COMPOSING WITH SOUNDS: DESIGNING AN OBJECT-ORIENTED DAW
FOR THE TEACHING OF SOUND-BASED COMPOSITION

Stephen Pearse
University of Portsmouth
stephen.pearselport.ac.uk

David Holland
De Montfort University
dholland@dmu.ac.uk

ABSTRACT

This paper presents and discusses the Compose With Sounds
(CwS) Digital Audio Workstation (DAW) and its approach
to sequencing musical materials. The system is designed to
facilitate the composition within the realm of Sound-based
music [1] wherein sound objects (real or synthesised) are
main musical unit of construction over traditional musical
notes. Unlike traditional DAW’s or graphical audio pro-
gramming environments (such as Pure Data, Max MSP
etc.) that are based around interactions with sonic ma-
terials within tracks or audio graphs, the implementation
presented here is based solely around sound objects. To
achieve this a bespoke cross-platform audio engine known
FSOM (Free Sound Object Mixer [2]) was created in C++.
To enhance the learning experience, imagery, dynamic 3D
animations and models are used to allow for efficient ex-
ploration and learning. All tools within the system are con-
trolled by a flexible permissions system that allows users
or workshop leaders to create sessions with specific fea-
tures based on their requirements. The system is part of a
suite of pedagogical tools currently in development for the
creation of experimental electronic music.

1. INTRODUCTION

The Compose with Sounds (CwS) software package (see
Fig. 1) was born out of two distint ideas and projects.
Landy’s highly influential Making Music with Sounds [3]
made strives in attempting to fill the enourmous gap in lit-
erature regarding sonic creativity for novices and school
teachers. For several years, Landy had been working on
the ElectroAcoustic Resource Site (EARS [4]). In 2006 the
EARS website EARS was supported and adopted by UN-
ESCO becoming a node of their DigiArts programme. Af-
ter a period of collaboration with the body, they requested
‘an EARS for kids’. This subsequently became EARS
2 [5,6]. As children prefer to be working actively whilst
learning as opposed to being solely fed information, the
EARS 2 pedagogical site needed to be highly interactive.

Copyright: (© 2019 Stephen Pearse et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Leigh Landy
De Montfort University
landy@dmu.ac.uk

Duncan Chapman
Independent Composer
dchapmanhoot@googlemail.com

Mihai Eniu
University of Portsmouth

mihai.eniu@port.ac.uk

Furthermore, it demanded a creative dimension that could
not be integrated into the site. This provided the oppor-
tunity to develop a bespoke software package, not only
for EARS 2 but for any inexperienced user in the realm
of sound-based composition also known as electroacoustic
music.

For many years members of the project team have been
working across a wide variety of sound projects in edu-
cational and community settings. The target age group
for much of this work has been UK Key Stage 3/inter-
national middle school students aged 11-14.Within these
contexts, it has become rather clear that there were no real
software packages that present a simple way of working
with recorded audio that does not require specialist knowl-
edge or experience on hand. Projects such as Sonic Post-
cards [7], typically resorted to using Audacity as an audio
editor and composition environment. The main drawback
of this was that it was very hard for those without experi-
ence to fully comprehend what they were working on. Us-
ing Audacity also assumed that users were able to navigate
their way round the computer to find the sounds they were
going to use. In this setting, participants would often get
“lost” and lose interest. Software like Audacity presents a
vast number of “choices” regardless of the level of expe-
rience of the user. Similarly, when participants have been
presented with other “entry level” tools (such as Garage
Band) large numbers of them would spend the majority of
their time ‘“auditioning” sounds and presets, leaving little
time to actually compose with them.

