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ABSTRACT

This study investigates the use of non-linear unsupervised 
dimensionality reduction techniques to compress a music 
dataset into a low-dimensional representation which can be 
used in turn for the synthesis of new sounds. We systemati-
cally compare (shallow) autoencoders (AEs), deep autoen-
coders (DAEs), recurrent autoencoders (with Long Short-
Term Memory cells – LSTM-AEs) and variational autoen-
coders (VAEs) with principal component analysis (PCA) 
for representing the high-resolution short-term magnitude 
spectrum of a large and dense dataset of music notes into 
a lower-dimensional vector (and then convert it back to a 
magnitude spectrum used for sound resynthesis). Our ex-
periments were conducted on the publicly available multi-
instrument and multi-pitch database NSynth. Interestingly 
and contrary to the recent literature on image processing, 
we can show that PCA systematically outperforms shal-
low AE. Only deep and recurrent architectures (DAEs and 
LSTM-AEs) lead to a lower reconstruction error. The op-
timization criterion in VAEs being the sum of the recon-
struction error and a regularization term, it naturally leads 
to a lower reconstruction accuracy than DAEs but we show 
that VAEs are still able to outperform PCA while provid-
ing a low-dimensional latent space with nice “usability” 
properties. We also provide corresponding objective mea-
sures of perceptual audio quality (PEMO-Q scores), which 
generally correlate well with the reconstruction error.

1. INTRODUCTION

Deep neural networks, and in particular those trained in 
an unsupervised (or self-supervised) way such as autoen-
coders [1] or GANs [2], have shown nice properties to ex-
tract latent representations from large and complex datasets. 
Such latent representations can be sampled to generate new 
data. These types of models are currently widely used 
for image and video generation [3–5]. In the context of 
a project aiming at designing a music sound synthesizer 
driven by high-level control parameters and propelled by 
data-driven machine learning, we investigate the use of 
such techniques for music sound generation as an alter-
native to classical music sound synthesis techniques like
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additive synthesis, subtractive synthesis, frequency modu-
lation, wavetable synthesis or physical modeling [6].

So far, only a few studies in audio processing have been
proposed in this line, with a general principle that is sim-
ilar to image synthesis/transformation: projection of the
signal space into a low-dimensional latent space (encoding
or embedding), modification of the latent coefficients, and
inverse transformation of the modified latent coefficients
into the original signal space (decoding).

In [7, 8], the authors implemented this principle with au-
toencoders to process normalized magnitude spectra. An
autoencoder (AE) is a specific type of artificial neural net-
work (ANN) architecture which is trained to reconstruct
the input at the output layer, after passing through the la-
tent space. Evaluation was made by computing the mean
squared error (MSE) between the original and the recon-
structed magnitude spectra.

In [9], NSynth, an audio synthesis method based on a
time-domain autoencoder inspired from the WaveNet speech
synthesizer [10] was proposed. The authors investigated
the use of this model to find a high-level latent space well-
suited for interpolation between instruments. Their au-
toencoder is conditioned on pitch and is fed with raw au-
dio from their large-scale multi-instrument and multi-pitch
database (the NSynth dataset). This approach led to promis-
ing results but has a high computational cost.

Another technique to synthesize data using deep learning
is the so-called variational autoencoder (VAE) originally
proposed in [11], which is now popular for image gener-
ation. A VAE can be seen as a probabilistic/generative
version of an AE. Importantly, in a VAE, a prior can be
placed on the distribution of the latent variables, so that
they are well suited for the control of the generation of new
data. This has been recently exploited for the modeling and
transformation of speech signals [12, 13] and also for mu-
sic sounds synthesis [14], incorporating some fitting of the
latent space with a perceptual timbre space. VAEs have
also been recently used for speech enhancement [15–17].

