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ABSTRACT

In a common music practice scenario a player works with
a musical score, but may jump arbitrarily from one passage
to another in order to drill on difficult technical challenges
or pursue some other agenda requiring non-linear move-
ment through the score. In this work we treat the associ-
ated score alignment problem in which we seek to align a
known symbolic score to audio of the musician’s practice
session, identifying all “do-overs” and jumps. The result
of this effort facilitates a quantitative view of a practice
session, allowing feedback on coverage, tempo, tuning,
rhythm, and other aspects of practice. If computationally
feasible we would prefer a globally optimal dynamic pro-
gramming search strategy; however, we find such schemes
only barely computationally feasible in the cases we inves-
tigate. Therefore, we develop a computationally efficient
off-line algorithm suitable for practical application. We
present examples analyzing unsupervised and unscripted
practice sessions on clarinet, piano and viola, providing
numerical evaluation of our score-alignment results on hand-
labeled ground-truth audio data, as well as more subjective
and easy-to-interpret visualizations of the results.

1. INTRODUCTION
1.1 Problem Description

Score alignment finds a correspondence between a sym-
bolic representation of a musical score and an associated
audio performance, identifying the positions of all note on-
sets. The subject was introduced through the early musical
accompaniment systems of Dannenberg and Vercoe [1, 2],
while notable contributions include [3—13]. Cuvillier [3]
provides a thorough review on score alignment. This pa-
per deals with a variation of the traditional score alignment
problem: instead of aligning a performance, we align the
audio of a music practice session of a given score, where
the player is allowed to skip from one score location to
another in an arbitrary fashion. Such a score-alignment
problem is also called score-alignment-with-skips, drop-
ping the constraint of linear movement in the score while
playing.

Traditional score alignment is typically partitioned into

two varieties: on-line and off-line. On-line recognition
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is appropriate for applications in which the audio source
must be understood in real-time, such as musical accom-
paniment systems, automatic page-turners, or approaches
that coordinate the display of supertitles for opera. Off-line
recognition is appropriate for score alignment applications
without a real-time component, such as note-level editing
of an audio performance, quantitative analysis of musical
performance from a stylistic viewpoint, or the automatic
generation of large sample libraries from recordings.

In this effort, we treat the off-line recognition of a music
practice session. In particular, we target typical instrumen-
tal practice, which usually involves a large degree of repe-
tition with particular attention directed toward challenging
passages, as well as frequently inaccurate playing. The
score-alignment-with-skips problem can enable a number
of meaningful applications, as follows.

1.2 Applications

Off-line score-alignment-with-skips allows the development
of useful tools that provide a high-level view of a practice
session. Our experiments present a fledgling version of
such a tool, facilitating efficient navigation through a prac-
tice session while coordinating the audio and visual display
of the score. We believe the understanding provided by
such a tool is far superior to that gained by simply listening
to a practice recording, and is particularly important to mu-
sicians working to develop effective practice techniques.
Interacting with such a tool implicitly answers a variety
of useful questions, such as how much time was spent on
a particular passage, or what was the typical length of a
repeated fragment. The underlying analysis also enables
additional feedback about tuning, tempo and rhythm, pro-
viding a deeper level of pedagogical feedback. For exam-
ple, most wind players will have particular notes that are
consistently flat or sharp, while such global tuning char-
acteristics could easily be computed from the results of
our proposed score alignment. Another example would
be identifying a common problem of the student learner
— unconsciously reducing the tempo when technical dif-
ficulties are encountered. Perhaps one could even develop
measures of improvement over the course of a sequence of
practice sessions.

Tools that facilitate navigating a practice session efficiently,
perhaps including useful summaries of the session, offer
particularly engaging possibilities for the music teacher
as well. Many teachers experience the interval between
lessons as something of a “black box,” where divining the
difference between a student’s self-perceptions and real-
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ity can be a challenge. Currently, the closest we can get
to practice intervention is to directly observe practice, or
to have students submit recordings of their practice, both
of which are linear, and in real time. If a teacher were
able to view a high-level representation of practice over the
course of a week, he or she could intervene and correct the
students at a new and productive level of granularity, with
reference to a concrete analysis of practice over time.

