
Representations of self-coupled modal oscillators with time-varying frequency

Tamara Smyth, Jennifer S. Hsu

Department of Music, UC San Diego

trsmyth@ucsd.edu

ABSTRACT

In this work we examine a simple mass-spring system in

which the natural frequency is modulated by its own oscil-

lations, a self-coupling that creates a feedback system in

which the output signal “loops back” with an applied coef-

ficient to modulate the frequency. This system is first rep-

resented as a mass-spring system, then as an extension of

well-known frequency modulation synthesis (FM) coined

“loopback FM”, and finally, as a closed-form representa-

tion that has a form similar to the transfer function of a

“stretched” allpass filter with time-varying delay, but with

the fundamental difference that it is used here as a time-

domain signal, the real part of which is the sounding wave-

form. This final representation allows for integration of

instantaneous frequency in the FM representation and ul-

timately a mapping from its parameters to those of loop-

back FM. In addition to predicting the sounding frequency

(pitch glides) of loopback FM for a given carrier frequency

and time-varying loopback coefficient, or equivalently of

the self-coupled oscillator for a given natural frequency

and coupling coefficient, the closed form representation is

seen to be a more accurate representation of the system as

it does not introduce a unit-sample delay in the feedback

loop, nor is it as numerically sensitive to sampling rate.

1. INTRODUCTION

It is well known that introducing nonlinearities into a linear

system may contribute computational complexity making

it prohibitive for real-time use [1,2]. If, however, the aim is

to apply the dynamic sound effects of nonlinear coupling to

a synthesized sound, prioritizing real-time parametric con-

trol over acoustic accuracy, there are representations in the

literary canon of parametric abstract synthesis techniques

that can be explored. In spirit and purpose similar to [3],

this work explores the relationship between a physically

self-coupled oscillator to the well-known abstract synthe-

sis technique, frequency modulation (FM).

As shown in Section 2, a simple physical model of a two-

degree-of-freedom (2-DOF) mass-spring system that ex-

hibits modal coupling behaviour, can be “abstracted” and

represented as a simplified self-coupled oscillator, one in

which the mass influences its own oscillation in a feed-

back system. Discretization of this oscillator’s displace-

ment, yielding a second-order bandpass filter, is problem-
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atic when the frequency, and thus the filter coefficient de-

pendent on frequency, is made time varying. The system

is shown in Section 4 to be strongly related to FM, and

to resolve issues of filter instability, the self-coupled os-

cillator is presented in terms of a variant of FM so called

“loopback FM” [4] to distinguish it from the related, but

distinct, “feedback FM” [5]. Finally, the closed-form rep-

resentation of the loopback FM oscillator is given, offering

improved numerical accuracy, eliminating the need for a

unit-delay in the feedback loop and, perhaps most advan-

tageous for musical applications, revealing the nonlinear

oscillator’s sounding frequency. The musical application

of this work is explored in a related paper by the same au-

thors, whereby a modal synthesis model of percussion in-

struments is implemented using loopback FM oscillators,

allowing for a linear model to be enhanced by the rich and

dynamic sounds caused by nonlinear modal coupling that

are characteristic of these instruments [6].

2. A COUPLED OSCILLATOR
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Figure 1. A two-degree-of-freedom oscillator having two

masses and three springs of equal value, where the dis-

placement of each mass is given by ℜ{z1,2}.

The equations of motion for a two-degree-of-freedom mass-

spring oscillator with mass m and spring constant k are

mz̈1 + kz1 + k(z1 − z2) = 0

mz̈2 + kz2 + k(z2 − z1) = 0, (1)

with displacement of each mass being given byℜ{z1,2(t)},

and z1,2(t) having assumed solutions

z = Aejωt, ż = jωAejωt, z̈ = −ω2Aejωt, (2)

and where (1) has 2 natural modes of oscillations: one

where A1 = A2:

−ω2A1+ω2
0A1+ω2

0(✘✘✘✘✘✿0
A1 −A2) = 0 and ω = ω0 (3)

and the other where A1 = −A2:

