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ABSTRACT

In this work, we propose the task of automatically estimat-
ing pitch (fundamental frequency) from video frames of 
violin playing using vision alone. Here, we consider only 
monophonic violin playing (where only one note is being 
played at a time).
In order to investigate this task, we curate a new dataset of 
monophonic violin playing. We propose a Convolutional 
Neural Network (CNN) architecture that is trained using a 
student-teacher strategy to distil knowledge from the audio 
domain to the visual domain. At test time, our network 
takes video frames as input and directly regresses the pitch. 
We train and test this architecture on different subsets of 
our new dataset.
We show that this task (i.e. pitch prediction from vision) is 
actually possible. Furthermore, we verify that the network 
has indeed learnt to focus on salient parts of the image, e.g. 
the left hand of the violin player is used as a visual cue to 
estimate pitch.

1. INTRODUCTION

Humans can obtain some understanding of music simply 
by watching instruments being played, even without access 
to audio recordings of the music itself. Indeed, a trained 
musician might be able to transcribe an entire video purely 
from visual cues alone, although with great painstaking 
manual effort. The movement and position of the instru-
ment and body (specifically the movement of the arms, 
hands and fingers) have a direct correlation with the sound 
produced. In this work, we investigate the following ques-
tion: is it possible for a trained neural network to identify 
the pitch of played notes, simply from the frames of a silent 
video?

Our approach is a valuable first step towards the task of 
complete visual music transcription. While audio based 
music transcription is a widely studied and successful field, 
the task of visual music transcription has not been explored 
to a great extent. Performing this task from standard frame-
rate visual information alone can be extremely useful in 
instances when the audio is of poor quality, missing, or 
mixed with information from other audio sources, e.g. in
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Figure 1. Pitch estimation from visual information. Given
video frames, the network is tasked to predict pitch using
only the visual information.

the case of polyphonic music. These scenarios are chal-
lenging for purely audio-based pitch estimation methods.

We investigate this by training a network to predict pitch
information from video frames of monophonic solo violin
recordings using only the visual image data (see Figure 1).
Given a set of video frames, the network learns to regress
the corresponding pitch. In order to perform this challeng-
ing task, our method makes use of two insights. First, us-
ing a teacher-student strategy (i.e. training one network us-
ing another network [1]) is important to enforce that the
network learns the visual cues that are correlated with the
corresponding sound. Second, using multiple frames as
input (i.e. a short silent video clip) is preferable to using a
single still frame. This is because the additional frames re-
solve ambiguities such as which string is vibrating (i.e. the
string that is being played on with the bow). These insights
inform our architecture choices, described in Section 3.

The models are trained and evaluated on a new dataset
(Section 4) of violin playing. This dataset is divided into
three subsets which vary in difficulty. The first two subsets
are recordings of a single player photographed by a fixed
mobile phone camera. The third subset consists of ‘in-the-
wild’ videos downloaded from YouTube.

On all of these datasets, our method demonstrates that re-
gressing pitch directly from video frames is indeed possi-
ble (Section 5). Finally, we verify that the method is mak-
ing sensible predictions by investigating what regions of
the image are most salient for the prediction. We find that
our method focusses on the movement and location of the
musician’s arms, hands and fingers; this is similar to how
a human would approach this task.
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Figure 2. An overview of the visual pitch estimation method. We train our framework with a student-teacher strategy by
distilling discriminative knowledge from a teacher network to a student network. The teacher network regresses pitch from
audio whereas the student network is trained to regress pitch from visual information alone. Both networks are trained using
pseudo ground-truth pitch information which is automatically extracted using an audio-based method and thereby does not
require any manual annotation. The audio to pitch network is trained first and then used to train the frame to pitch network
(student) by minimising the distance between the activations of the final three fully-connected network layers of the student
and the teacher network. At test time, given one or multiple visual input frames, the student network is used by itself to
regress pitch. In the case of multiple input frames, the outputs of the first convolutional layers of the student network are
concatenated and fused through a 3D convolutional layer (Fusion module) before being input to the next convolutional
layer.