The score-alignment-with-skips variant has an on-line ver-
sion as well, untreated here, though discussed in Naka-
mura et al. [6]. Such technology would be appropriate
for a system that interacts with a musician during prac-
tice. For instance, after having identified the section that
is currently being rehearsed, a system may provide an ac-
companiment that follows and supports the player. Fertile
possibilities also exist for musical tutoring systems. For
instance, at any time during a practice session we may add
a metronome whose rate and phase initially synchronize
with the live player, proceeding either deterministically or
in an adaptive manner. We may also periodically suggest
interventions over the course of the session, such as slow
practice, or directing the subject’s attention toward unmet
challenges.

1.3 Related Work

One version of the score-alignment-with-skips problem is
treated by Miiller and Appelt [13], where the authors seek
to compare different versions of a piece of music, perhaps
with different choices of repeats, though with a preference
for matching long sections of the two audio recordings, un-
like what would be encountered with instrumental practice.

More recently, Nakamura [6] treats a version more ori-
ented to our vision of practice analysis. This method per-
forms online analysis by computing the filtered distribu-
tion without approximation through the usual “forward”
iteration. With this approach, as with globally optimal dy-
namic programming computation of the most likely path,
the computation is O(N.S), where N is the length of the
data and S is the number of notes in the score. Nakamura
observes that their algorithm is feasible in real time; how-
ever, from the computational complexity one can see that
this depends on the particular score chosen. We imagine
practice scenarios where the “score” might be a concatena-
tion of all the scores in a player’s library, thus nearly ruling
out globally optimal approaches with no approximation.
Furthermore, we expect that a more fine-grained approach
will increase the number of states that must be devoted to
each score note. For these reasons we pursue approaches
that relax the guarantee of global optimality in exchange
for both computational efficiency and extensibility to more
complex graph topologies.

In our experiments we don’t see a way to make direct
comparisons with these approaches as Nakamura’s work
is on the filtering problem, thus not appropriate the off-line
score alignment problem, while Miiller considers a version
of the problem that is far more constrained, thus not work-
able for kind of unconstrained practice considered in our
experiments.

In what follows we explicitly describe our score align-

ment methodology. In addition, we present results on about
two hours’ worth of audio data on clarinet, viola and piano
(polyphonic), collected from various members of the Ja-
cobs School of Music at Indiana University, both in numer-
ical fashion and through our audio-visual “practice browser.”

2. MODELING

In this section, we first describe a hidden Markov model
for the score alignment problem, which serves as the foun-
dation of our approach to the score-alignment-with-skips
problem. Then, we explain the motivations behind our ap-
proach. Lastly, we explain using a pitch tree and beam
search to accommodate the computation burden.

2.1 HMM for Score Alignment

Score alignment has been cast as a hidden Markov model
(HMM) problem by several authors [3, 5, 6,9, 12]. Here,
we use the framework in [9].

As the HMM views time as discrete, we model time as a
sequence of “frames” of about 30 ms. in length. We denote
the hidden Markov chain as X = X1,..., Xy where N is
the number of frames in the audio excerpt, and X, is the
hidden state associated with the nth frame, taking values
in a state graph. A simple construction of the state graph
models the kth note as a chain of states, si. 1,..., Sk M,
where M is the maximum length of the kth note, in frames.
Figure 1 shows a topology where each state, sy, ,,, either
connects to s m+1, the next state of the same note, or to
Sk+1,1, the first state of the next note.
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Figure 1. A possible left-to-right graph topology for score
alignment.

2.1.1 Transition Probability

Suppose we let Q(x, ') be the transition probability ma-
trix for X, Q(z,2") = P(Xp41 = 2'| X, = z), where we
assume time homogeneity — these probabilities don’t de-
pend on n. Suppose Ly, is the random length of the kth note
and that we have some desired distribution for this length,
P(Lj, = 1), which is indicated from the music score. Since



visiting state sy, ,, means that the realization of the kth note
is at least m frames long, we have

P(Ly > m+1|Ly > m)
Zlkim+1 P(Lk = l)
S P(Li =1)

and Q(8k,m> Sk+1,1) = 1 — Q(8k,m» Sk,m+1). As Figure
1 shows, we append a start state and an end state, both
with self-loops, to the beginning and end of the graph as
the simple state-space model for the Markov chain, X . For
longer notes, we also allow their states to have self-loops.
This model can also be regarded as a hidden semi-Markov
model [15] if we view all the “micro states” of a note as
one super state.