−ω2A1+ω2
0A1+ω2

0(✘✘✘✘✘✿2A1
A1 −A2) = 0 and ω =

√

3ω2
0 ,

(4)
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where ω0 =
√

k/m. In addition to the 2 natural modes,

z1,2 may exhibit coupled behaviour (e.g. given a specific

set of initial conditions) in which one mass influences the

oscillations of the other. To explore coupled behaviour, we

begin with a generalized parametric expression in which

frequency is modulated by the oscillations of the system

ω = ω0+d1ℜ{z1}+d2ℑ{z1}+d3ℜ{z2}+d4ℑ{z2}, (5)

where coupling coefficients d1,2,3,4 specify the amount of

frequency deviation contributed by the oscillations of each

mass (considering both real and imaginary parts of com-

plex z1,2). In this work, a special simplified case of (5) is

explored where d2,3,4 = 0 and ω = ω0+d1ℜ{z1}, and the

oscillator is merely coupled to itself, creating a system that

will be later referred to in Section 4 (and was previously

coined in [4]) as “loopback FM”.

Since frequency ω is now made time varying, the re-

lationship between instantaneous frequency ωi(t) and in-

stantaneous phase θi(t),

ωi(t) =
d

dt
θi(t) and θi(t) =

∫ t

0

ωi(t) dt, (6)

must be considered before defining assumed solution z1:

z1(t) = exp

(

j

∫ t

0

(ω0 + d1ℜ{z1(t)}) dt

)

(7)

a system for which sounding frequency is not as easily pre-

dicted as in (2). Furthermore, if d1 is made time varying,

the sounding frequency will change over time, resulting in

a pitch glide—a known characteristic of nonlinearly cou-

pled systems—having a trajectory dependent on the nature

of the function d1(t).

2.1 Assumed solution

Given the more general assumed solution z1(t) = ejθ(t),
its first and second derivatives with respect to time are

given by

ż1(t) = jθ̇(t)z1(t), (8)

z̈1(t) = jθ̈(t)z1(t) + jθ̇(t)ż1(t)

= (jθ̈(t)− θ̇(t)2)z1(t), (9)

with the angle and its derivatives given by

θ(t) =

∫ t

0

ω0 + d1ℜ{z1(t)} dt, (10)

θ̇(t) = ω0 + d1ℜ{z1(t)}, (11)

θ̈(t) = d1ℜ{ż1(t)}
= d1ℜ{jθ̇(t)z1(t)}
= d1ℜ{jθ̇(t)ℜ{z1(t)} − θ̇(t)ℑ{z1(t)}}
= −d1θ̇(t)ℑ{z1(t)}. (12)

The equation of motion adapted from (1) for a single mass-

spring oscillator

mz̈1(t) + kz1(t) = 0 (13)

in which the spring constant is modulated such that

√

k(t)/m = ω0 + d1z1(t) (14)

k(t) = m(ω0 + d1z1(t))
2 (15)

may be represented as

z̈1(t) + (ω0 + d1z1(t))
2z1(t) = 0, (16)

which, having additional terms 2ω0d1z
2
1 and d21z

3
1 , is now

nonlinear in z1. To verify that the interpretation of k(t)
given in (14-15) satisfies the equation of motion for a self-

coupled (feedback) oscillator, equation (9) is first substi-

tuted for z̈1(t) in (16),

jθ̈(t)− θ̇(t)2 = −(ω0 + d1z1(t))
2, (17)

and (12) substituted for θ̈(t) in (17) to yield

−jd1θ̇(t)ℑ{z1(t)} − θ̇(t)2 = −(ω0 + d1z1(t))
2

θ̇(t)
(

jd1ℑ{z1(t)}+ θ̇(t)
)

= (ω0 + d1z1(t))
2 (18)

where, by (11), the LHS parenthetical expression in (18) is

jd1ℑ{z1(t)}+ ω0 + d1ℜ{z1(t)} = ω0 + d1z1(t) (19)

to finally yield

θ̇(t)(ω0 + d1z1(t)) = (ω0 + d1z1(t))
2

θ̇(t) = ℜ{ω0 + d1z1(t)}, (20)

showing an instantaneous frequency equal to (11) when it

is assumed to be real, thus further showing
√

k(t)/m =
ω0 + d1z1(t) satisfies the equation of motion.