2. RELATED WORK

Here, we only consider directly related work on cross-modal
information transfer between audio and visual information.
Multi-modal audio-visual representations. Training strate-
gies that encourage synchronisation between the audio and
visual streams have been used successfully for speech syn-
chronisation [2]. More generally the correspondence be-
tween the audio and visual streams (though not their strict
synchronisation) has proven very useful for obtaining mean-
ingful features for sound localisation and separation [3, 4].
In these works, the natural synchronisation in videos can
be leveraged in a self-supervised manner to obtain useful
image and audio representations. Aytar et al. [5] also ex-
ploit this natural synchronisation property in order to trans-
fer knowledge from visual recognition networks into sound
networks. However, we propose a framework that transfers
knowledge the other way round, i.e. from audio to visual
information.
Cross-modal audio-visual generation. Related to our frame-
work are methods that generate audio from visual infor-
mation, e.g. spectrograms or other sound features from vi-
sual information [6–10], or localise sound in video in order
to separate different sounds [11, 12], or analyse vibrato-

patterns for audio-visual association [13].

The URMP dataset by Li et al. [14] is targeted at cross-
modal audio-visual generation. However, it poses two lim-
itations for our task. Firstly, the image resolution of the
released dataset is not very high which makes it difficult to
actually recognise pitch from the visual information alone,
as the key parts of the image (e.g. the fingers of the left
hand) are too small. Secondly, the dataset was recorded in
constrained settings with only a limited number of musi-
cians which limits the generalisability of models trained on
this data to other settings. Therefore, in addition to training
and evaluating our models on the URMP dataset, we gath-
ered a new dataset to train and test our framework that is
of higher resolution and which also contains ‘in-the-wild’
videos.

Music transcription from silent video. More closely re-
lated to ours is the work by Gomez et al. [15] which pro-
poses to leverage visual information to transcribe clarinet
videos using the hand movements in recorded video se-
quences. However, unlike their method, we do not require
any manual tracking or labelling (i.e. finger/hole positions)
as supervision in order to train our network.

Zhang et al. [16] addressed a similar task to ours of visu-



ally obtaining pitch for violin by detecting the strings of a
violin and by recognising finger events (such as their posi-
tion and whether they are pressing on a string). However,
their method is quite constrained; it involves tracking the
fingers and the strings, and makes assumptions about the
length of the fingerboard which requires the image data to
always be perfectly aligned. In contrast, our method gives
convincing results for different viewpoints and requires no
manual labelling.

Another related method is the physics-based approach for
recovering pitch from silent guitar video by Goldstein and
Moses [17]. However, their method requires mounting a
camera, that allows recording with high frame rates, on the
guitar itself in order to use the actual string vibrations to
predict pitch. Unlike their method, our set-up only requires
the use of a normal camera and it learns to localise the left-
hand position of the musician (relative to the instrument)
in order to infer pitch. Our method can thus be applied
retroactively to videos that have already been recorded.

3. MODEL

In this section, we describe the training and testing frame-
work used to regress pitch from video frames. We treat this
as a classification task. The network takes video frames
as input and estimates the pitch as a MIDI number. An
overview is given in Figure 2.
Teacher-student strategy. We found that directly regress-
ing pitch from the video frames did not generalise at test
time. This is presumably because the visual information
relevant for the pitch prediction task occupies only a small
part in the video frames.

As a result, we train two networks – a teacher and student
network – such that the activations of the student network
are similar to those of the teacher. The teacher network
regresses pitch from audio and the student regresses pitch
from video frames. The rationale for using this strategy is
that, in order to contain relevant information about pitch,
the high-level representation of the visual information (en-
coded in the student) should be close to that of the audio
information (encoded in the teacher). This strategy proved
crucial to obtain a network that generalises at test time.