Q(Sk,m7sk,m+1) -

2.1.2 Data Model

We only briefly describe the data model here because it is
not the most important part of our proposed idea — one
can easily replace our data model with a new one while
using our framework. For each frame, n, we observe a
short burst of audio data, y,,. We model the data likelihood
in terms of the normalized magnitude spectrum of y,,,

|2n (w)]
en(w) = M
> |2n (@)
forw =1,...,Q where z, is the windowed finite Fourier

transform of y,,, and 2 is the number of bins in the fre-
quency domain. We then model the data likelihood as

Q
Pl =0 = [[a@ @
w=1

where ¢, is the probability distribution over frequency we
associate with state = (the template of state x). Refer to
Raphael [16] for detailed description of this data model.

2.1.3 Inference

With our HMM in place, it is possible to compute a number
of quantities relevant to inference about the audio perfor-
mance [17]. For instance, one can compute the forward
model, giving the evolving state of knowledge on score
position, P(X,, = xp|y1.n) Where y1., = Y1,...,Yn;
P(X,, = zn|y1.nv), the state distributions given the en-
tire data y;.; or the most likely sequence of states, & =
argmax,,, v P(X = x1.n|y1.v). All of these computa-
tions use dynamic programming or dynamic-programming-
like algorithms.

2.2 Score-alignment-with-skips and Motivations

Models like the one depicted in Figure 1 assume the player
will play the score as written, from the beginning of the
excerpt to the end — the usual assumption of score align-
ment, which is appropriate for many applications, but not
reasonable for the “free practice” case at hand. In score-
alignment-with-skips, we expect that the player will play
sections of the score, perhaps repeating them numerous
times, before moving on to other sections. When a par-
ticular section is practiced, we assume the player will play

the score notes in order (just as in traditional score align-
ment), according to the notated rhythm. Therefore, we do
not wish to completely abandon the basic model of Figure
1.

In our approach, we want to allow occasional skips in
which our Markov model, X, jumps from one score po-
sition to another. In practice, the overwhelming majority
of these skips are “do overs” — cases where the player re-
peats a group of notes that are most recently played because
he or she is unsatisfied with the sound, perhaps repeating
numerous times. Therefore, small backward skips are the
most likely possibilities. However, we cannot constrain
the model to only allow such local skips, because occa-
sionally the player will shift to a completely new section
of the score, or restart from the beginning. If our model
is to be genuinely useful, it must allow for such non-local
skips as well. We extend the model of Figure 1 to allow for
score skips by adding a “hub” state that communicates in
both directions with each of the note models, as proposed
in Nakamura et al. [6]; any note can “jump” to or from this
hub state.

As discussed earlier, we believe globally optimal “full-
fledged” dynamic programming approaches, either for on-
line or offline versions of this problem don’t leave suffi-
cient headroom for exploring the space of possible graph
topologies or expanding the search space to model collec-
tions of scores the musician is studying. Thus we focus on
beam search methods — algorithms that retain a fixed-size
list of the currently-best hypotheses at each frame. Typ-
ically the beam is several hundred hypotheses in our ex-
periments. Considerations for beam search models are dif-
ferent from those for full-fledged dynamic programming,
since a hypothesis must look attractive at every stage of
the computation in order to avoid being pruned. In addi-
tion, we use a “pitch tree” to further help with computation,
as will be discussed in what follows.

2.3 Pitch Tree and Beam Search

Figure 2 introduces our global skips model which allows
the player to jump from any score location to any other
score location at any time. In the bottom of this figure,
the linear sequence of states is a compact description of
the original model of Figure 1. In this linear graph each
note has been compressed into a single state for simplic-
ity’s sake. Each of these states can either remain in the
current state, move forward in the score, or “escape” to the
“wait” state at the root of the tree in the top of the figure.
The escape probability is chosen to be small enough so that
our model is disinclined to recognize one- or two-note (su-
per short) excerpts, but still capable of identifying them. In
essence, we use the tree structure to “sort out” the player’s
score position in a computationally efficient manner when
a jump is made.

The root of the tree is a state with a self loop, modeling
the typical pause that occurs as one stops playing and re-
sumes again at a new location. Therefore, the data model
for this state is the silence model. The rest of the tree is il-
lustrated in the case of the short “toy” score represented by
the pitch sequence a, b, ¢, a, b, a,b given in Figure 2. The
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Figure 2. The global skips model in which a “pitch tree”
allows the efficient sorting out of the score location after a
jump.

possible pitches in the score are a, b and ¢, so these define
the first level of the tree. ¢ appears only once in the score
so unambiguously defines the position as score note 3. On
the other hand, b has two possible successors in the score
(be and ba), thus two children in the tree. Because each of
the children unambiguously identifies a score position (6
or 3), they terminate their branches. The construction con-
tinues in this manner until the score position is uniquely
identified.