2.2 Implementation of mass-spring oscillator

One known solution for the discretization of the mass-spring

oscillator is using the trapezoidal rule for numerical inte-

gration (or bilinear transform). A version of (13) that is

driven by force function Fk(t) = F (t)/k:

z̈1(t) + ω2
0z1(t) = Fk(t), (21)

has s-transform

s2Z1(s) + ω2
0Z1(s) = Fk(s), (22)

and transfer function

H(s) =
Z1(s)

Fk(s)
=

1

s2 + ω2
0

, (23)

which, when taking the z-transform by substituting s with

c
1− z−1

1 + z−1
, where c = 2/T without prewarping, yields

H(z) =

(
1

c2 + ω2
0

)
1 + 2z−1 + z−2

1− 2
c2 − ω2

0

c2 + ω2
0

z−1 + z−2

. (24)

The numerator and denominator polynomials of (24) may

be expressed in polar form as,

B(z) =
(
1 + z−1

)2
(25)

A(z) =
(
1− az−1

) (
1− a∗z−1

)
, (26)



where roots of A(z) (poles of H(z)) are the complex con-

jugate pair having sum

2
c2 − ω2

0

c2 + ω2
0

=
(c− jω0)

2 + (c+ jω0)
2

(c+ jω0)(c− jω0)
=

c− jω0

c+ jω0
︸ ︷︷ ︸

a

+
c+ jω0

c− jω0
︸ ︷︷ ︸

a∗

.

(27)

The gain of filter H(z) is given by

G(ω) = |H(ω)| = 1

c2 + ω2
0

|B(ω)|
|A(ω)| , (28)

where

|B(ω)| =

∣
∣
∣
∣

(

e−jωT/2
(

ejωT/2 + e−jωT/2
))2

∣
∣
∣
∣

=
∣
∣e−jωT

(
2 + ejωT + e−jωT

)∣
∣

= 2(1 + cos(ωT )), (29)

|A(ω)| =
∣
∣
∣e−jωT/2

(

ejωT/2 − ae−jωT/2
)∣
∣
∣×

∣
∣
∣e−jωT/2

(

ejωT/2 − a∗e−jωT/2
)∣
∣
∣

=
∣
∣e−jωT

(
−a− a∗ + ejωT + e−jωT

)∣
∣

=

∣
∣
∣
∣
−2

(
c2 − ω2

0

c2 + ω2
0

− cos(ωT )

)∣
∣
∣
∣
, (30)

and (28) reduces to

G(ω) =
1 + cos(ωT )

|c2 − ω2
0 − (c2 + ω2

0) cos(ωT )|
. (31)

Transfer function (24) is a linear-time-invariant second-

order bandpass filter having, as shown by (31), a spec-

tral peak in the magnitude at ω0 and taking the inverse

transform of (24) yields an undamped sinusoidal oscilla-

tor that closely matches (21). Though (24) is well behaved

for static ω0, it has problems when made time varying. It

could be made tuneable by introducing a loss as in [7], but

this would have consequences when placed in a feedback

system where the loss would accrue.

2.3 Discrete-Time Complex Oscillator

A point in the complex plane zs(0) = Aejφ0 can be made

to rotate with angle ωiT via a complex multiply

zs(1) = ejωiTAejφ0 , (32)

or equivalently, as shown in [4], using a power preserving

rotational matrix. If ωi is static (indicated here by subscript

s), regular rotations every time sample n = 0, 1, ..., N − 1
produces an oscillator given by the complex sinusoid:

zs(n) = (ejωiT )nAejφ0 = Aej(ωinT+φ0), (33)

having instantaneous phase ωinT + φ0, initial phase φ0,

and instantaneous angular frequency ωi. If however, ωi

is made time varying, the representation in (33) no longer

applies and the relationship between frequency and phase

given in (6) must be considered before defining the oscil-

lator. For example, if the oscillator frequency changes lin-

early from ω1 to ω2 over Td seconds, the instantaneous

phase would be given by

∫ t

0

(
ω2 − ω1

Td
t+ ω1

)

dt =
ω2 − ω1

2Td
t2+ω1t+C, (34)
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Figure 2. Though implementing an oscillator via a rotation

of its previous sample (akin to a numerical integration of

frequency) produces a similar result to implementing the

phase analytically (top), there is a difference, and the error

observed (bottom) can compound.