In line with the above-presented studies, the goal of the
present paper is i) to provide an extensive comparison of
several autoencoder architectures including shallow, deep,
recurrent and variational autoencoders, with a systematic
comparison to a linear dimensionality reduction technique,
in the present case Principal Component Analysis (PCA)
(to the best of our knowledge, such comparison of non-
linear approaches with a linear one has never been done
in previous studies). This is done using both an objec-
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Figure 1: Global diagram of the sound analysis-transformation-synthesis process.

tive physical measure (root mean squared error – RMSE)
and an objective perceptual measure (PEMO-Q [18]); ii)
to compare the properties of the latent space in terms of
correlation between the extracted dimensions; and iii) to
illustrate how interpolation in the latent space can be per-
formed to create interesting hybrid sounds.

2. METHODOLOGY

The global methodology applied for (V)AE-based analysis-
transformation-synthesis of audio signals in this study is in
line with previous works [7, 8, 12, 13]. It is illustrated in
Fig. 1 and is described in the next subsections.

2.1 Analysis-Synthesis

First, a Short-Term Fourier Transform (STFT) analysis is
performed on the input audio signal. The magnitude spec-
tra are sent to the model (encoder input) on a frame-by-
frame basis, and the phase spectra are stored for the syn-
thesis stage. After possible modifications of the extracted
latent variables (at the bottleneck layer output, see next
subsection), the output magnitude spectra is provided by
the decoder. The output audio signal is synthesized by
combining the decoded magnitude spectra with the phase
spectra, and by applying inverse STFT with overlap-add.
If the latent coefficients are not modified in between en-
coding and decoding, the decoded magnitude spectra are
close to the original ones and the original phase spectra
can be directly used for good quality waveform reconstruc-
tion. If the latent coefficients are modified so that the de-
coded magnitude spectra become different from the origi-
nal one, then the Griffin & Lim algorithm [19] is used to
estimate/refine the phase spectra (the original phase spec-
tra are used for initialization) and finally reconstruct the
time-domain signal. A few more technical details regard-
ing data pre-processing are given in Section 3.2.

2.2 Dimensionality Reduction Techniques

Principal Component Analysis: As a baseline, we inves-
tigated the use of PCA to reduce the dimensionality of the
input vector x. PCA is the optimal linear orthogonal trans-
formation that provides a new coordinate system (i.e. the
latent space) in which basis vectors follow modes of great-
est variance in the original data [20].

Autoencoder: An AE is a specific kind of ANN tradition-
ally used for dimensionality reduction thanks to its diabolo
shape [21], see Fig. 2. It is composed of an encoder and a
decoder. The encoder maps a high-dimensional low-level
input vector x into a low-dimensional higher-level latent
vector z, which is assumed to nicely encode properties or

attributes of x. Similarly, the decoder reconstructs an esti-
mate x̂ of the input vector x from the latent vector z. The
model is written as:

z = fenc(Wencx+benc) and x̂ = fdec(Wdecz+bdec),

where fenc and fdec are (entry-wise) non-linear activation
functions, Wenc and Wdec are weight matrices and benc
and bdec are bias vectors. For regression tasks (such as the
one considered in this study), a linear activation function
is generally used for the output layer.

At training time, the weight matrices and the bias vec-
tors are learned by minimizing some cost function over a
training dataset. Here we consider the mean squared error
(MSE) between the input x and the output x̂.

The model can be extended by adding hidden layers in
both the encoder and decoder to create a so-called deep
autoencoder (DAE), as illustrated in Fig. 2. This kind of
architecture can be trained globally (end-to-end) or layer-
by-layer by considering the DAE as a stack of shallow AEs
[1, 22].

Figure 2: General architecture of a (deep) autoencoder.

LSTM Autoencoder: In a general manner, a recurrent
neural network (RNN) is an ANN where the output of a
given hidden layer does not depend only on the output of
the previous layer (as in a feedforward architecture) but
also on the internal state of the network. Such internal state
can be defined as the output of each hidden neuron when
processing the previous input observations. They are thus
well-suited to process time series of data and capture their
time dependencies. Such networks are here expected to ex-
tract latent representations that encode some aspects of the
sound dynamics. Among different existing RNN architec-
tures, in this study we used the Long Short-Term Memory
(LSTM) network [23], which is known to tackle correctly
the so-called vanishing gradient problem in RNNs [24].
The structure of the model depicted in Fig. 2 still holds
while replacing the classical neuronal cells by LSTM cells,
leading to a LSTM-AE. The cost function to optimize re-
mains the same, i.e. the MSE between the input x and the



output x̂. However, the model is much more complex and
has more parameters to train [23].