The teacher network is first trained using STFT spectro-
grams as input to regress the pseudo ground-truth pitch (the
method for obtain this pseudo ground-truth is described in
section 5). The student network is then trained to regress
the pitch with an additional loss that enforces that the ac-
tivations of the higher level layers are similar to those in
the teacher network. For this, we use an L1 loss which is
weighed so that the contribution for each of the three fully-
connected layers is as big as the pitch classification loss.
Both networks are trained to predict pitch with a cross-
entropy loss.
Neural Network Architecture. The teacher and student
network architectures are loosely based on the VGG-M
network architecture [18] and can be seen in more detail
in Figure 2. For the student network, in the case of multi-
ple input frames, the outputs of the first convolutional lay-
ers are concatenated and fused using a 3D convolutional
layer to combine the information from the frames with spa-

(a) Vn1 and VnAll datasets. (b) VnYT dataset.

Figure 3. Pitch distribution over the number of frames in
the three subsets of our dataset; the constrained single-
string data Vn1, the data on all strings VnAll, and the in-
the-wild data VnYT. Pitch is shown in MIDI numbers. The
subsets cover the chosen full pitch ranges.

tial kernel size 3× 3 followed by batch normalization and
ReLU. The output serves as input to the second convolu-
tional layer. For just a single input frame, the output of the
first (2D) convolutional layer is directly input to the sec-
ond convolutional layer. The first two convolutional layers
consist of 7×7 convolutions, whereas the subsequent ones
are 3× 3 convolutions and the last three are 1× 1 convolu-
tions. All convolutional layers have stride 1 except for the
second one, which has stride 2.

4. DATASETS

We curate a new violin playing dataset which consists of
three subsets (Vn1, VnAll and VnYT) that differ in difficulty
and size. The most challenging subset VnYT consists of in-
the-wild violin solo videos downloaded from YouTube 1 .
These are largely comprised of recordings of solo recitals,
etudes, and orchestra auditions. Both Vn1 and VnAll are
recorded in simpler conditions: all videos are of a sin-
gle violinist, have similar backgrounds and are taken from
similar angles.

The datasets vary in terms of the range of pitches. Both
Vn1 and VnAll consist of recordings of a violinist playing
in a practise-like set-up (but without the thousandfold rep-
etitions of the same phrases). The easiest subset Vn1 con-
sists of videos that only contain violin playing on a single
string, resulting in a range of 20 semitones (MIDI num-
bers between 68 and 88). Estimating the pitch is easier in
this case, as there is no ambiguity concerning which string
is being played. VnAll contains videos played in the full
pitch range of the violin without being restricted to play-
ing just on one string. For both VnAll and the most difficult
subset VnYT, we consider a range of 33 semitones (MIDI
numbers between 55 and 88).

All subsets are split into train/val/test sets. Disjoint parts
of the same videos are used for training and validation. The
test sets consist of frames that were not seen during train-
ing (from left-out unseen videos). The precise numbers of
frames and videos are given in Table 1.

1 Example videos: https://youtu.be/-ccYdhQAn10,
https://youtu.be/YGCYelAHdaU



Dataset Vn1
Train Val Test

# of videos 5 1
# of frames 25308 2791 9875

Dataset VnAll
Train Val Test

# of videos 9 1
# of frames 54865 4107 6373

Dataset VnYT
Train Val Test

# of videos 122 10
# of frames 303391 33063 20067

Table 1. Dataset statistics. Details of the three different
subsets, the controlled setting data on a single string Vn1,
the controlled setting data on all strings VnAll, and the
in-the-wild data on all strings VnYT and their respective
train/val/test splits.

Finally, for all three subsets, we extract frames and pseudo
ground-truth pitch using the spectral domain YIN algo-
rithm [19] using the implementation in the aubio library
(yinfft) [20].