In general, we define a tree construction as follows. Sup-
pose for now we treat a monophonic instrument, although
we generalize to polyphonic cases too in our experiments.
Let M be the distinct possible pitches that occur in the
score, expressed as the letter names {a, b, ¢} in Figure 2.
We denote the finite-length sequences of such pitches by
M*. Welet M C M* be the collection of all subsequences
of pitches, without regard for rhythm, that appear multiple
times in the score. M indexes the non-terminal nodes of
our tree: {t. : ¢ € M}. We let M denote the pitch sub-
sequences that appear only once in the score whose pre-
fixes are in M — these are the shortest sequences that
uniquely determine the score position. M) indexes the ter-
minal nodes of our tree: {t, : ¢ € My}. If ¢ € M and
¢ € M U My, with ¢ = ¢ om form € M (sequence ¢’ is
c concatenated by pitch m), then . — t./ in the tree graph
(non-terminal node ¢. has a successor node, t./). The ter-
minal nodes in the tree are really proxies for the score notes
in the linear graph. That is, if t. — t. with ¢/ € MU, then
t. really connects to the score note uniquely identified by
the string ¢/. This association is made explicit by the dot-
ted lines in Figure 2. For example, in the left branch (out
of the three branches), the second level b really connects to
score positions 6 and 3.

The purpose of the tree is efficient computation while
maintaining accuracy. After a jump is made, our data model
usually argues strongly for a small number of world of pos-
sible pitches. Especially in the context of beam search
where only the best several hundred hypotheses are kept

Composer Piece Meas. Min.
Mozart Clarinet Concerto, Mvmt 1 1-154 9
Mozart Clarinet Concerto, Mvmt 2 1-59 6
Mozart Clarinet Concerto, Mvmt 3 1-112 13
Brahms Sonata for Viola in Eb, Mvmt 1 1-97 14
Hoffmeister  Concerto for Viola, Mvmt 1 1-150 11
Bartok Concerto for Viola 1-200 15
Mozart Piano Sonata K. 330, Mvmt 1 1-88 14
Beethoven Piano Sonata op. 110, Mvmt 1 1-70 15
Debussy La Fille aux Cheveux de Lin 1-39 17

Table 1. List of repertoire used in the experiments.

at each frame, it seems wasteful to maintain an individ-
ual hypothesis for each separate place a pitch occurs in the
score, so our tree efficiently maintains only a single hy-
pothesis for all such score positions. When the next note is
played, we drop down a level in the tree, reaching a state
associated with all of the score positions where the pair
of pitches occur in order. We continue this process until
the score position is unambiguously determined, at which
point it “joins” our original score model (as in Figure 1).

In reality, we would not move down the tree determin-
istically, but, rather, would consider a range of possible
tree positions supported by the data model, as is always
the case when finding the most likely state sequence of an
HMM using dynamic programming and a beam search.

Although beam search does not guarantee a global opti-
mal result, in practice the correct hypotheses usually sur-
vives pruning because the data model is strong. The pitch
tree also helps with avoiding unwanted prunings, since when
a jump is performed we represent the possible score posi-
tions compactly, refining our representation as more infor-
mation becomes available. Even if all correct hypotheses
are pruned out at some unfortunate frame, the search can
“recover” at any time by jumping to the wait state and then
to the correct score position. This behavior is verified in
the following experiments.

3. EXPERIMENTS
3.1 Data

We collected practice audio from a number of students and
faculty mostly in the Jacobs School of Music at Indiana
University. These consisted of three undergraduate clar-
inet majors, three undergraduate viola majors, one faculty
pianist, and one student pianist who was not a music major.
The data together account for a little less than two hours of
practice audio. Part of our goal in collecting these data was
to understand the range of variation encountered in real-
life practice sessions. In particular, we want to know if the
score-alignment-with-skips model of a practice session is
tenable — can musicians naturally confine their practice to
the score as our model assumes? We also want to know
the accuracy of our approach in tracking the players’ score
trajectories.