Variational Autoencoder: A VAE can be seen as a prob-
abilistic AE which delivers a parametric model of the data
distribution, such as:

pθ(x, z) = pθ(x|z)pθ(z),

where θ denotes the set of distribution parameters. In the
present context, the likelihood function pθ(x|z) plays the
role of a probabilistic decoder which models how the gen-
eration of observed data x is conditioned on the latent data
z. The prior distribution pθ(z) is used to structure (or regu-
larize) the latent space. Typically a standard Gaussian dis-
tribution pθ(z) = N (z;0, I) is used, where I is the identity
matrix [11]. This encourages the latent coefficients to be
mutually orthogonal and lie on a similar range. Such prop-
erties may be of potential interest for using the extracted
latent coefficients as control parameters of a music sound
generator. The likelihood pθ(x|z) is defined as a Gaussian
density:

pθ(x|z) = N (x;µθ(z),σ
2
θ(z)),

where µθ(z) and σ2
θ(z) are the outputs of the decoder net-

work (hence θ = {Wdec,bdec}). Note that σ2
θ(z) indif-

ferently denotes the covariance matrix of the distribution,
which is assumed diagonal, or the vector of its diagonal
entries.

The exact posterior distribution pθ(z|x) corresponding to
the above model is intractable. It is approximated with a
tractable parametric model qφ(z|x) that will play the role
of the corresponding probabilistic encoder. This model
generally has a form similar to the decoder:

qφ(z|x) = N (z; µ̃φ(x), σ̃
2
φ(x)),

where µ̃φ(x) and σ̃2
φ(x) are the outputs of the encoder

ANN (the parameter set φ is composed of Wenc and benc;
σ̃2
φ(x) is a diagonal covariance matrix or is the vector of

its diagonal entries).
Training of the VAE model, i.e. estimation of θ and φ, is

done by maximizing the marginal log-likelihood log pθ(x)
over a large training dataset of vectors x. It can be shown
that the marginal log-likelihood can be written as [11]:

log pθ(x) = DKL(qφ(z|x)|pθ(z|x)) + L(φ, θ,x),

where DKL ≥ 0 denotes the Kullback-Leibler divergence
(KLD) andL(φ, θ,x) is the variational lower bound (VLB)
given by:

L(φ, θ,x) = −DKL(qφ(z|x)|pθ(z))︸ ︷︷ ︸
regularization

+Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction accuracy

.

(1)
In practice, the model is trained by maximizing L(φ, θ,x)
over the training dataset with respect to parameters φ and
θ. We can see that the VLB is the sum of two terms. The
first term acts as a regularizer encouraging the approximate
posterior qφ(z|x) to be close to the prior pθ(z). The second
term represents the average reconstruction accuracy. Since
the expectation w.r.t. qφ(z|x) is difficult to compute ana-
lytically, it is approximated using a Monte Carlo estimate

and samples drawn from qφ(z|x). For other technical de-
tails that are not relevant here, the reader is referred to [11].

As discussed in [12] and [25], a weighting factor, denoted
β, can be introduced in (1) to balance the regularization
and reconstruction terms:

L(φ, θ, β,x) = −β DKL(qφ(z|x)|pθ(z))
+ Eqφ(z|x)[log pθ(x|z)], (2)

This enables the user to better control the trade-off between
output signal quality and compactness/orthogonality of the
latent coefficients z. Indeed, if the reconstruction term is
too strong relatively to the regularization term, then the dis-
tribution of the latent space will be poorly constrained by
the prior pθ(z), turning the VAE into an AE. Conversely, if
it is too weak, then the model may focus too much on con-
straining the latent coefficients to follow the prior distribu-
tion while providing poor signal reconstruction [25]. In the
present work we used this type of β-VAE and we present
the results obtained with different values of β. These latter
were selected manually after pilot experiments to ensure
that the values of the regularization and the reconstruction
accuracy terms in (2) are in the same range.