The CwS software was subsequently designed to be as
intuitive as possible while avoiding the interface or audi-
tioning shortcomings of existing tools. The core target age
group of the work remains students aged 11-14 but it is
flexible and approacheable enough to be used by students
either side of this age bracket. The software aims to sup-
port students to a level wherin they can easily move onto
other platforms such as Logic, ProTools or even Max MSP
and the like, while being easily linked to challenges within
EARS 2 projects. Like the aforementioned platform, the
software is intended to be multilingual for adoption in cul-
tures around the globe. CwS was first supported by an EU
Culture grant, ‘Composing with Sounds’ with further de-
velopment being supported by a Creative Europe grant for
the ‘Interfaces’ project [8,9].

mailto:stephen.pearse@port.ac.uk
mailto:LLandy@dmu.ac.uk
mailto:dchapmanhoot@googlemail.com
mailto:dholland@dmu.ac.uk
mailto:mihai.eniu@port.ac.uk
http://creativecommons.org/licenses/by/3.0/

® ComposeWithSoundsV2 File Edit View Tools Playback MouseMode Selected Regions Library Template Help

R TeaCup.wav

®®®@®@®\9\: N &

Figure 1. Compose with Sounds Version 2.36

To increase access and potential engagement with the tool
and the EARS 2 platform on the whole, the system is sched-
uled for free release in late spring of 2019 for MacOS
10.9+ and Windows 10.

2. TECHNICAL OUTLINE

To enable the development of CwS, a bespoke audio engine
known as the Free Sound Object Mixer (FSOM [2]) was
engineered. This open-source audio engine was designed
to be flexible and suit different iterations of the Compose
With Sound project but also be easy to repurpose for other
real-time audio applications. With a project of this scale
great care and attention needed to be taken to ensure that
the functionality in FSOM was not dependent on the CwS
in any shape or form. While keeping the audio and graphic
threads separate is widely encouraged in the audio devel-
opment community, here it is fundamental to the architec-
ture of the project.

Throughout the project, CwS has gone through two sig-
nificant iterations which entailed a complete rewrite of the
graphical user interface. Versions 1 through to 1.35, all
utilised the cross-platform windowing library wxWidgets
[10] and was made available explicitly for Windows 7 and
MacOS 10.7 in 2015. To ensure future support for higher
resolution displays and stability on newer versions of Ma-
cOS, the entire graphical user interface was re-written to

00:00:000

& Ne ¥

utilise the popular windowing library, Qt [11]. For clar-
ity and integration with other iterations of the software and
other projects, all materials that are saved by the system (be
it the session itself, library information or template data)
are all saved in an easy to read and interpret XML schema.

2.1 Development Cycles

To tailor CwS to the target audience in the best way pos-
sible and ensure that it be delivered efficiently, an adapted
form of the SCRUM development methodology [12] has
been used. Software development iterations are based on
development sprints lasting between two to four weeks.
This flexibility is a necessity as testing and feedback across
multiple levels is continuously required to ensure stable de-
velopment of the software. Since commencing the devel-
opment of version 2.0, the codebase has been maintained
by a single software developer (the lead author). Due to
the size of the codebase and the aims of the project, sev-
eral iterations of testing and feedback take place to iden-
tify bugs and feature requests in each private release prior
to wider distributions. The software and each new fea-
ture is subsequently tested by three distinct groups, each
with finite roles (see Fig. 2). These groups are the de-
veloper and students at their institution, the wider project
team across the interfaces project and workshop partici-
pants. The developer is responsible for testing new func-
tionality; the wider team, bugs and general usability issues

Bug Fixes
Implementing New
Features

DEVELOPMENT TEAM

New Feature
Testing

INTERNAL TESTING

New Feature Full Feature
Testing Testing

(]
=
=
7
w
h
-
<
4
@
ui
E
x
u

Usability Software
Outcome Demonstration

WORKSHOPS

v

Release

RELEASE

Figure 2. CwS Testing Cycles

and workshop attendees for broader usability issues along-
side requesting new features. This approach ensures that
if issues or queries concerning the usability emerge, work-
shop leaders and testers could be informed and guided to
test and query functionality.

Many features within the software were subsequently in-
formed through this approach. Perhaps the most notable
of these are the graphical tracks alongside the mute and
solo tools. As the system does not depend on a tradi-
tional track-based architecture (see section 5), sounds can
be placed over one another in the sequencer environment
with both being heard. Conceptually several users strug-
gled with this methodology and leading to confusion with
sounds of different lengths being laid over the top of one
another. The software dynamically sorts and alters the ren-
dering z depth of each sound based on their duration with
the shorter sound materials being drawn on top of those
with longer durations. While this is effective, user feed-
back indicated that limited graphical “tracks” would be
needed to ease the organisation of sessions. After a series
of workshops in the summer of 2018, many users requested
that these “tracks” offer solo and mute functionality. While
this was possible to achieve within the codebase, it was
not in keeping with the sound-based nature of the project.
As such, mouse tools were created instead for muting and
soloing multiple sounds at once within the system.