yielding the discrete-time oscillator (by substitution t →
nT ) notably different from (33):

zl(n) = exp

[

j

((
ω2 − ω1

2Td
nT + ω1

)

nT + φ0

)]

,

(35)

where initial phase φ0 is set to the constant of integration

C. It is possible to implement this oscillator via sample-

by-sample rotations of angle ωi(n)T though not of an ini-

tial complex value as in (33), but rather of its current state:

ejωi(n)T zl(n− 1) = ejωi(n)T ejωi(n−1)T , ..., ejωi(0)TAejφ0

= exp

[

j

n∑

m=0

ωi(m)T

]

Aejφ0 . (36)

The summation in (36) can also be viewed as a numeri-

cal integration of the instantaneous frequency, which, as

shown in Figure 2, comes at a cost of numerical error when

compared to using the instantaneous phase (34) directly.

Though in many cases this error is negligible (and inaudi-

ble), it is the reason why, as discussed in the following

section, it is often preferable to implement frequency mod-

ulation (FM) as phase modulation (PM), especially in cases

where networks of multiple carriers can cause such error to

compound.

3. FM/PM REPRESENTATION

In the well-known synthesis technique first introduced by

Chowning [8], the frequency/phase of an oscillator may be

made to change sinusoidally, introducing sidebands about

a carrier frequency and changing the sound’s spectrum in

a way that’s dependent on the amplitude, phase, and fre-

quency of the modulating sinusoid. In frequency mod-

ulation (FM) synthesis, a carrier oscillator has a center

frequency ωc that is modulated by a sinusoid having am-

plitude d and frequency ωm, yielding instantaneous fre-

quency

ωi(t) = ωc + d cos(ωmt), (37)

where d determines the oscillator’s peak frequency devia-

tion from ωc. Notably, (37) has a form very similar to (5)



with d2,3,4 = 0, and this will be developed in the next sec-

tion. The corresponding instantaneous phase is obtained

by integrating (37) according to (6), yielding

θi(t) =

∫ t

0

ωi(t) dt = ωct+
d

ωm
sin(ωmt) + φc, (38)

showing that FM may be equivalently expressed as phase

modulation (PM), where it is the initial phase term that is

sinusoidally time varying,

φ(t) = I sin(ωmt) + φc, (39)

with amplitude

I =
d

ωm
, (40)

a value known as the index of modulation because of how

it influences the magnitude of sidebands at fc ± kfm in

the resulting spectrum. FM synthesis is frequently imple-

mented as PM, preferred because of improved numerical

properties (such as those illustrated in Figure 2) and accu-

racy less dependent on sampling rate, with the real signal

being given by

xc(t) = cos(ωct+ I sin(ωmt)), (41)

or, as the real part of the complex exponential sinusoids,

xc(t) = ℜ{zc(t)} = ℜ
{

ej(ωct+ ℑ{zm(t)})} , (42)

where

ℑ{zm(t)} = I sin(ωmt). (43)

Using the complex form has the power-preserving advan-

tage discussed above and in [4], and allows FM to be repre-

sented as a sample-by-sample rotation of its current state,

shown by beginning with (42) at time sample n− 1:

zc(n− 1) = ej(ωc(n− 1)T + ℑ{zm(n− 1)}), (44)

then adding and subtracting ℑ{zm(n)} to its argument

∠zc(n− 1) = j(ωcnT + ℑ{zm(n)} − ωcT

−ℑ{zm(n)}+ ℑ{zm(n− 1)})
= ∠zc(n)