3. EXPERIMENTS

3.1 Dataset

In this study, we used the NSynth dataset introduced in [9].
This is a large database (more than 30 GB) of 4s long
monophonic music sounds sampled at 16 kHz. They rep-
resent 1,006 different instruments generating notes with
different pitches (from MIDI 21 to 108) and different ve-
locities (5 different levels from 25 to 127). To generate
these samples different methods were used: Some acoustic
and electronic instruments were recorded and some oth-
ers were synthesized. The dataset is labeled with: i) in-
strument family (e.g., keyboard, guitar, synth lead, reed),
ii) source (acoustic, electronic or synthetic), iii) instrument
index within the instrument family, iv) pitch value, and
v) velocity value. Some other labels qualitatively describe
the samples, e.g. brightness or distortion, but they were not
used in our work.

To train our models, we used a subset of 10,000 different
sounds randomly chosen from this NSynth database, rep-
resenting all families of instruments, different pitches and
different velocities. We split this dataset into a training set
(80%) and testing set (20%). During the training phase,
20% of the training set was kept for validation. In or-
der to have a statistically robust evaluation, a k-fold cross-
validation procedure with k = 5 was used to train and test
all different models (we divided the dataset into 5 folds,
used 4 of them for training and the remaining one for test,
and repeated this procedure 5 times so that each sound of
the initial dataset was used once for testing).

3.2 Data Pre-Processing

For magnitude and phase short-term spectra extraction, we
applied a 1,024-point STFT to the input signal using a slid-
ing Hamming window with 50% overlap. Frames corre-



sponding to silence segments were removed. The corre-
sponding 513-point positive-frequency magnitude spectra
were then converted to log-scale and normalized in energy:
We fixed the maximum of each log-spectrum input vector
to 0 dB (the energy coefficient was stored to be used for
signal reconstruction). Then, the log-spectra were thresh-
olded, i.e. every log-magnitude below a fixed threshold
was set to the threshold value. Finally they were normal-
ized between −1 and 1, which is a usual procedure for
ANN inputs. Three threshold values were tested: −80 dB,
−90 dB and −100 dB. Corresponding denormalization,
log-to-linear conversion and energy equalization were ap-
plied after the decoder, before signal reconstruction with
transmitted phases and inverse STFT with overlap-add.

3.3 Autoencoder Implementations

We tried different types of autoencoders: AE, DAE, LSTM-
AE and VAE. For all the models we investigated several
values for the encoding dimension, i.e. the size of the bot-
tleneck layer / latent variable vector, from enc = 4 to 100
(with a fine-grained sampling for enc ≤ 16). Different ar-
chitectures were tested for the DAEs: [513, 128, enc, 128,
513], [513, 256, enc, 256, 513] and [513, 256, 128, enc,
128, 256, 513]. Concerning the LSTM-AE, our imple-
mentation used two vanilla forward LSTM layers (one for
the encoder and one for the decoder) with non-linear ac-
tivation functions giving the following architecture: [513,
enc, 513]. Both LSTM layers were designed for many-to-
many sequence learning, meaning that a sequence of in-
puts, i.e. of spectral magnitude vectors, is encoded into a
sequence of latent vectors of same temporal size and then
decoded back to a sequence of reconstructed spectral mag-
nitude vectors. The architecture we used for the VAE was
[513, 128, enc, 128, 513] and we tested different values of
the weight factor β. For all the neural models, we tested
different pairs of activation functions for the hidden lay-
ers and output layer, respectively: (tanh, linear), (sigmoid,
linear) and (tanh, sigmoid).