3. THE SOUND CARD

With sounds being affiliated with imagery, the metaphor
of a card or soundcard is used within the software. While

Figure 3. Solo and mute functionality

the pairing of image to sound in this form is encouraged, it
is by no means compulsory. At any given moment, a user
can alter the view of cards within the system to show the
waveform of the sound, the assigned image or both.

A composer’s primary means of working within the sys-
tem is the sequencing and transformation of these cards.
The software subsequently contains a suite of standard edit-
ing tools to be utilised. This includes the aforementioned
solo and mute tools (see section 2), deletion, splicing, trun-
cation, file bouncing and time-stretching ! . For ease of
use, each of these can be undone and applied to multiple
cards at any given time. As well as supporting copy and
pasting of cards as a user would expect, the system affords
different approaches to duplicating and looping cards. Stan-
dard duplication is supported wherein a new card is created
immediately after the original has finished. When multi-
ple cards are selected at once, the newly duplicated cards
commence at the end of the final original card. These
new cards retain the same timing differences as the orig-
inal selections. Cards can also be duplicated to behave like
traditional looping functions found in commercial DAW’s
wherein cards are repeated upon their owen completion.
This flexibility in duplication subsequently enables users
to easily create structural relationships based on relative
timing or more rigid loops if desired.

3.1 Synthetic Cards

Alongside cards made from audio files on the user’s com-
puter, the system also contains synthetic/generative cards
that can be utilised. At the time of writing, these cards con-
sist of a noise card, an additive synthesis card and a gran-
ular synthesis card. The number of controls available for
the latter two types was purposefully limited to reduce the
threat of creative paralysis when confronted with an exten-
sive collection of controls. The former is limited to four os-
cillators with pitch, amplitude and shape controls (sine, co-
sine, noise, square, saw and triangle). The granular synthe-
sis region is based on traditional file-based granular syn-
thesis [14] over live input based tools akin with Mutable In-
strument’s Eurorack Module, Clouds [15]. This card sub-
sequently provides controls for the grain size, pitch, posi-
tion in the source file, the rate of spawning, amplitude and
playback speed (used to scroll through the sound at varying

' The time-stretch tool is based around a custom phase vocoder in-
spired by the algorithm used in PaulStretch [13]

rates). While random modifiers could have been provided
for each of these controls, they have been purposefully re-
moved at this point.

3.2 Card Libraries

As the system is based around the usage of sonic cards,
the traditional approach of using an audio pool has been
replaced by the use of card libraries. This library system is
designed to utilise a clear and concise XML schema along-
side a simple file structure rather than serialising the data
into binary. While previous research [16] has shown the
inefficiency of XML under certain circumstances, it has
been utilised here to ensure easier integration with affili-
ated projects and tools. The system allows users to easily
import and export libraries either as standalone entities or
as part of saved compositions. A selection of card libraries
is provided with the software. A further collection of li-
braries can be found on the original CwS website [17] and
the EARS 2 platform [5, 6] which contains teaching mate-
rials for the system. Most significantly, it affords the po-
tential for users to interactively explore the libraries on the
accompanying website.

At present, the software does not allow users to record
sounds within it. This was an active decision made by the
team to ensure that the software is used primarily for sound
sequencing and transformation. A proof of concept library
creation application for desktop and mobile applications
has been created using JUCE [18]. This tool allows users
to create cards through recording or importing audio and
photos on their device of choice. Libraries can then be
exported from this tool.