We instructed our subjects to practice an agreed-upon
piece of music and only this piece for the duration of their
recorded practice session, generally 10 to 20 minutes in a
single “take.” Table 1 lists the pieces we tested, along with



the associated measure ranges and practice session lengths.
Aside from requesting that the pianists practice with both
hands together throughout, we tried to give subjects a min-
imum of direction and did not supervise their practice or
try to otherwise constrain their practice beyond the initial
instructions. We observed a number of departures from the
basic playing-with-skips assumption, including, for exam-
ple, deliberately distorted rhythms, testing of reeds, play-
ing significantly slower than the generally-accepted tempo,
one-hand piano practice, and brief forays into interval tun-
ing practice only loosely related to the score.

Pieces with verbatim repetition of passages pose prob-
lems for both recognition and evaluation: if a player jumps
to a passage that appears multiple times in a piece, how can
we say for sure which version is being played? However,
this distinction doesn’t seem especially important from the
standpoint of evaluation. For instance, consider the 3rd
movement (Rondo) of the Mozart Clarinet Concerto, where
the refrain repeats six times with almost no variation. It
doesn’t seem reasonable to penalize our algorithm for fail-
ing to ascertain which repetition is being practiced, nor
does it seem feasible to make this determination while cre-
ating ground truth. For simplicity sake, we chose excerpts
from the pieces where there was no direct phrase-level rep-
etition of musical material (as in Table 1).

To create ground truth for an audio example, we first split
it by hand into contiguous sections, each section contain-
ing music played without skips. We then performed score
alignment on each of these sections individually. The re-
sults include the section information (the starting note and
the starting frame of a section), and onsets of all played
notes. The results were then meticulously corrected by
hand to be as precise as we could get them.

3.2 Evaluation Method and Results

We propose a simple way to evaluate the score-alignment-
with-skips problem that is easy to implement and useful
for comparing with other approaches. In both ground turth
and recognized results, all frames between two consecutive
notes are associated with the former note. In other words,
any given frame is associated with the note whose onset is
the most recent. For every frame, we calculate the “musi-
cal distance” between the recognized note of this frame and
the ground truth note of this frame. For example, assum-
ing the time signature is 4/4 and the score has a quarter
note at every beat, the musical distance between the sec-
ond quarter note of measure one and the first quarter note
of measure two is 3/4. Such distances tell us the quality
of our recognition — how far away the recognized note is
from the actual played note. We evaluate our algorithm
by counting the number (proportion) of frames that have
different levels of musical distances (errors). Our goal is
to have more frames in the “0” category (accurate), and
fewer frames in the “> 1 category (larger error). Figure
3-5 show this kind of evaluation result for nine pieces in
our experiments.

Figure 3 gives these frame-by-frame position errors for
the three sessions from the Mozart Clarinet Concerto. This
histogram, as well as those of the other two instruments
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Figure 3. Histograms of frame-by-frame errors for the
three practice sessions taken from the three movements of
the Mozart Clarinet Concerto, as described in Table 1.

Evaluation on three viola pieces
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Figure 4. Histograms of frame-by-frame errors for the vi-
ola data as described in Table 1.

presented later, bins the errors into several categories gen-
erated with split points given as 0, one eighth note, one
quarter note, one half note, and one whole note. We use the
same binning procedure regardless of the tempo of a piece
or its time signature, so, for instance, a whole note error
in 6/8 time corresponds to 1+1/3 measures. The most im-
portant categories are the two extreme ones: “0”, where the
score position has been identified as accurately as possible,
and “>1 (whole note)”, where the recognizer is essentially
lost. The clarinet is perhaps the easiest instrument to rec-
ognize due to its comparative pitch stability. Their results
were the best that we measured, with the recognizer lost
(error > 1) no more than 3% of the time in all cases. It was
interesting to note that the deliberately distorted rhythms
observed occasionally in the first movement did not create
any problems for recognition.

Figure 4 shows analogous results for the viola data, in
which we observed the recognizer being lost from 6% to



Evaluation on three piano pieces
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Figure 5. Histograms of frame-by-frame errors for the pi-
ano data as described in Table 1.

14% of the time. These results are not quite as good as
with the clarinet data, for which we conjecture several rea-
sons. First of all, the viola is simply harder to recognize,
since (viola jokes aside) the instrument does not commit it-
self as clearly to pitch as the clarinet does. In addition, the
viola plays double stops (quite a few in some sections of
the Bartok and Hoffmeister), while our pitch (data) mod-
els tend not to discriminate as well between such chords.
Finally, the practice session for the Brahms included many
one- or two-note excerpts, and in a couple of cases seemed
to be only inspired by the score, rather than directly from
the score. However, as can be seen from the numerical re-
sults, the problems caused by all of these factors were only
local.