AE, DAE, LSTM-AE and VAE models were implemented
using the Keras toolkit [26] (we used the scikit-learn [27]
toolkit for the PCA). Training was performed using the
Adam optimizer [28] with a learning rate of 10−3 over 600
epochs with early stopping criterion (with a patience of 30
epochs) and a batch size of 512. The DAEs were trained in
two different ways, with and without layer-wise training.

3.4 Experimental Results for Analysis-Resynthesis

Fig. 3 shows the reconstruction error (RMSE in dB) ob-
tained with PCA, AE, DAE and LSTM-AE models on the
test set (averaged over the 5 folds of the cross-validation
procedure), as a function of the dimension of the latent
space. The results obtained with the VAE (using the same
protocol, and for different β values) are shown in Fig. 4.
For the sake of clarity, we present here only the results
obtained for i) a threshold of −100 dB applied on the log-
spectra, and ii) a restricted set of the tested AE, DAE and
VAE architectures (listed in the legends of the figures).
Similar trends were observed for other thresholds and other
tested architectures. For each considered dimension of the

latent space, a 95% confidence interval of each reconstruc-
tion error was obtained by conducting paired t-test, consid-
ering each sound (i.e. each audio file) of the test set as an
independent sample.

RMSE provides a global measure of magnitude spectra
reconstruction but can be insufficiently correlated to per-
ception depending on which spectral components are cor-
rectly or poorly reconstructed. To address this classical is-
sue in audio processing, we also calculated objective mea-
sures of perceptual audio quality, namely PEMO-Q scores
[18]. The results are reported in Fig. 5 and Fig. 6.

As expected, the RMSE decreases with the dimension of
the latent space for all methods. Interestingly, PCA sys-
tematically outperforms (or at worst equals) shallow AE.
This somehow contradicts recent studies on image com-
pression for which a better reconstruction is obtained with
AE compared to PCA [1]. To confirm this unexpected
result, we replicated our PCA vs. AE experiment on the
MNIST image dataset [29], using the same AE implemen-
tation and a standard image preprocessing (i.e. vectoriza-
tion of each 28 × 28 pixels gray-scale image into a 784-
dimensional feature vector). In accordance with the lit-
erature, the best performance was systematically obtained
with AE (for any considered dimension of the latent space).
This difference of AE’s behavior when considering audio
and image data was unexpected and, to our knowledge, it
has never been reported in the literature.

Then, contrary to (shallow) AE, DAEs systematically out-
perform PCA (and thus AE), with up to almost 20% im-
provement (for enc = 12 and enc = 16). Our experiments
did not reveal notable benefit of layer-by-layer DAE train-
ing over end-to-end training. Importantly, for small di-
mensions of the latent space (e.g. smaller than 16), RMSE
obtained with DAE decreases much faster than with PCA
and AE. This is even more the case for LSTM-AE which
shows an improvement of the reconstruction error of more
than 23% over PCA (for enc = 12 and enc = 16). These
results confirm the benefits of using a more complex ar-
chitecture than shallow AE, here deep or recurrent, to effi-
ciently extract high-level abstractions and compress the au-
dio space. This is of great interest for sound synthesis for
which the latent space has to be kept as low-dimensional
as possible (while maintaining a good reconstruction accu-
racy) in order to be “controlled” by a musician.

Fig. 4 shows that the overall performance of VAEs is in
between the performance of DAEs (even equals DAEs for
lower encoding dimensions, say smaller than 12) and the
performances of PCA and AE. Let us recall that minimiz-
ing the reconstruction accuracy is not the only goal of VAE
which also aims at constraining the distribution of the la-
tent space. As shown in Fig. 4, the parameter β, which
balances regularization and reconstruction accuracy in (2),
plays a major role. As expected, high β values foster regu-
larization at the expense of reconstruction accuracy. How-
ever, with β 6 2.10−6 the VAE clearly outperforms PCA,
e.g. up to 20% for enc = 12.