3.3 Templates and Levels

The system contains a flexible permissions framework that
enables or disables access to features within. Akin with
Boden and later Magnusson’s work on constraints [19,20],
limiting or guiding users through a limited set of tools
(initially) forces them to think creatively about what each
tool affords. This subsequently encourages them to inter-
nally map out creative possibilities that they wish to ex-
plore. The approach taken in CwS supports this further as
it enables educators to create their own scaffolding struc-
tures [21] for audio tools and effects. These structures are
known as templates within the software and can be freely
created by the user. This augments Bigg’s constructivist
theory [22], where users can actively seek and creatively
apply their own pathway through the tools available. Tem-
plates can be applied to any compositional session or li-
brary that the system is aware of. When the student in
question is ready, educators can subsequently move to the
next relevant template. The system is provided with three
linear templates that can be used. An outline of what is
provided at each level can be seen in Table 1. To aid the
delivery of workshops and other guided learning sessions,
templates are saved into libraries when they are exported
if required. This enables workshop leaders to design ses-
sions that prescribe the sound materials and tools that can
be easily deployed.

N N\

Figure 4. Delay and Reverb representations

4. DIGITAL AUDIO EFFECTS AND
TRANSFORMATIONS

The system contains a collection of standard and extended
audio effect processors (see Table 1) that composers of sound-
based music would expect to find in a DAW of their of
choice or would have access to through commercial/free
audio plugins. The system does not allow external plug-
ins to be loaded into it for several reasons. In a classroom
context, deploying, loading and working with plugins can
slow down sessions due to the risk of technical or licensing
issues occurring. This is especially the case in today’s cli-
mate where some plugins require online activation or veri-
fication at runtime. When learning a new piece of software
alongside a new approach to music and sound, there is the
potential for any student to be overwhelmed with the quan-
tity of features available. If this experience requires users
to learn the control and interface vocabularies of different
plugin manufacturers on top of this, the chance of creative
paralysis may increase. Based on feedback from members
of the project team, it was decided that a suite of effects
should be designed with a consistent interface to ease stu-
dents development.

Unlike traditional track-based DAW’s, each of the effects
contained within the software exists entirely on a sound
card?. To aid the learning experience when using these
effects, each effect processor is accompanied by an inter-
active 3D animation that updates based on the effects set-
tings (see Fig. 4). The animations provided utilise the card
metaphor and presents visible transformations that sym-
bolically, and in some cases, literally reflect the effect pro-
cess. Effects such as reverb and the collection of delay
based effects evidence this divide. The reverb effects present
the card within a virtual room where the size, brightness
and wall texture alter based on parameters such as room

2 Automation for parametric changes subsequently exists within a
sound card itself.

Level 1 Level 2 Level 3

Audio All Level 1 features All Level 2 features
Band Pass Filter Band Reject Filter Additive synthesis
Delay Distort Asymetric Delay
Fade Envelope Automation

Gain Harmoniser Chorus

High Pass Filter High Amplitude Modulation Flanger

Loop Low Amplitude Modulation Granular Synthesis
Pan Low Frequency Modulation Ring Modulation
Reverse Timestretch

Simple Reverb White Noise

Transpose

Truncate

Table 1. Learning Levels by Template in CwS

size, wet/dry and damping. Delay-based effects present
repeating cards drifting into the distance based upon the
algorithm being used. Across all of these, the delay time is
represented as the distance between the cards and the feed-
back alters changes in brightness across this spread. The
asymmetric (multitap) delay presents each tap with a card
whose colour palette has been altered while the chorus and
flanger both update the separation of the cards based on the
modulation source in real-time.

5. SEQUENCING

The core audio processing architecture within the system
deals with discrete regions. These regions contain all of
the audio material for a given card in the software. This
approach is unlike traditional DAW designs that will pro-
cess audio as an array/vector of tracks, each with content
within, or as an audiograph with audio nodes that are con-
nected. As there is the potential for hundreds of discrete
sounds being active at any given point, careful optimisa-
tions are needed to ensure consistent performance on com-
puters with widely different specifications. While every
region could be stored in some form of an array with each
deciding when they should process their audio (based on
the current play-head position and whether it is bypassed),
this is dependent on a large number of conditional tests and
instructions per sample. While this might not be a problem
on contemporary hardware, it may introduce a substan-
tial performance bottleneck on older machines that may
be found in schools. To overcome this, the audio engine
creates a cache of all of the region based events within
the current session. Each event has a type, the region it
is associated with along with the sample time that it oc-
curs. In the real-time audio thread, a list of active regions
is utilised. Only regions within this list are processed when
the sequencer is active. In this thread, the event type infor-
mation is used to decide whether a region should be added,
removed or left unchanged in the active region list.