−j(ωcT + ℑ{zm(n)− zm(n− 1)})
(45)

so that zc(n − 1) may be represented first as a multiplica-

tion by zc(n)

zc(n− 1) = zc(n)e
−j(ωcT + ℑ{zm(n)− zm(n− 1)}),

(46)

and then finally in its causal form

zc(n) = ej(ωcT + ℑ{zm(n)− zm(n− 1)})zc(n− 1).
(47)

Notably, this result is equivalent to taking the derivative

of the phase with respect to continusous-time t to produce

instantaneous frequency,

ωi(t) =
d

dt
(ωct+ ℑ{zm(t)}) = ωc +

d

dt
ℑ{zm(t)},

(48)

then using a finite different approximation to obtain its

discrete-time form

ωi(n) = ωc +
ℑ{zm(n)} − ℑ{zm(n− 1)}

T
, (49)

which, when normalized by the sampling period T yields

the angle of rotation in (47).

4. SELF COUPLING AND LOOPBACK FM

Applying the above to the self-coupled oscillator in (5)

where d2,3,4 = 0 and the instantaneous frequency is ωi(t) =
ω0 + d1ℜ{z1(t)}, it is evident from (44 - 47) that this sys-

tem may be expressed as a sample-by-sample rotation of its

current state, where the carrier oscillator is “looped back”

to serve as the modulator of its frequency, with added unit

sample delay necessary for implementation:

zc(n) = ej (ωc +Bωcℜ{zc(n− 1)})T zc(n− 1), (50)

and modulation amplitude Bωc = d determines the peak

frequency deviation from ωc, while the loopback coeffi-

cient B functions as the index of modulation according to

(40).

A more accurate representation of (50) is expected of one

in which a delay of one sample is not required and which

does not essentially implement a numerical approximation

of the system’s instantaneous phase, as shown by (47 - 49).

Integrating the instantaneous frequency ωc+Bωcℜ{zc(t)}
with respect to continuous-time t yields an alternate repre-

sentation of the system in which the corresponding instan-

taneous phase is given by

θi(t) =

∫ t

0

ωc +Bωcℜ{zc(t)}dt

= ωct+Bωcℜ
{∫ t

0

zc(t) dt

}

. (51)

Though the integral term in (51) may be implemented via

numerical integration to yield the discrete-time representa-

tion of instantaneous phase:

θi(n) = ωcnT +BωcTℜ
{

n−1∑

k=0

zc(k)

}

, (52)

this solution does not improve upon—and in fact is ex-

actly equal to—equation (50) when incorporated into the

phase modulation representation ejθi(n). Furthermore, it

does not provide greater understanding of the system’s be-

haviour, and in particular, reveal at what frequency it will

sound. It is preferable, therefore, to solve (51) analytically.

4.1 Analytic Solution to θi(t) for static B

Figure 3 plots the real part of zc(n) given in (50), show-

ing a periodic signal having a period of M samples and a

sounding frequency of f0 = fs/M Hz, a signal that can

also be described by the real part of

z0(n) =
b0 + ejω0nT

1 + b0ejω0nT
, (53)

where ω0 = 2πfs/M . Equation (53) is similar in form to

the transfer function of the “stretched” allpass filter used in
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Figure 3. The real part of zc(n) given in (50) is plotted

(with offset) for 4 linearly spaced values of B, showing

a nonlinear relationship to resulting period in samples M
(and sounding frequency f0 = fs/M Hz,fs = 44.1 kHz).
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Figure 4. The real part of zc(n) given in (50) is plotted

with 4 linearly spaced values of fc = ωc/(2π) showing

a linear relationship with resulting period in samples M
(and sounding frequency f0 = fs/M Hz, fs = 44.1 kHz).

[9], though here it is used as a time-domain signal that is a

function of time sample n—a complex oscillator of which

we ultimately take the real part to produce the sounding

waveform. It is also interesting to observe a similarity be-

tween the waveforms in Figures 3-5 and those produced

by feedback amplitude modulation (FBAM) [10] for in-

put cos(ω0nT ), as well as the related time series in [11].