It can be noticed that when the encoding dimension is
high (enc = 100), PCA seems to outperform all the other
models. Hence, in that case, the simpler (linear model)



Figure 3: Reconstruction error (RMSE in dB) obtained
with PCA, AE, DAE (with and without layer-wise training)
and LSTM-AE, as a function of latent space dimension.

Figure 4: Reconstruction error (RMSE in dB) obtained
with VAEs as a function of latent space dimension (RMSE
obtained with PCA is also recalled).

seems to be the best (we can conjecture that achieving the
same level of performance with autoencoders would re-
quire more training data, since the number of free parame-
ters of these model increases drastically). However, using
such high-dimensional latent space as control parameters
of a music sound generator is impractical.

Similar conclusions can be drawn from Fig. 5 and Fig. 6
in terms of audio quality. Indeed, in a general manner,
the PEMO-Q scores are well correlated with RMSE mea-
sures in our experiments. PEMO-Q measures for PCA and
AE are very close, but PCA still slightly outperforms the
shallow AE. The DAEs and the VAEs both outperform the
PCA (up to about 11% for enc = 12 and enc = 16) with
the audio quality provided by the DAEs being a little bet-
ter than for the VAEs. Surprisingly, and contrary to RMSE
scores, the LSTM-AE led to a (slightly) lower PEMO-Q
scores, for all considered latent dimensions. Further in-
vestigations will be done to assess the relevance of such
differences at the perceptual level.

3.5 Decorrelation of the Latent Dimensions

Now we report further analyses aiming at investigating how
the extracted latent dimensions may be used as control pa-
rameters by the musician. In the present sound synthe-
sis framework, such control parameters are expected to re-
spect (at least) the following two constraints i) to be as
decorrelated as possible in order to limit the redundancy
in the spectrum encoding, ii) to have a clear and easy-to-
understand perceptual meaning. In the present study, we
focus on the first constraint by comparing PCA, DAEs,
LSTM-AE and VAEs in terms of correlation of the latent
dimensions. More specifically, the absolute values of the
correlation coefficient matrices of the latent vector z were
computed on each sound from the test dataset and Fig. 7
reports the mean values averaged over all the sounds of
the test dataset. For the sake of clarity, we present here
these results only for a latent space of dimension 16 for one

model of DAE ([513, 128, 16, 128, 513] (tanh & lin) with
end-to-end training) and for VAEs with the same architec-
ture ([513, 128, 16, 128, 513] (tanh & lin)) and different
values of β (from 1.10−6 to 2.10−5).

As could be expected from the complexity of its structure,
we can see that the LSTM-AE extracts a latent space where
the dimensions are significantly correlated with each other.
Such additional correlations may come from the sound dy-
namics which provide redundancy in the prediction. We
can also see that PCA and VAEs present similar behaviors
with much less correlation of the latent dimensions, which
is an implicit property of these models. Interestingly, and
in accordance with (2), we can notice that the higher the β,
the more regularized the VAE and hence the more decor-
related the latent dimensions. Importantly, Fig. 7 clearly
shows that for a well-chosen β value, the VAE can both
extract latent dimensions that are much less correlated than
for corresponding DAEs, which makes it a better candidate
for extracting good control parameters, while allowing fair
to good reconstruction accuracy (see Fig. 4). The β value
has thus to be chosen wisely in order to find the optimal
trade-off between decorrelation of the latent dimensions
and reconstruction accuracy.

3.6 Examples of Sound Interpolation

As a first step towards the practical use of the extracted
latent space for navigating through the sound space and
creating new sounds, we illustrate how it can be used to
interpolate between sounds, in the spirit of what was done
for instrument hybridization in [9]. We selected a series
of pairs of sounds from the NSynth dataset with the two
sounds in a pair having different characteristics. For each
pair, we proceeded to separate encoding, entry-wise lin-
ear interpolation of the two resulting latent vectors, decod-
ing, and finally individual signal reconstruction with in-
verse STFT and the Griffin and Lim algorithm to recon-
struct the phase spectrogram [19]. We experimented dif-



Figure 5: PEMO-Q measures obtained with PCA, AE,
DAEs (with and without layer-wise training) and LSTM-
AE, as a function of latent space dimension.