In addition to the above datasets, we consider the subset
of the URMP dataset that contains videos of violin play-
ing. We loosely crop the frames around the violinist and
leave out 4 videos (single-instrument tracks) for testing and
take the remaining violin videos for training and valida-
tion. This results in about 35000 frames for training and
12761 for testing. This dataset contains ground-truth pitch
information. Therefore, we can train with actual ground-
truth pitch. We consider a range of 33 semitones (MIDI
numbers between 55 and 88). All models are trained and
tested with the same train/val/test split on each dataset.

Furthermore, we generate STFT spectrograms for all men-
tioned datasets in order to train the audio to pitch network.

5. EXPERIMENTS

In this section, we evaluate both the audio to pitch (teacher),
and the video frame to pitch (student) models. We con-
sider using a single versus multiple input video frames. We
first train the audio to pitch network to regress pitch from
spectrograms. This network then serves as the teacher net-
work when training the single frame to pitch network or
the multi-frame to pitch network.

The models are trained in PyTorch [21] using the Adam
optimiser [22] with an initial learning rate of 0.001. The
learning rate is divided by a factor of 10 when the loss on
the validation set plateaus. The batchsize is N = 64 for the
single frame architecture and the audio to pitch network,
and N = 24 for the architecture with 5 input frames. The
frames are resized to 400× 200. For the datasets Vn1 and
VnAll, the frames are consistently more tightly cropped
around the instrument whereas there is much more vari-
ation of the location and relative size of the instrument in
VnYT.
Evaluation measures. We report the performance of our

Network RPA RPA tol PA ACA ACE
Dataset Vn1

Audio to pitch 98.30 99.14 96.74 86.03 0.06
Frame to pitch 89.98 91.57 62.41 51.64 0.45

5 fr. to pitch (3D conv) 93.8 94.91 66.7 58.75 0.43
Dataset VnAll

Audio to pitch 94.26 94.40 90.87 94.33 0.06
Frame to pitch 74.17 75.55 47.48 33.3 2.50

5 fr. to pitch (3D conv) 77.24 78.98 50.33 41.66 1.65
Dataset VnYT

Audio to pitch 98.30 99.14 96.74 86.03 0.06
Frame to pitch 44.3 51.37 33.18 45.2 2.50

5 fr. to pitch (3D conv) 62.5 67.89 48.44 51.77 2.34

Dataset URMP
Audio to pitch 98.28 98.5 96.73 98.88 0.07
Frame to pitch 53.11 58.3 42.71 39.86 2.73

5 fr. to pitch (3D conv) 57.3 62.04 45.26 41.79 2.43

Table 2. Evaluation of our models determining the ac-
curacy in predicted pitch for the Vn1, VnAll, VnYT , and
URMP test sets. Higher is better for Raw Pitch Accu-
racy (RPA), Raw Pitch Accuracy with a tolerance of one
frame (RPA tol), Pitch Accuracy (PA), and Average Class
Accuracy (ACA). Lower is better for Average Class Error
(ACE). Using multiple input frames improves the perfor-
mance.

models in Table 2. For Raw Pitch Accuracy (RPA), a pre-
dicted pitch is counted as correctly estimated if it lies within
one semitone of the ground truth pitch. RPA tol addition-
ally allows the prediction to be off by at most one frame.
Furthermore, we report Pitch Accuracy (PA) and Average
Class Accuracy (ACA). ACA gives the averaged per-pitch-
class accuracy. The ACE describes the average error be-
tween the predicted and the ground truth pitch class (ACE
of 1 corresponds to an average error of one semitone).
Video to pitch performance. The audio to pitch teacher
networks reach an RPA of above 90% on the test sets.
This serves as a very good starting point to train the stu-
dent frame to pitch networks. It can be observed that our
method performs best when trained and tested on the sim-
pler dataset with minimal ambiguities Vn1 and then VnAll.
This corresponds with the intuition that this set-up is easier,
as the fingers and therefore the pitch is more clearly visible
at higher resolution as compared to VnYT or URMP. Nev-
ertheless, a RPA of 62.5% for the frame to pitch network
on the in-the-wild YouTube video dataset VnYT means that
the pitch is estimated within a semitone of the ground-truth
on average in 62.5% of the test cases; this verifies that our
method generalises to unseen videos and people at test time
on challenging ‘in-the-wild’ videos. When allowing for an
offset of one frame in the predictions, we achieve an accu-
racy of 67.89% (RPA tol). This accounts for the case that
the alignment between audio and visual information might
not be perfect in the data which is the case for some of
the downloaded videos. The reported lower performance
on the URMP dataset may be due to the lower resolution
size of the frames in the dataset and the limitations in terms
of its dataset size which confirms the benefits of using our
datasets to address this task. These results are impressive,
given that our method estimates the pitch from visual in-
formation only and in unconstrained recording conditions.
However, our method can only predict one pitch playing