Given the region based nature of this processing, the use
of time-based effects (such as delays and reverbs) can be
problematic with the decaying effect for a region poten-
tially being cut off as the regions timing events dictate that
it has finished playing. To overcome this, CwS uses im-

pulse responses to calculate the decay time of a given card
featuring time based effects. This timing information is
then used to extend the processing time of the given region
to ensure that the decay is never cut off.

6. WORKSHOPS

The software package has been presented at numerous work-
shops across multiple countries in the European Union.
Feedback on software tends to be overwhelmingly posi-
tive due to the streamlined user experience through work-
ing with cards. Participants and workshop leaders have
noted that the software is excellent as an introductory tool
for engaging sonic exploration and creativity for four key
reasons.

Firstly, the card system enables people to clearly see and
arrange the sounds they are working on without needing
to use linguistic markers. Some workshop leaders stressed
the importance of allowing students to work with drawn
images of sounds. In this context, being able to have a card
with an image enables a wide range of participants from
the very young upwards to intuitively use the software.

Secondly, projects such as Sonic Postcards [7] alongside
the work of Holland [23] present a strong case for the fur-
ther development of student listening activities through field
recording expeditions with groups of participants. The card
system means that recordings from several groups of par-
ticipants can be easily combined into a set of sounds for
them to compose with.

Thirdly is the level/template system which many facilita-
tors have responded positively to. By not presenting a long
list of options to a user, participants can spend more time
making music and less time choosing effects or processes.
Teachers have welcomed the fact that in CwS, the chil-
dren are gradually introduced to more tools as they work
through the levels. CwS encourages users to explore each
effect in turn and develop understanding before they move
to the next level with a teacher in support.

Finally, commentators have noted the visual models within
the system. Upon illustrating the software and similar tools
in workshop contexts, participants are often drawn to simi-
lar starting points/processes. Delay (and echo), Pitch shift-
ing (and harmonising), Reverse and Reverb are often the

“go-to” processes. Great care has been taken with the vi-
sual models for these processes. Participants have almost

universally praised their clarity, reducing the need for lengthy

explanations. Several practitioners have highlighted the
reverb model being particularly helpful in visually link-
ing the room size and the surface material of the room
with sonic changes when using the controls. Such an ap-
proach is a noticeable contrast to software packages such
as Audacity that is often used in schools by workshop lead-
ers. All of these approaches subsequently encourage fo-
cused listening and developmental exploration and creativ-
ity with the tools available in the software.

7. FUTURE DEVELOPMENTS

While ongoing production and small enhancements for CwS
are planned across Windows and Mac OS, two significant
developments are currently underway under the umbrella
of the Interfaces project. The first of these is the addition
of an audio visual layer to the software that would allow
users to sequence music to video. This opens up the sys-
tem to a broader audience interested in sound for moving
image and sound design. The second major development
is the implementation of the Compose with Sounds Live
(CwS Live) platform. This tool aims to expose students to
the world of mixed media compositon and performance via
the transformation of live audio input alongside the trigger-
ing of recorded materials. The system is also designed to
encourage collaborative performance. To do so, the soft-
ware allows control data to be sent to other instances of the
itself on a local area network via UDP.

Acknowledgments

The authors would like to thank their respective institu-

ions and the European Commission’s Creative Europe pro-

gramme for supporting the ongoing development of the

project. They would also like to thank Dr. David Moore

and David Devaney for their contributions to the Free Sound
Object Mixer and the CwS Version 1.0.

8. REFERENCES

[1] L. Landy, Understanding the Art of Sound Organiza-
tion. Mit Press, 2007.

[2] S. Pearse, D. Moore, and D. Devaney, “Free sound
object mixer,” https://github.com/spearse/FSOM, Aug
2015, accessed: 2019-03-07.

[3] L. Landy, Making Music with Sounds.
2012.

Routledge,

[4] ——, “Ears : Electroacoustic resource site,” http://
www.ears.dmu.ac.uk/, accessed: 2019-03-07.