Though the pulse shape and offset are indeed different,

their similarity does suggest further study of their relation-

ship would be worthwhile.

Though Figure 6 shows z0(n) and zc(n) diverging for in-

creased values of fc = ωc/(2π) and B (not shown), this is

improved with increased sampling rate (reducing numeri-

cal error as well as the effect of the unit-sample delay in

(50)), providing confidence that z0(n) is actually the pre-

ferred and more accurate solution to the self-coupled os-

cillator. With this assumption, the integral of zc(t) with

respect to continuous-time t in (51) may now be expressed

analytically by the integral of continuous-time z0(t) (ob-

tained by substitution nT → t in z0(n) given in (53))

which, as shown in Appendix A for static ω0 and b0, is
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fs/2. This strongly suggests aliasing, and artifacts disap-
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given by

∫ t

0

z0(t) dt = b0t+
1− b20
jω0b0

log
(
1 + b0e

jω0t
)
. (54)

Representing the term inside the logarithm in polar form

1 + b0e
jω0t = A(t)eφ(t), (55)

where

A(t) =
√

1 + 2b0 cos(ω0t) + b20 (56)

and

φ(t) = tan−1

(
b0 sin(ω0t)

1 + b0 cos(ω0t)

)

, (57)

the real part of (54) may be expressed as

ℜ
{∫ t

0

z0(t) dt

}

= b0t+

ℜ
{
1− b20
jω0b0

(log(A(t)) + jφ(t))

}

= b0t+
1− b20
ω0b0

φ(t), (58)

and the final expression for phase θi(t) in (51) becomes

θi(t) = ωct+Bωcℜ
{∫ t

0

zc(t) dt

}

.

= ωct(1 +Bb0) +Bωc
1− b20
ω0b0

φ(t). (59)
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Figure 6. ℜ{zc(n)} (solid) and ℜ{z0(n)} (broken) show

increasingly less agreement over time for higher fc and

higher B (not shown) as they drift out of phase.

for yet unknown values b0 and ω0, solved in terms of loop-

back FM parameters fc and B in the following section.

4.2 Mapping b0 and ω0 to Loopback FM Parameters

Expressions for parameters b0 and ω0 may be obtained by

first setting the angle of z0(t), well known but derived in

Appendix B as

∠z0(t) = ω0t− 2 tan−1

(
b0 sin(ω0t)

1 + b0 cos(ω0t)

)

, (60)

equal to the instantaneous phase of the loopback FM rep-

resentation given in (59):

ωct(1 +Bb0) +Bωc
1− b20
ω0b0

φ(t) = ω0t− 2φ(t), (61)

where φ(t) is given in (57). Setting linear terms on the left-

and right-hand side (LHS and RHS) of (61) to be equal,

yields one expressions for ω0:

ω0 = ωc(1 +Bb0), (62)

while setting LHS and RHS oscillating terms to be equal

yields a second expression for ω0:

ω0 =
ωcB(1− b20)

−2b0
. (63)

Setting (62) equal to (63) yields the quadratic equation

Bb20 + 2b0 +B = 0, (64)

where b0 is given in terms of loopback FM parameter B:

b0 =
±
√
1−B2 − 1

B
. (65)

Finally, substituting (65) into (62) yields an expression for

ω0 as a function of loopback FM parameters B and ωc:

ω0 = ωc(1 +B
±
√
1−B2 − 1

B
) = ±ωc

√

1−B2. (66)

4.3 Allowing for Time-Varying Sounding Frequency

The derivation in the previous section assumes a static loop-

back variable B which, by (66), also produces a static sound-

ing frequency ω0 and static b0. To produce a change in

sounding frequency over time, B must be made time vary-

ing and the expression for z0(t) made more generalized:

z0(t) =
b0 + ejθ0(t)

1 + b0ejθ0(t)
, (67)

where the argument of the exponential terms is the integral

with respect to time of time-varying frequency ω0(t):

θ0(t) =

∫ t

0

ω0(t) = ±
∫ t

0

ωc

√

1−B(t)2 dt. (68)

and ω0(t) is adapted from (66) for time-varying B(t). Clearly

the expression resulting from (68) is dependent on the na-

ture of function B(t).
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Figure 7. Waveform ℜ{zg(n)} (top) show that introduc-

ing a scalar multiple g to the loopback FM equation (69)

introduces a change in both sounding frequency and am-

plitude. Waveform ℜ{zc(n)} (bottom) shows that setting

the feedback coefficient to B(n) = gn produces the same

pitch change but without imposing an amplitude envelope.

