dataset but there exist subsets
of scores sharing some common properties that are likely
to yield more consistent grammars if they are processed
independently. One such property is for instance the time
signature. Other possible groups could be inferred by style,
tempo marking and author, depending of the level of pre-
cision that is required. We chose to divide our datasets in
four subsets defined by the following time signatures: 4

4 ,
3
4 , 6

8 , 12
8 . The number of scores for each group is reported

in Table 2.
Within each score, we performed a simple operation of

data cleaning, deleting the measure whose events durations
did not sum to the correct duration given by the signature
(i.e. pickup measures), final measures or incorrectly no-
tated measures.

5.3 Trained PCFG from a Notational Point of View

In this section we analyze the result of the training step
from a musical point of view in order to show that the crite-
ria that we used to build unique parse trees from durations
(Section 4.1) is coherent with music notation conventions.

From music general conventions [2] we know that dif-
ferent time signatures have different grouping preferences
in order to expose the beat (e.g. points were stronger ac-
cent are placed). It is interesting to notice that there is an
high correlation between the probabilities learned for our
grammar (the grammar of the Example 5 is sufficient for
this analysis) and the divisions suggested by music nota-
tion (Table 3).

For example, music conventions state that a 3
4 measure

should be divided first in 3 parts (3 quarter notes); We can
translate this rules in a grammar-form assigning a higher
probability to the 3−div of a measure (with respect to other
k−div at measure level). Looking at the trees that we pro-
duced from the 3

4 measures (with the algorithm in Sec-
tion 4.1), we notice that this notation convention is re-
spected, since our trees have a 3−div at measure level in
82% of the cases.

1 http://web.mit.edu/music21/doc/about/
referenceCorpus.html

Our criteria to find the smallest tree (minimization of yield),
allows us to build trees that are coherent with notation con-
vention; therefore our model make sense to express rules
about both rhythmic structure and rhythmic notation. From
another point of view we can say that our criteria of min-
imizing the leaves generates results similar to that of an
expert engraver who aims at making the notation as read-
able as possible.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a model of rhythm structure
based on context-free-grammars and a way to learn it from
a dataset of scores, addressing the problem of the gener-
ation of a training set of trees.We show that our model
makes sense both from rhythm structure point of view than
from a rhythmic notation point of view, comparing the fre-
quency of the divisions in our model, with suggested divi-
sions in music notation.

The complete implementation 2 of the grammar genera-
tion and learning is made in python and C++. The system
is also partially implemented in the online digital score li-
brary NEUMA, in order to learn grammars from the corpus
of scores online.

With big grammars (particularly with the complete gram-
mar), we still have the problems of sparsity, i.e. we have
lots of zeros in the final results. The best solution would
be to have a bigger dataset, but alternatively the typical
approach is to use a smoothing technique. However we
would need to think carefully how to apply the smooth-
ing in order to add probabilities to rare rules in a way that
makes sense from a musical perspective.

The next objective is to test those grammar in a music
transcription algorithm from a MIDI performance, in order
to retrieve at the same time the quantized performance and
the relative score.
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