[5S] ——, “Ears 2 : Electroacoustic resource site,” http://
ears2.dmu.ac.uk/, accessed: 2019-03-07.

[6] L.Landy, R. Hall, and M. Uwins, “Widening participa-
tion in electroacoustic music: The ears 2 pedagogical
initiatives,” Organised Sound, vol. 18, no. 2, pp. 108—
123, 2013.

[7]1 Sound and Music, “Sonic postcards,” http:
/Iwww.soundandmusic.org/projects/sonic-postcards,
accessed: 2019-03-07.

[8] “Interfaces network,” http://www.interfacesnetwork.
eu/, accessed: 2019-03-07.

[9] “The interfaces project,” http://www.interfaces.dmu.
ac.uk/, accessed: 2019-03-07.

[10] “wxwidgets,” https://www.wxwidgets.org/, accessed:
2019-03-07.

[11] “Qt libraries & apis, tools and ide,” https://www.qt.io/,
accessed: 2019-03-07.

[12] K. Schwaber, “Scrum development process,” in Busi-
ness object design and implementation. Springer,
1997, pp. 117-134.

[13] P. Nascar Octavian, ‘“Paulstretch: Paul’s extreme
sound stretch,” http://hypermammut.sourceforge.net/
paulstretch/, accessed: 2019-03-07.

[14] C. Roads, Microsound. MIT press, 2004.

[15] E. Gillet, “Mutable instruments — clouds,” https:
//mutable-instruments.net/modules/clouds/, accessed:
2019-03-07.

[16] K.Maeda, “Performance evaluation of object serializa-
tion libraries in xml, json and binary formats,” in Dig-
ital Information and Communication Technology and
it’s Applications (DICTAP), 2012 Second International
Conference on. 1EEE, 2012, pp. 177-182.

[17] C. with Sounds Team, “Compose with sounds,” http:
/Iwww.cws.dmu.ac.uk/, accessed: 2019-03-07.

[18] Roli, “Juce,” https://juce.com/, accessed: 2019-03-07.

[19] M. A. Boden, The Creative Mind: Myths and Mecha-
nisms. Routledge, 2004.

[20] T. Magnusson, “Designing constraints: Composing
and performing with digital musical systems,” Com-
puter Music Journal, vol. 34, no. 4, pp. 62-73, 2010.

[21] D. Wood, J. S. Bruner, and G. Ross, “The role of tutor-
ing in problem solving,” Journal of child psychology
and psychiatry, vol. 17, no. 2, pp. 89—-100, 1976.

[22] J. Biggs, “Enhancing teaching through constructive
alignment,” Higher education, vol. 32, no. 3, pp. 347—
364, 1996.

[23] D. Holland, “A constructivist approach for opening
minds to sound-based music,” Journal of Music, Tech-
nology & Education, vol. 8, no. 1, pp. 23-39, 2015.

https://github.com/spearse/FSOM
http://www.ears.dmu.ac.uk/
http://www.ears.dmu.ac.uk/
http://ears2.dmu.ac.uk/
http://ears2.dmu.ac.uk/
http://www.soundandmusic.org/projects/sonic-postcards
http://www.soundandmusic.org/projects/sonic-postcards
http://www.interfacesnetwork.eu/
http://www.interfacesnetwork.eu/
http://www.interfaces.dmu.ac.uk/
http://www.interfaces.dmu.ac.uk/
https://www.wxwidgets.org/
https://www.qt.io/
http://hypermammut.sourceforge.net/paulstretch/
http://hypermammut.sourceforge.net/paulstretch/
https://mutable-instruments.net/modules/clouds/
https://mutable-instruments.net/modules/clouds/
http://www.cws.dmu.ac.uk/
http://www.cws.dmu.ac.uk/
https://juce.com/

	 1. Introduction
	 2. Technical Outline
	2.1 Development Cycles

	 3. The Sound Card
	3.1 Synthetic Cards
	3.2 Card Libraries
	3.3 Templates and Levels

	 4. Digital Audio Effects and Transformations
	 5. Sequencing
	 6. Workshops
	 7. Future Developments
	 8. References