Figure 6: PEMO-Q measures obtained with VAEs as a
function of latent space dimension (measures obtained
with PCA are also recalled).

Figure 7: Correlation matrices of the latent dimensions
(average absolute correlation coefficients) for PCA, DAE,
LSTM-AE and VAEs.

ferent degrees of interpolation between the two sounds:
ẑ = α z1 + (1 − α) z2, with zi the latent vector of
sound i, ẑ the new interpolated latent vector, and α ∈
[0, 0.25, 0.5, 0.75, 1] (this interpolation is processed inde-
pendently on each pair of vectors of the time sequence).
The same process was applied using the different AE mod-
els we introduced earlier.

Fig. 8 displays one example of results obtained with PCA,
with the LSTM-AE and with the VAE (with β = 1.10−6),
with an encoding dimension of 32. Qualitatively, we note
that interpolations in the latent space lead to a smooth tran-
sition between source and target sound. By increasing se-
quentially the degree of interpolation, we can clearly go
from one sound to another in a consistent manner, and cre-
ate interesting hybrid sounds. The results obtained using
PCA interpolation are (again qualitatively) below the qual-
ity of the other models. The example spectrogram obtained
with interpolated PCA coefficients is blurrier around the
harmonics and some audible artifacts appear. On the oppo-
site, the LSTM-AE seems to outperform the other models

by better preserving the note attacks (see comparison with
VAE in Fig. 8). More interpolation examples along with
corresponding audio samples can be found at https://
goo.gl/Tvvb9e.

4. CONCLUSIONS AND PERSPECTIVES

In this study, we investigated dimensionality reduction based
on autoencoders to extract latent dimensions from a large
music sound dataset. Our goal is to provide a musician
with a new way to generate sound textures by exploring a
low-dimensional space. From the experiments conducted
on a subset of the publicly available database NSynth, we
can draw the following conclusions: i) Contrary to the lit-
erature on image processing, shallow autoencoders (AEs)
do not here outperform principal component analysis (in
terms of reconstruction accuracy); ii) The best performance
in terms of signal reconstruction is always obtained with
deep or recurrent autoencoders (DAEs or LSTM-AE); iii)
Variational autoencoders (VAEs) lead to a fair-to-good re-
construction accuracy while constraining the statistical prop-
erties of the latent space, ensuring some amount of decor-
relation across latent coefficients and limiting their range.
These latter properties make the VAEs good candidates for
our targeted sound synthesis application.

In line with the last conclusion, future works will mainly
focus on VAEs. First, we will investigate recurrent archi-
tecture for VAE such as the one proposed in [30]. Such ap-
proach may lead to latent dimensions encoding separately
the sound texture and its dynamics, which may be of po-
tential interest for the musician.

Then, we will address the crucial question of the percep-
tual meaning/relevance of the latent dimensions. Indeed
using a non-informative prior distribution of z such as a
standard normal distribution does not ensure that each di-
mension of z represents an interesting perceptual dimen-
sion of the sound space, although this is a desirable objec-
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(a) Original samples - Left : bass electronic 010-055-100, Right : brass acoustic 050-055-100

(b) PCA

(c) LSTM-AE

(d) VAE

Figure 8: Examples of decoded magnitude spectrograms after sound interpolation of 2 samples (top) in the latent space
using respectively PCA (2nd row), LSTM-AE (3rd row) and VAE (bottom). A more detailed version of the figure can be
found at https://goo.gl/Tvvb9e.

tive. In [14], the authors recently proposed a first solution
to this issue in the context of a restricted set of acoustic in-
struments. They introduced in the variational lower bound
(2) of the VAE loss an additional regularization term en-
couraging the latent space to respect the structure of the
instrument timbre. In the same spirit, our future works will
investigate different strategies to model the complex rela-
tionships between sound textures and their perception, and
introduce these models at the VAE latent space level.
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