Figure 5 describes the results for the three piano exam-
ples in Table 1. The piano constitutes a significantly harder
challenge than the two mostly monophonic instruments.
We take a homophonic view of the piano, regarding the
score as a sequence of chords without regard for voice.
That is, whenever the score indicates that a note enters
or exits, we create a new chord at the appropriate musi-
cal position. This allows the piano to be recognized in the
same fashion as used for the other instruments. It should be
noted that the “pitch tree” approach of Figure 2 may be less
effective as there is far less repetition of chord sequences
than of individual pitch sequences.

Generally speaking, the piano is much more challenging
than monophonic instruments, since, as mentioned before,
the data model discriminates less well between chords than
single notes. In addition, the nature of the instrument pro-
duces much more overlap between notes, either through
pedaling, which is not reflected in our scores, or through
the fact that the addition of new notes has no damping ef-
fect on preceding notes. In contrast, the essential physics
of string, wind, and brass instruments cause the new note
to damp the previous note (except in the case of differ-
ent strings). However, these challenges seem to manifest
mostly themselves in terms of small onset inaccuracies,
rather than causing the recognition to become lost any more

than with the viola. Again, the “lost” percentages were in
the 2% to 14% range. The highest error rate was from the
slow Debussy piece, where far less is known about the tim-
ing of a performance than with fast music.

A less numerical, but perhaps more illuminating example
can be seen at http://music.informatics.indiana.edu/papers/
smcl9-skips/, where the video highlights the player’s cur-
rent position in a musical score as the practice audio plays.
Similar videos for all of the practice sessions can be found
at the same web site. In addition to providing an easily
digestible demonstration of the heart of this research, the
videos also foreshadow the kinds of tools we envision de-
veloping for musicians to help review practice effectively.

The results presented here are “exploratory” (on a small
dataset), so we obviously cannot claim broad coverage of
the world of possible practice habits — such a data col-
lection would be a large undertaking in and of itself. Still,
we encountered a good deal of variation within the sam-
pled population. We believe the results show that our es-
sential practice assumptions are reasonable, in the sense
that our subjects were, for the most part, able to follow
our model of score-constrained practice without much dif-
ficulty, while cases that departed from our model created
only local problems or no problems at all. We believe
the accuracy of our score alignment is also promising. In
short, the algorithm occasionally gets lost but always finds
its way back to the correct score position. Furthermore, we
believe the accuracy of note onset estimates on the individ-
ual identified sections is certainly good enough for many
kinds of pedagogical feedback.

4. FUTURE WORK

The basic recognition ideas developed here can be em-
bedded into thought-provoking and illuminating tools to
help instrumentalists review their practice, along the lines
of the demonstrated video. To achieve this goal we must
both improve the basic recognition on which these “prac-
tice browsers” will rely, as well as identify forms of feed-
back of interest to students, and ways of expressing that
feedback visually.

The current approach assumes one cannot tell the dif-
ference between identical passages in a piece of music,
though this is only partly true. Typically we can make
rather strong assumptions about the way in which the mu-
sician will visit the piece of music. In particular, nearly
all jumps are local ones, and the overwhelming majority
of jumps move backwards. Nakamura et al. [18] also an-
alyzed the skipping property on three piano pieces. These
assumptions do not fit naturally with our sorting trees of
Figure 2 since the non-terminal nodes of the tree are asso-
ciated with multiple score positions. Therefore, we can’t
assess their distance from the jump origin. In contrast, a
simple model that allows only local backward jumps per-
forms surprisingly well for the overwhelming majority of
cases. However, when the local backward assumption is
violated this model becomes completely lost, thus is too
fragile. We anticipate that it is possible to find a model-
ing framework that can express the likelihood of various
jumps, while also retaining the computational efficiency of
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our sorting tree. This is a project for future study.

Tuning is certainly an obvious candidate for visualiza-
tion, perhaps by coloring score notes according to the tun-
ing error. Coverage of a practice session could be similarly
represented, using color to denote the number of times a
particular passage has been repeated. Giving feedback on
rhythm is more challenging, partly because there will al-
ways be some degree of error in the identification of note
onsets, but also because good rhythm depends both on tim-
ing and stress (or lack of stress). We anticipate consider-
ably challenge here, though clearly there is much fertile
ground to explore.
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