(a) Gradient visualisation for the Vn1 test set.

(b) Gradient visualisation for the VnAll test set.

(c) Gradient visualisation for the VnYT test set.

Figure 4. Discriminative information visualisations using guided backpropagation [23] for the test sets of the Vn1 subset in
(a), the VnAll subset in (b), and the VnYT subset in (c). Heat maps are overlaid in the second rows of (a), (b), and (c). As
demonstrated, the networks focus on the left hand across all the test frames even though the hands are in different positions
relative to the frame. In (c), it can be seen that the network also seems to be focussing on the strings implying that it may
be using vibrations or the movement of the strings in order to estimate pitch. The location of the instrument and strings
relative to the left hand might serve as a further cue for estimating pitch.

at a time and cannot identify chords as it has been trained
only on monophonic data.

Another interesting point is that there is a consistent im-
provement when using multiple frames as opposed to a sin-
gle one as input to the frame to pitch network. This can be
seen very clearly for the VnYT dataset (RPA tol of 67.89%
vs. 51.37%). This is presumably due to the fact that vi-
sually it can be hard to determine just from the fingers of
the left hand which string a note is played on. To solve
this problem, the network needs to determine which string
is active (using for example information from the bowing
hand / bow or from the vibration of the strings). While
the placement of the hand should be visible from a single
image, the vibration of the string is unlikely to be visible
(unless there is significant motion blur) without taking into
account more frames.

Visualizing what has been learnt. To gain an insight
into what the networks have learnt and how they infer the
pitch from a given frame, we apply guided backpropaga-
tion [23] to our trained networks to determine which parts
of the images are most discriminative. As demonstrated in
Figure 4, the networks have learnt that the fingers of the
left hand and the left hand itself are most relevant for pre-
dicting the pitch given a still frame. Potentially the net-
work also makes use of some information about the vibra-
tion of the played strings (e.g. by recognising motion blur

around strings that are vibrating). This confirms that the
networks do not simply memorise parts of a video, but in-
stead learn to localise the left hands/fingers in the image in
order to estimate pitch. However, the image regions which
the networks focus on are actually quite small relative to
the image size.

6. CONCLUSION

We have presented a method for addressing monophonic
visual pitch estimation; given video frames of violin play-
ing, our method can automatically estimate the pitch being
played using vision alone. The presented task is extremely
challenging, as it requires making use of subtle visual cues
(such as the placement of the hand or string vibrations over
the course of multiple frames), yet our network shows con-
vincing results in three different scenarios: when only one
string is played or all strings are played but the person and
environment remains the same, and in unconstrained ‘in-
the-wild’ videos. Moreover, our method is generalisable,
as training the networks did not require any manual anno-
tations; instead, the pseudo ground-truth pitch information
was extracted automatically from the audio data. It will be
interesting to use this framework to improve pitch predic-
tion using both visual and audio information. This could
prove useful when the audio is of poor quality. In addition
to that, estimating pitch from vision might help the task



of sound source separation when similar instruments are
played on. Furthermore, this method could be pushed fur-
ther to estimating polyphonic violin music played on the
same instrument.
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