Consider the case where the complex oscillator is multi-

plied by a scalar value g such that when it is looped back,

its amplitude envelope decays exponentially:

zg(n) = gej (ωc + ωcℜ{zg(n− 1)})T zg(n− 1), (69)

where here B = 1. As shown in Figure 7, and evident

from (69), the system will have both an amplitude envelope

and a time-varying frequency, the latter equal to that of

the loopback FM oscillator (50) in which B is made time

varying with exponential function

B(n) = gn, n = 0, 1, ..., N − 1. (70)

Representing loopback FM with time-varying B(n) instead

of (69) allows amplitude and (sounding) frequency envelopes

to be divorced and independently described. If B(n) is

exponentially time varying according to (70), θ0 may be

adapted from (68) and represented as a function of discrete-

time sample n:

θ0(n) =

∫ n

0

ω0(n)T dn = ±
∫ n

0

ωcT
√

1− g2n dn,

(71)



which, as shown in Appendix C, yields final expression

θ0(n) =
ωcT

log(g)

(√

1− g2n − tanh−1(
√

1− g2n) + C
)

,

(72)

where C is an integration constant. Of course a differ-

ent solution would result for θ0(n) if B(n) were made to

change linearly with sample n:

Bl(n) = kn+ l, n = 0, 1, ...N, (73)

yielding

θ0(n) =

∫ n

0

ωc

√

1−Bl(n)2 dn

=
ωcT

2k

(

Bl(n)
√

1−Bl(n)2 + sin−1 B(n)
)

+ C.

(74)

Figure 8 shows the spectrum of z0(n) overlaid with a dark

curve plotting time-varying fundamental frequency f0 =

fc
√

1−B(n) for B(n) = gn (top) and B(n) = kn + l
(bottom). The close fit between curve and lowest spectral

harmonic shows that the fundamental frequency of loop-

back FM can be accurately predicted for both static and

time-varying B and, in the latter case, use of (72) and (74)

in expression for z0(n) in (67) is valid.
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Figure 8. The spectrum of z0(n) with time-varying

argument θ0(n) overlaid with fundamental frequency

fc
√

1−B(n) (dark curve) for B(n) = gn (top) and

B(n) = kn + l (bottom), validating use of θ0(n) in

z0(n) for known functions B(n) and showing sounding

frequency of loopback FM can be accurately predicted.

It is clear that when B changes, so does the expression for

θ0, which might be seen as a limitation of this approach,

except that it could be argued there are only a few ways

in which one would expect B to change, and these can

be expressed as functions with more subtle changes being

accomplished via parameters settings. Furthermore, it is

always possible to apply a numerical integration scheme if

an analytical solution is not available.

Finally, it should also be noted that though it is possible

to set a desired trajectory for sounding frequency ω0(t) in

z0(n), there is no guarantee this will be mappable to loop-

back FM parameters and the oscillator given by (50).

5. CONCLUSIONS

This work explored possible representations of the non-

linearly self-coupled oscillator, laying the groundwork for

analysis and synthesis of systems with coupling in multi-

ple modes. Beginning with the physical representation of

the mass-spring system, an implementation of the oscilla-

tor using the bilinear transform is proposed, producing a

biquadratic resonant filter that, without loss, is marginally

stable and not well behaved when made time varying. Nev-

ertheless, the assumed solution for equation of motion with

frequency ω0 + d1ℜ{zt(t)}, which could serve as an im-

plementation when made discrete, is shown to be valid.

The modulation of the oscillator’s frequency is formu-

lated with a variant of FM synthesis called loopback FM,

whereby the carrier oscillator loops back to serve as a mod-

ulator of its own frequency. Because of the integral rela-

tionship between frequency and phase, an alternate more

numerically accurate closed-form representation of the sys-

tem is required to produce an analytical solution to the

oscillator’s phase, ultimately revealing it’s sounding fre-

quency. This closed-form representation of the loopback

FM oscillator is presented first in its static case, yielding

mappings between the parameters of the two representa-

tions, and then in its more general form to allow for time-

varying sounding frequency.
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Appendix A

The integral of z0(t) with respect to t may be represented

as the sum of two integral terms:

∫ t

0

z0(t) dt =

∫ t

0

b0
1 + b0ejω0t

dt+

∫ t

0

ejω0t

1 + b0ejω0t
dt.

(75)

The first term of (75) may be represented by

∫ t

0

b0
1 + b0ejω0t

dt = b0

∫ t

0

(
1 + b0e

jω0t − b0e
jω0t

1 + b0ejω0t

)

dt,

(76)

which, when employing u-substitution where

u = 1 + b0e
jω0t,

du

dt
= jω0b0e

jω0t, dt =
du

jω0b0ejω0t
,

(77)

may be further expressed as

∫ t

0

b0
1 + b0ejω0t

dt = b0t− b0

∫ t

0

b0e
jω0t

u

du

jω0b0ejω0t

= b0t−
b0
jω0

∫ u

0

1

u
du

= b0t−
b0
jω0

log(u). (78)



The second term of (75) is given by
∫ t

0

ejω0t

1 + b0ejω0t
dt =

∫ t

0

ejω0t

u

du

jω0b0ejω0t

=
1

jω0b0

∫ u

0

1

u
du

=
1

jω0b0
log(u). (79)

Summing (78) and (79) and substituting values for u in

(77) yields the final expression for the integral of z0(t):
∫ t

0

z0(t) dt = b0t+
(1− b20) log

(
1 + b0e

jω0t
)

jω0b0
. (80)

Appendix B

The angle of an expression have the form

H(θ) =
c+ ejθ

1 + cejθ
, (81)

is given by

∠H(θ) = ∠
(
c+ ejθ

)
− ∠

(
1 + cejθ

)

= ∠
(
ejθ

(
1 + ce−jθ

))
− ∠

(
1 + cejθ

)

= ∠ejθ + ∠
(
1 + ce−jθ

)
− ∠

(
1 + cejθ

)

= θ − 2 tan−1

(
c sin(θ)

1 + c cos(θ)

)

.

Appendix C

Employing u-substitution where u =
√

1− g2n and

du

dn
= −1

✁2
(1− g2n)−1/2

✁2g
2n log(g), (82)

it follows that −g2n = u2 − 1 and

dn = −
√

1− g2n

g2n log(g)
du =

u

log(g)(u2 − 1)
du, (83)

so that θ0(n) in (71) may be expressed as

θ0(n) = ±
∫ n

0

ωcTu dn =
ωcT

log(g)

∫ u

0

u2

u2 − 1
du. (84)

The integral term in (84) may be solved as
∫ u

0

u2

u2 − 1
du =

∫ u

0

(

1− 1

(1 + u)(1− u)

)

du

=

∫ u

0

1 du−
∫ (

(1 + u) + (1− u)

2(1 + u)(1− u)

)

du

= u− 1

2

∫ u

0

(
1

1− u
+

1

1 + u

)

du.

Making substitutions

s = 1− u, ds = −du and p = 1 + u, dp = du (85)

yields
∫ u

0

u2

u2 − 1
du = u+

1

2

∫ s

0

1

s
ds− 1

2

∫ p

0

1

p
dp

= u− 1

2
(log(p)− log(s))

= u− 1

2
log

(
1 + u

1− u

)

+ C

= u− tanh−1(u) + C,

where C is the integration constant, and the final expres-

sion for θ0(n) is

θ0(n) =
ωcT

log(g)

(√

1− g2n − tanh−1
(√

1− g2n
)

+ C
)

.

(86)
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